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Pairing of spinless fermions in two dimensions
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We study the real-space pairing instability of spinless fermions on a two-dimensional square lattice
with short-range attractive interactions. Various symmetries of the pairing order parameter are con-
sidered. It is found that in both nonAux and Aux phases the most stable pairing state is chiral and aniso-

tropic. It breaks both the parity and the time-reversal symmetries. The quasiparticle excitation has a
minimum gap which could be much smaller than its average over the Fermi surface. The temperature
dependence of the order parameter and the critical magnetic field are found to be similar to those of the
classical BCS solutions. A possible connection with the high-temperature superconductivity is dis-

cussed.

The problem of strongly correlated electrons confined
to two dimensions has been of considerable interest in the
last few years, in part due to the general belief that the
essential physics of the high-T, superconductivity lies
within such a problem. ' One model which has been ex-
tensively studied is the so-called t-J model which de-
scribes both the spin and charge dynamics in the strong-
coupling limit. Various effective Hamiltonians and
mean-field schemes have been introduced to study the
ground state and the low-energy excitations.

In our recent work we used the semiclassical approxi-
mation for the spin degrees of freedom to study the possi-
ble ground state of the charge (fermion) dynamics. In
such an approach the effects of the spin dynamics on the
charge movement are twofold. First, it introduces a
gauge potentia1 into the charge kinematics which in gen-
eral can break both the time-reversal and parity sym-
metries. Secondly, an attractive interaction between
holes on nearest-neighbor sites is induced. Such an in-
teraction naturally leads to the real-space pairing instabil-
ity which gives rise to a superconducting phase transi-
tion. Similarly in the large-N expansion studies of the
generalized t-J model ' and in variational calculations,
it is found that there is an effective attractive interaction
between the spinless fermions which leads to the super-
conducting instabilities. In this paper we study such a
superconducting state and the related physical properties.

We start with the effective Hamiltonian for spinless
fermions in 2D with nearest-neighbor attractive interac-
tions

H= g t)f fj+H. c.+ g Vjf f fjfj,
E, J

b. =V(f f, ,-&, & .-=«f f;

b+ =V(f f + &, &,=V(f f,
(2)

general both the hopping amplitude ~t;~ ~
and the interac-

tion V; are nonuniform. However for simplicity we will
consider the uniform case, ~t, ~=t and V; = —V, only.
The Hamiltonian (l) is identical to the t JHamilton-ian in
the frozen spin limit up to a constant. It is the simplest
effective Hamiltonian which contains the essential phys-
ics in the superconducting state and is consistent with
earlier studies. The gauge potential p;I is due to the
coherent hopping of the spin in a strongly correlated spin
background. The gauge invariant quantity is the total
flux piercing a plaquette @=+;

Of the various spin configurations which have been
studied the Aux phases, which have a nonzero @, are of
particular interest. In studying the phase diagram of the
t-J model in the frozen-spin approximation we introduced
a class of generalized staggered-flux phases (GSFP)
which are classified by the size of the unit cell, q. The
q =2 GSFP is identical to that of the uniform Aux phase
when 4=~. In this paper we will limit ourselves to pair-
ing in the (nonflux) tight-binding phase and the simple
staggered-Aux phase (namely the q =2 GSFP) only. The
results of the superconducting gap, T„and the related
thermodynamic properties will be discussed. In addition
the various symmetries of the order parameter which are
allowed will be explored.

To consider the possible real space pairing we intro-
duce the following pairing order parameters:

We assume that the order parameters have the transla-
tional symmetry of the lattice. In the q =2 Aux phase the

where t;J =
~

t J. ~e " with p;I the gauge potential across the
link (ij & and f;t creates a spinless fermion on site i In.
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unit cell is doubled, namely i and i +x belong to two dis-
tinct sublattices A and 8 (Fig. 1). Hence, in general, all
four order parameters defined above are independent.
The relative phases of these order parameter, as will be
seen later, lead to different symmetries.

The four-fermion interaction term in the Hamiltonian
(1) is decoupled using the order parameters defined, for

example,

1 f;+.-f; f;f;+-„=f;+-„f;~+-. +~+-„f;f,+-„

V

This leads to the bilinear Hamiltonian

~= g [[(tA; 8 ++tA. ,tB +t 'A, .tB
i'd

+[(~+;A'8+;+~ „-A 8,' -. +& -A 8' +& A,"8,.', )+H.c.')]

+ g (~+-&+ +—b, At +b, b, t
I

iEA (4)

where we have introduced the operators A;=f, (i& A ) a.nd 8 =f (j&B). to distinguish fermions on sublattices A
and B, respectively. Also a symmetric gauge has been chosen such that t =te'@ with @ being the Qux through a pla-
quette (Fig. 1).

»nce the mean-fiel Hamil«»» (4) no longer commutes with the number operator, it is convenient to work within
the grand-canonical ensemble. Hence, defining II=H IJ,Q; A; A—; p+,BtB—, and .taking the half-space Fourier rep-
resentation, we have

p

H= y'(k)

k &k

where

y(k)

0
p

—y( —k)

&(k)
0
,

( k) 4+ED,

y(k)=2t[cos(k )e' +cos(k )e ' ~ ], b(k)=b, +e +b, &e "+6+ e '+5 e

Eo= g bsbs+ g [y( —k)—+y*( —k)+6( —k)+b, "(—k) —2p),
5 =+x,+y k„&ky

X is the number of unit cells, and we have defined the vector 4 as

(6)

1P =(A1„81„A 1„8 1, ) .

The Hamiltonian (5) can be diagonalized to produce four eigenvalues

E, = [-,' [p'+2ly I'+ l~(k) I'+
I ~( —k) I'+ &16@'Iy I'+ [I~( —k) I' —l~(k) I']'+41~( —k)+ ~(k) I'ly I'] ] '",

E34 —E] 2

and corresponding eigenfunctions

r)1(k)

212(k)

2)ti( —k)

212(
—k)

u 11(k) u 12(k) V 11(k) V 12(k)

u 12(k) u 22(k) V 12(k) V22(k)

v „(—k) v, 2( —k) u „(—k) u, 2( —k)

v2, ( —k) V22(
—k) u2, ( —k) u22( —k)

A„

A (9)

which define the coherence factors u's and U's. The order
parameters and the chemical potential are determined
from the self-consistent equation (2) and the constraint
N '+1,AtkA1, =IV '+kB~&81, =5, where 5 is the number
of the fermions per lattice site.

Before we present the numerical results, let us examine

the possible symmetries of the order parameters. As we
pointed out, the order parameters defined in Eq. (2) are in
general all independent. We will assume that the magni-
tude of all the order parameters is the same. This leads
to the following six possibilities which are compatible
with the symmetries of the square lattice
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+ JL )I +

'll +

+

+ )i — ii + )I

B:

b(k) =i2bo[sin(k„)+sin(k )],

h(k ) = i2b o[sin( k„)—sin( k» ) ]
C.

+X —X'

b (k) = i2b 0[sin( k„)+i sin(k» )];
im/2g

+y +2

(10)
D: 6+ —b,

X X y X

h(k) =2bo[cos(k„)+cos(k )];
E:

5(k ) =250[cos( k„)—cos( k» )];

FIG. 1. The square lattice. Arrows on the bond indicate that
hopping along the direction carries a phase e' . The Aux

through a plaquette is 4=+.

Note that this form of excitation spectrum is different
from the usual BCS form and it is always gapless. This
feature is uniquely due to the spinless nature of the fer-
mion.

We have performed a stability analysis of the supercon-
ducting state, with the normal state being either a simple
tight binding or the q=2 Aux phase, for all six sym-
metries listed in Eq. (10). The superconducting phases
are found to be stable only for antisymmetric cases A, B,
and C. Furthermore the competition is such that phase
C is always the most stable, i.e., it has the lowest free en-
ergy [see Eq. (22) for the expression of the free energy].
Hence, numerical results are given only for this case in
the remainder of the paper.

There are several important properties of phase C.
First, it is nodeless; i.e., the quasiparticle excitation has a
minimum gap. This is in contrast to the usual
momentum-space pairing for which a spatial antisym-
metric pairing state is always gapless. Second, it breaks
the chiral symmetry due to the phase difference between
the order parameters along the x and y directions. In ad-
dition, since the pairing order parameter carries finite an-
gular momentum, both time-reversal and parity syrn-
metries are broken in the superconducting state. This is
in contrast to the normal state which does not break
these symmetries in both the tight-binding and ~ stag-
gered Aux phase. These two properties are similar to
that of the Anderson-Brinkman-Morel (ABM) phase in
the study of helium III." Third, the gap order parameter
is anisotropic in momentum space but the magnitude of
the gap possesses the lattice symmetry. The experimental
manifestations of these important properties require more
studies.

If the normal state is the q =2 flux phase, then phase
C is closely related to the superconducting phase studied
by Wang et al. From Eq. (6) one finds

b(k) =2bo[cos(k„)+icos(k»)] .
and

ly(k)l =(2t) [cos (k„)+cos (k )]

It is important to realize that none of these six cases are
pure angular momentum eigenstates. For the antisym-
metric cases [A, 8, and C: 5( —k)= —b,(k)] the pairing
states are superposition of odd angular momentum states.
In these cases the quasiparticle excitation spectra can be
written as

It is evident that there will be nodes in the excitation
spectrum at kx = —k„and k =k +m. for case A, and at
kx ky and at kx = —

ky +m for case 8. Case C is in gen-
eral nodeless.

For the symmetric cases [E, D and F; b( —k)=b(k)]
the pairing states are a superposition of even angular
momentum states. The quasiparticle excitation spectra
are now

Ih(k)l =(260) [sin (k„)+sin (k )] .

Therefore the gap is isotropic around the Fermi surface.
Furthermore, from Eq. (10) one sees that the phase of the
order parameter h(k) changes sign under the mirror
reAection k ~—k . Hence the chirality of the order pa-
rarneter at the Fermi surface pocket near the point
(m. /2, n. /2) is opposite to that near the point
(m/2, —m/2). This result is the same as that found by
Wang et al.

Now let us turn to the quantitative solution for the
case C. The coherence factors u, v as defined in (9) can
be obtained analytically. They are

(13)

(12)
and
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6*1r p

~XP (14)

with

y(k)=2r[cos(k )e' +cos(k )e '~ 4],
(16)

where

4(k)= .g.(p) IVI-ly k I

Ei(k)

E2(k)

5(k) =i 2b o[sin(k„)+i sin(k )],

and the excitation spectrum E, 2(k) given by Eq. (11).
Using these and equations (9) and (2) the self-consistent
equation for the order parameter is

=&~,a, &

—ik —ik„=—g [u„(k)U12(k)+u2, (k)U22(k)]e "+—g [u,2(
—k)v;, ( —k) —u„(k)U12( —k)]e "n, (k)

+—g [u22( —k)U21( —k) —u2, (k)v22( —k)]e "n2(k)

sin (k ) 1 2n (k) 1 —2n (k)—X 1 + 2

2 Ei(k) E2(k)
(17)

with similar equations for other components. Here
El 2 kbTn12=1/(e " " +1) is the Fermi distribution function

for the quasiparticles. Combining the equations for b, +&
and 4+, the gap equation can be written in the sym-+p
metric form

tanh[E, (k)/2ki, T] +
E, (k)

1 1

V 4N

X[sin (k„)+sin (k»)] .

tanh[E2(k)/2ki, T]
E,(k)

(18)

+(u2, —
U2, +u22 —U22)n2(k)

+ U 11 + V 12 + V 21 + U 22 ]2 2 2 2

Substituting Eqs. (13) and (14) results in
r

1 1 Ei (k)
5 = g 1 ——g, (k)tanh

1t b

E2(k)——(2(k)tanh

(19)

(20)

The chemical potential is determined by Axing the total
number of fermions per site 5 which is

s =-,' & ~,'~, +a,'a, &

=—g [(u» U2ii+u i2
—U12)n, (k)

1

k

where g, 2(k) and E, 2(k) are given by Eqs. (15) and (11).
Equations (18) and (20) determine the gap and the

chemical potential as functions of the temperature. The
transition temperature T, is given by setting
ho(T=O)=0. In Fig. 2(a) we show the dependence of
zero-temperature gap b,o(T=O) on the interaction V for
both the tight-binding (TB) case and the Ilux phase (FP).
In the small coupling region it has the BCS functional
dependence ho(T=O) ~ Ve '~ '"'.' The ratio of the
gap to T„shown in Fig 2(b), is .found to be essentially in-
dependent of the coupling. For the flux phase, the gap is
isotropic in the Fermi surface, the ratio 2lb(T=O)l/T,
is about 3.6 [note b(k, T) is related to b,o(T) by Eq. (16)].
For the tight-binding case this ratio is anisotropic; the
maximum is around 4. It is interesting to note that both
values are close to the BCS value of 3.5; however, for the
tight-binding case the minimum of this ratio could be
much smaller.

It should be pointed out that the T, which has been
calculated here does not correspond to the transition
temperature in the three-dimensional system. It is well
known that in a pure 2D system the transition tempera-
ture is zero due to fluctuations. However, any 3D cou-
pling will stabilize the 2D transition at a finite tempera-
ture, which depends on the mean-field transition temper-
ature T, calculated here.

Plotted in Fig. 3 is the temperature dependence of the
order parameter ho(T). The solid curve is the fit to the
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BCS form

b o( T )=ho(0) tanh( a+T, /T 1—) (21)

~ ~ Ml1 ~ ~ E I

In both cases a = 1.8 is found to give an excellent fit.
The free energy per unit cell F, is given by
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FIG. 3. b.o( T)/b, o(0) vs T. The C' and + symbols are for the
flux phase with the carrier density 5=0.25 and the interactions
V=0.5t and V=1.0t, respectively. 0 and X denote the tight-
binding nonflux phase with V=1.0t, and 6=0.25, 5=0.45, re-
spectively. The solid line is the function t nah(a+T, /T 1)—
with a=1.8.

4. 2

(b)

F, —p(h, T)5=— 1 E, (k)
E, (k)tanh

2N b

E~(k)
+Ez(k)tanh

3.8

0 0 0 0 0
3.6

where the entropy is

460+ p( b„t )
—TS( T—),

V
(22)

3.4

3.2

kbS(T)=— g In (k)inn (k)
k, a=1,2

+[1—n (k)]in[1 —n (k)]I . (23)

3

~ll ~ llul ~ ~ ~ Q Q Q H El H

2. 8
0.02 0.04 0.06

TG

I l

0.08 0 ~ 1

FIG. 2. (a) —In[ho(0) /V] vs 1/V at 5 =0.25. A straight line
indicates the weak coupling BCS dependence. The symbols are
0 for the flux phase and + for the tight binding case. (b) The
ratio 2~6(k, T=O)I/T, at the Fermi surface with 5=0.25 for
various T, . For flux phase the gap is isotropic on the Fermi sur-
face and the ratio is close to that of BCS result of 3.5. For the
tight-binding case the gap is anisotropic; the maximum and the
minimum of the ratio are plotted. We found that the maximum
of the ratio is insensitive to the change of chemical potential,
while the minimum could be changed, dramatically reaching
zero at 5=0.5.

H, (T)
8m.

=F (T) F(T), —
S (24)

where F„(T ) is the normal-state energy at the same tem-

Note that both the chemical potential p and the gap
b,o(T) are self-consistently determined by Eqs. (20) and
(18) given the coupling V, the number of fermions per site
5, and the temperature T. We have calculated the free
energy at several diferent dopings for all six cases listed
in Eq. (10). It is found that only the superconducting
states with antisymmetric order parameter have lower
free energy than that of the normal state at the same tem-
perature. Furthermore, in the superconduciing state,
phase C always has the lowest free energy.

The bulk critical magnetic field H, (T) is determined
from
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FIG. 4. The bulk critical field H, [defined in E'q. (24)j plotted
against (T/T, ) . A straight line would be the result of a two-
Quid model. The symbols in the figure have the same meaning
as in Fig. 3.

flux phase were studied. In both cases we found that the
most stable pairing state breaks both the time-reversal
and parity symmetries. Such a pairing state is not in con-
tradiction with recent optical experiments on the high-T,
oxide superconductors, which indicate such symmetries
may be broken. ' However, there may also be additional
observable efFects, such as orbital ferromagnetism due to
the finite angular momentum of the pairing state, similar
to what has been observed in helium III.' Further stud-
ies are needed to quantitatively estimate such effects.

The quasiparticle excitation in the tight-binding case is
found to be anisotropic and to possess a minimum gap
which may be much smaller than the maximum gap. The
results for the m staggered Aux phase are in qualitative
agreement with earlier meanfield analysis. Though the
real-space pairing state is a superposition of many angu-
lar momentum eigenstates, the gap b,o(T), T„and the
critical field H, are all found to be similar to those of the
classical BCS solutions for the momentum-space pairing.
Combination of these e6'ects may lead to some unusual
thermodynamical properties in the superconducting
state, such as the absence of or weak Hebel-Slichter peak
in the nuclear relaxation rate and a finite density of states
for the energy smaller than the maximum gap.

perature. In Fig. 4 we show the temperature dependence
of H, ( T). Again it is found that the result is very similar
to that of the BCS solution. '

In conclusion, we have studied the real-space pairing
instabilities of spinless fermions on a two-dimensional
square lattice. Motivated by our earlier semiclassical cal-
culations of the t-J model, both no-flux tight binding and
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