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We present a theory of the fractional quantum Hall effect (FQHE) based on a second-quantized fer-
mion path-integral approach. We show that the problem of interacting electrons moving on a plane in
the presence of an external magnetic field is equivalent to a family of systems of fermions bound to an
even number of fluxes described by a Chern-Simons gauge field. The semiclassical approximation of this
system has solutions that describe incompressible-liquid states, Wigner crystals, and solitonlike defects.
The liquid states belong to the Laughlin sequence and to the first level of the hierarchy. We give a brief
description of the FQHE for bosons and anyons in this picture. The semiclassical spectrum of collective
modes of the FQHE states has a gap to all excitations. We derive an effective action for the Gaussian
fluctuations and study the hydrodynamic regime. The dispersion curve for the magnetoplasmon is calcu-
lated in the low-momentum limit. We find a nonzero gap at w.. The fractionally quantized Hall conduc-
tance is calculated and argued to be exact in this approximation. We also give an explicit derivation of
the polarization tensor in the integer Hall regime and show that it is transverse.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a fas-
cinating condensed state of matter whose study has un-
veiled some previously unsuspected properties of
quantum-mechanical systems in two dimensions. A sys-
tem of fermions with only repulsive interactions has been
found to display properties more characteristic of Bose
condensed systems such as long-range correlations in the
ground state and excitations with both fractional charge
and fractional statistics. In addition, the Hall conduc-
tance is an exact fraction of the “quantum” e?/h. Most
of what is now understood about this fundamental
phenomenon has been found by one (or more) of the fol-
lowing approaches: (i) the Laughlin wave function,' (ii)
Jain’s generalization,? (iii) exact diagonalization of small
systems,”® and (iv) the “Bose”—“Ginzburg-Landau”*~°
picture.

Superficially, the approaches (i) and (ii) resemble to be
what in many-body physics is normally called a mean-
field approach: a wave function for the ground state is
derived, usually by means of a variational calculation, in
this case by educated guess. However, the many-body
mean-field theories usually involve a starting point in
which the particles (say, fermions, in this case) move in
the presence of an average field due to the presence of the
other particles. Thus, the mean-field wave function is an
appropriately generalized Slater determinant. However,
the Laughlin wave function and its generalizations can-
not be written in a determinant form. For a system of N
interacting electrons moving in a plane, in the presence of
an external uniform magnetic field of strength B, the
Laughlin wave function for N polarized electrons is

N ‘zilz
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W(zy,...,zy)=]] (z;—2z;)" exp , (1.1

i<j

where the set {z;} (i=1,..,N) are the coordinates of the

4

N electrons in complex notation (z =x +iy) and [ is the
cyclotron radius. The odd integer m is equal to the in-
verse of the filling fraction v=N /N, of the lowest Lan-
dau level, where N, is the total number of flux quanta
going through a sample of linear size L,
N,=(1/27)[BL 2/(#c /e)]. Quite surprisingly, the
Laughlin wave function has turned out to yield an excel-
lent ground-state energy"? and, for the case of a particu-
lar potential, it has been shown to be the exact wave func-
tion’ for the ground state. It has also yielded a good
description of the spectrum of collective modes.® The
“Bose” picture,* ¢ on the other hand, gives information
in a language that makes the FQHE look a lot more like
superfluidity than what the “Fermi” picture may suggest.
Thus, it is possible to formulate a Ginzburg-Landau-type
theory® which can account for many qualitative proper-
ties of the FQHE.

The Laughlin state was originally constructed in close
analogy with the wave functions commonly used in
theories of superfluid Helium. Shortly afterwards, Halpe-
rin’® realized that the quasiparticles supported by this
state exhibit not only fractional charge but that they are
anyons, particles with fractional statistics.!® This obser-
vation gave rise to the picture of the FQHE as a ground
state of “‘electrons bound to fluxes.” In this picture, the
main role of the long-range correlations is to make it pos-
sible for the electrons to “nucleate” flux. Jain!! realized
that in the Laughlin state the electrons nucleate enough
flux so that the bound states exactly fill up an integer
number of the Landau levels associated with the un-
screened part of the field. In this formulation, the FQHE
is an integer quantum hall effect (IQHE) of the bound
states.>!! Jain proposed to write the Laughlin wave func-
tion Eq. (1.1) in the suggestive factorized form
W(zy,...,zy)=]1 (z,.-—zj)"’_l)(,(zl, ..

i<j

SZy) (1.2)
where ), is the wave function for a completely filled

5246 ©1991 The American Physical Society



44 FRACTIONAL QUANTUM HALL EFFECT AND CHERN-SIMONS . . .

lowest Landau level
N |Z i l 2

=) 4l?

X1(zys - zy)=T] (z;—z;)exp (1.3)

i<j

The phases associated with the first factor in Eq. (1.2)
represent an even number (m —1) of fluxes that are at-
tached to each coordinate z; where an electron is present.
It is a crucial feature of this picture that the electrons
bind to an even number of flux quanta and, in this way,
they retain their fermion character. Jain’s approach has
allowed for a simple description of the so-called hierar-
chy states'>!3 in terms of wave functions which have a
factorized structure. This picture also suggests a possible
way to construct a mean-field theory for the FQHE: the
fermions ‘“nucleate” enough flux to partially screen the
external field. The effective field in which they move is
due to both the external field and to the correlations
among the electrons. The wave function Y, is just the
state described by this mean-field theory. We will show
in this paper that it is possible to use the methods of
second quantization to derive a mean-field theory which
precisely has this physics. However, the physics of the
Laughlin state cannot be described by a wave function
such as ); which represents a set of completely filled Lan-
dau levels. As we will show below, the FQHE and the
physics of the Laughlin wave function turn out to follow
from the effects of fluctuations about this mean field.

Although the progress in the understanding of the
FQHE has been very impressive, many fundamental
questions remain without a reasonable answer. Most of
all, it remains unclear how a system of electrons in an
external magnetic field manages to turn the correlations,
which result from the electron-electron interactions, into
“nucleated fluxes.” Similarly, although a number of very
good arguments have been given which explain why the
Laughlin wave function is the exact ground state for a
class of local potentials,®’ it is not clear what sort of
corrections this state should have (if any) for arbitrary
potentials, local or not. In this paper we develop a for-
malism which, in principle, can be used to answer these
questions and can also serve as a practical computational
tool.

In this work we show that the key to the answer of
these issues is the Chern-Simons gauge theory. In 1982
Wilczek’s observed!? that a particle current coupled to a
Chern-Simons (CS) gauge field produced states with frac-
tional statistics through the binding of particles to fluxes.
Thus, if we are to get the Laughlin wave function Eq.
(1.1) by attaching m —1 fluxes to each electron, as sug-
gested by Eq. (1.2), it is natural to guess that the “right”
theory must contain fermions (electrons) coupled to
Chern-Simons gauge fields with an appropriate value of
the Chern-Simons coupling constant 6. What is less clear
is the origin of such a Chern-Simons gauge field for the
problem of interacting electrons in a magnetic field. In
quantum field theory, where the CS gauge theory was
first introduced,'* the Chern-Simons term in the action
originates from the parity anomaly of relativistic fer-
mions in 2+ 1 dimensions. Clearly, the electrons which
live in quasi-two-dimensional electron gases, such as the

5247

metal-oxide-semiconductor field-effect transistors
(MOSFET’s), are not relativistic. Also the real three-
dimensional system one is dealing with, neither breaks
Parity by itself nor as a result of the presence of the de-
vice. The Chern-Simons gauge field must then be a result
of the dynamics of interacting two-dimensional electrons
in the presence of an external magnetic field. For our
purposes, the most important feature of the Chern-
Simons term is not its relativistic invariance, but the fact
that it is the only local gauge-invariant theory which
yields bound states of particles and fluxes. Chern-Simons
theories have also become the essential ingredient of
some of the more recent theories of strongly correlated
electron systems, such as the chiral spin liquid!>!® and
anyon superconductivity.!” 24

In this paper we derive a field theory for the FQHE in
the fermion language in which the Chern-Simons gauge
field appears explicitly in the problem of interacting elec-
trons in a magnetic field. We do so by first considering a
theory in which the electrons, in addition to their mutual
interaction, are coupled to both an external electromag-
netic field and a Chern-Simons gauge field. We show
that, if the coefficient of the Chern-Simons term is chosen
in such a way that an even number of flux quanta get at-
tached to each electron, all the physical amplitudes calcu-
lated in this theory are identical to the amplitudes calcu-
lated in the standard theory, in which the CS field is ab-
sent. We further show that the Laughlin state is the
semiclassical approximation of this theory. In the “clas-
sical” (i.e., mean-field) approximation we get a picture
identical to the one proposed by Jain. We show that, at
this level, the only states that can be described are the
Laughlin states and the first level of the hierarchy. This
theory, not only explains where the fluxes come from, but
also allows for the systematic calculation of corrections
around this state in a manner similar to the Wentzel-
Kramers-Brillouin (WKB) approximation in quantum
mechanics. In particular, we calculate the Hall conduc-
tance directly from the field theory, we discuss the excita-
tion spectrum in this approximation, and show that this
state has a gap to all excitations and thus that it is in-
compressible. This formalism also yields a picture of the
FQHE for anyons.

The approach that we follow here is based on a
second-quantized fermion path-integral approach. Other
path-integral approaches have been used for the study of
the FQHE. Kivelson, Kallin, Arovas, and Schrieffer?
(KKAS) introduced a first-quantized path-integral ap-
proach based on coherent states labeled by the guiding
center coordinates of the single-particle states of the
lowest Landau level. The approach of KKAS, refined
later on by several authors,?®?’ yields a natural descrip-
tion of the Wigner crystal states as well as a qualitative
picture of the phase transition (at zero temperature) into
the liquid phase. Zhang, Hansson, and Kivelson® used a
version of the fractional statistics transformation to map
the FQHE problem into a path integral over Bose degrees
of freedom coupled to a Chern-Simons gauge field. The
“superfluid” state of the equivalent boson problem was
identified by these authors with the fractional quantum
Hall state. Although this theory yields a correct qualita-
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tive description of physics of the low-energy degrees of
freedom, in the form of a Landau-Ginzburg theory, it has
difficulties with the short-distance behavior of the system.
One of the outstanding issues is the problem of the
identification of the collective modes, their energy gaps,
and in particular the possible existence of magnetorotons.
Some of these difficulties have been resolved recently by
Lee and Zhang,?® who have stressed the important role
that vortices play in this bosonic description. In our fer-
mion path-integral approach, the semiclassical limit
yields a picture very close to that of Jain’s: the fermions
nucleate enough ever number of flux quanta so as to, on
average, become equivalent to a problem in which an in-
teger number of Landau levels of the effective flux are
completely filled. There is a nonzero gap and a semiclas-
sical expansion around this state yields a spectrum whose
quantum numbers coincide with those obtained with the
Laughlin wave function. The picture that emerges from
our study has a close connection with the physics of
anyon superconductors. As expected, the anyon super-
conductors are the compressible partners of the in-
compressible FQHE states.

The paper is organized as follows. In Sec. II we derive
the Chern-Simons theory of the FQHE. In Sec. III we
consider the semiclassical approximation and show that
the behavior of the system in this limit agrees with the re-
sults of Laughlin and Jain. We also discuss the case of
bosons and, more generally, of anyons. In Sec. IV we dis-
cuss the spectrum of low-lying excitations, including a
calculation of the magnetoplasmon dispersion curve. We
also calculate the Hall conductance. Section V is devoted
to the conclusions. In Appendix A we give the details of
the proof of the statement that “an even number of flux
quanta is the same as nothing” and in Appendix B we
present the calculation of the polarization tensor and the
proof of its transversality.

II. A CHERN-SIMONS THEORY FOR THE
FRACTIONAL QUANTUM HALL EFFECT

Consider a system of N electrons moving on a plane in
the presence of an external uniform magnetic field B per-
pendicular to the plane. The electrons will be assumed to
have an interparticle interaction governed by a pair po-
tential ¥ (|r|), for two electrons separated a distance |r|
on the plane. The magnetic field will be assumed to be so
large that the system is completely polarized and that we
can ignore the spin degrees of freedom. The eigenstates

W(x,,...,Xy) are eigenfunctions of the (first-quantized)
Hamiltonian A
2
A=3 |5 |p,— € Ax) | +edolx))

21 o [P A eAy(x;

i=

+3 Vix—x), 2.1

i<j

where we have included the coupling to both the elec-
tromagnetic vector potential A and the scalar potential
A,. Hence, we are dealing with N spinless fermions of
charge —e and mass M.

Our goal is to show that this system is equivalent to the
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same system but coupled to an additional statistical vec-
tor potential A u (#=0,1,2) whose dynamics is deter-
mined by the Chern-Simons action S g
6

Scs=[ d3xzem.>4ﬂsvk, 2.2)
for a suitably chosen value of 8. In Eq. (2.2) x,, x;, and
x, represent the time and the space coordinates of the
electrons, respectively, and F** is the field tensor for the
statistical gauge field

Fr=A -3 A" . (2.3)
The equivalent theory has a Hamiltonian H' which is
identical to H, given in Eq. (2.1), except for the fact that
the electrons are also coupled to the statistical vector po-
tential A ,. This is accomplished simply by setting

%A—>§A+.>4, edg—edy+A, . (2.4)
As one of us noted in Ref. 21, the Chern-Simons action

implies a constraint for the particle density j,(x) and the
statistical flux B

Jo(x)=06B8B(x) , (2.5)

which can be regarded as a kind of Gauss law, and an
equal-time commutation relation among the spatial com-
ponents of A,

[Al(x),ﬂz(x')]=—é~8‘2>(x—x') . (2.6)
For arbitrary values of 0, it was shown in Ref. 21 that the
system is a set of anyons with statistical angle §=1/26,
measured with respect to Fermi statistics. Thus, if
60=(1/27)(1/2n), where n is an arbitrary integer, then
6=2mn and the system still represents fermions. The
constraint Eq. (2.5) tells us that 6 represents a statistical
flux per particle of 1/6. Hence, for 6=(1/2m)(1/2n),
each fermion picks up a statistical flux equal to
1/6=2m(2n) i.e., an evern number of flux quanta (2n) is
attached to each particle. This argument suggests that
for both theories to be equivalent we must make the
choice

1 1

S ——

’ (2.7)

where m is the odd integer appearing in the Laughlin
wave function Eq. (1.1).

In Appendix A we present a detailed proof of the phys-
ical equivalence of two theories of particles coupled to a
Chern-Simons gauge field with coupling constants 6 and
6’ such that

1 1
=— 7 X
o 9+2 2n ,

(2.8)

where n is an arbitrary integer. We show that both
theories have the same amplitudes for all of their physical
states. In particular, a theory of interacting fermions is
always equivalent to a family of theories of interacting
fermions coupled to a Chern-Simons gauge field with cou-
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pling constant € such that 1/60=27X2n. This result is
the starting point of our analysis of the FQHE.

Let us remark that Eq. (2.8) makes apparent the period-
icity in the statistical angle §—&-+2mXeven integer.
While this periodicity is obvious in the ‘“anyon”
language, it is far from evident in the Chern-Simons
description. In Chern-Simons language, periodicity
means that theories with values of the CS coupling con-
stant 0 and €' are equivalent if 1 /60— 1/6'=27 X even in-
teger. This is important since in the mean-field approxi-
mation to both the FQHE and the anyon gas, one particu-
lar period has to be chosen. The perturbative treatment of
the fluctuations around this mean field are incapable of
restoring the periodicity. This is a nonperturbative effect.
In particular, operators which create excitations which
change the amount of flux per particle in even multiples
J
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of the flux quantum are soliton operators which restore
the periodicity broken by the mean field. This
phenomenon is quite analogous to the role played by soli-
tons in one-dimensional systems. On the other hand, one
can take advantage of the periodicity of the CS descrip-
tion to choose the period in which the mean-field theory
is simplest. This is the approach that we take in this pa-
per to attack the FQHE. As it will be apparent in the
next section, at the mean-field—semiclassical level, this ap-
proach reproduces Jain’s construction of the FQHE
states.

In second-quantized language, what we have proven is
the physical equivalence of theories whose dynamics are
governed by the actions (in units in which #=1) &, and
&y, which are defined by

$o=[d* ¢*<z><ino+m¢<z>+#wum% AR T

—1fa% [a* 2 [|p2)P—pIVz—z' D) —p],

where p is the average particle density, provided that 6
and @' satisfy Eq. (2.8). In Eq. (2.9) ¢(z) is a second-
quantized Fermi field, u is the chemical potential, and D,
is the covariant derivative which couples the fermions to
both the external electromagnetic field 4, and to the sta-
tistical gauge field A,

D, =3, +iZ A, +iA, . (2.10)
In particular, a theory of interacting fermions (which has
0=0) is equivalent to a family of theories of fermions
with 1/6=2mXeven integer. However, the equivalency
holds for arbitrary values of 6. Hence, our theory will
also be applicable to the study of anyons in a magnetic
field and, hence, to the study of the hierarchy.

In the next section we will develop a semiclassical
theory of the FQHE based on an action of the type of Eq.
(2.9) with the choice of 6 given in Eq. (2.7), i.e.,
1/6=2m(m —1), where m is the odd integer which ap-
pears in the Laughlin wave function. As a by-product,
we will also find the FQHE states for anyons.

III. THE SEMICLASSICAL LIMIT
AND THE LAUGHLIN GROUND STATE

In this section we will show that the semiclassical limit
of the theory described by the action S, of Eq. (2.9), with
1/6=2m(m —1), yields the same physics as the Laughlin
state ¥ of Eq. (1.1). In order to prove this statement we
will develop a semiclassical approach to this problem. As
a by-product, our formalism provides for a systematic
procedure to compute corrections to the Laughlin ap-
proximation. This is, to the best of our knowledge, the
first formalism for which the Laughlin ansatz arises as
the first of a series of approximations.

The action of Eq. (2.9), with the choice
1/60=2m(m —1), governs the dynamics of a system of

(2.9

spinless fermions interacting through a pair interaction
potential (¥|x—x’|) coupled to both electromagnetic and
statistical gauge fields. The starting point of the semi-
classical approximation effectively maps this FQHE
problem into an equivalent IQHE system much in the
same way as in Jain’s reinterpretation of the Laughlin
wave function. This mapping is made possible by the sta-
tistical or Chern-Simons gauge fields which screen out
enough of the external magnetic field to the point that the
number of flux quanta of the effective magnetic field
which is left is an exact factor of the total number of par-
ticles. Naturally, this perfect screening is not possible for
arbitrary values of the external magnetic field for a fixed
number of electrons. The values of the filling fraction for
which this perfect screening can be accomplished hap-
pens to be the same as the Laughlin sequence 1/m and
the first level of the hierarchy. For all other cases, there
will be some partially filled level left over. However,
these quasiparticles are effectively anyons. The conven-
tional hierarchy scheme assumes that these quasiparticles
can condense into another sort of FQHE state. This pro-
cedure is repeated in an iterative fashion until perfect
screening is achieved. We will not further discuss the
higher stages of the hierarchy here. In the rest of this
section we assume that 6 can take an arbitrary value.
Thus, our results will include the FQHE for fermions as
well as the more general case of anyons.

Consider the quantum partition function for this prob-
lem (at T =0)

Z= [ DY*DYDA , exp(iS,) . 3.1)
We will treat this path integral in the semiclassical ap-
proximation. In order to do that we will first integrate
out the fermions and treat the resulting theory within the
saddle-point-expansion (SPA) characteristic of semiclassi-
cal approaches to quantum mechanics and quantum field
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theory.?>3® In the absence of electron-electron interac-
tions the fermions can be integrated out immediately
since the action becomes quadratic in Fermi fields. In the
presence of interactions this is no longer possible since
the interaction term in the action Eq. (2.9) spoils this
feature. However, this problem can be sidestepped by
means of a Hubbard-Stratonovich transformation by
which we trade a quartic form in fermions for a quadratic
one coupled to a new Bose field, in this case the density
fluctuation. This procedure will allow us to give a full

]

—[l(z)>—

exp ——ifd3zfd3z

Viz—z)[ly(z")]*—

i fd’zMz)

—.N'fka exp

where N is a normalization constant and V(z —2z')
represents the instantaneous pair interaction, i.e.,

V(z—z)=V(lz—z'|)8(t —1¢t') . (3.3)

V~Yz—z') is the inverse of V(z—z') in an operator
sense. In this paper we will assume that the physics of
the FQHE can be studied in a model system in which the
pair potential is reasonably local. In fact it has been ar-
gued by Haldane® that it is possible to approximate the
realistic 1/R Coulomb potential by a set of pseudopoten-
tials when the states are projected onto a specific set of
Landau level basis states (the lowest in his case). Furth-
ermore, Kivelson and Trugman7 (KT) have shown that
the Laughlin wave function is the exact ground state for a
system with the ultralocal pair potential

Virllz—2z'|)=V,V28(z—2') . (3.4)

Since the methods developed in this paper are completely
general and, hence, work for any reasonable pair poten-
tial, we will not restrict ourselves to any particular form
of V' (z) beyond the assumption that it is behaves reason-
ably well. In the case of the Kivelson-Trugman potential,
the inverse potential operator ¥ ~!(z —z') takes the par-
ticularly simple form

Vii(z —z’)=Tl—~Go( |lz—2z'|)8(t —1t') .
2

(3.5)

Here Gy(R) is the two-dimensional Coulomb Green func-
tion, i.e.,

R)= 271[/2 In(R /a) , (3.6)
where a is a constant with dimensions of length which
represents the range of the interaction.

After the Hubbard-Stratonovich transformation is per-
formed, the partition function Z can be written in the
form of a functional integral involving the Fermi fields 1,
the statistical gauge fields A ,, and the collective modes
A. The action for the system is now given by

[lw(2)]?
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description of the spectrum of collective modes of the
FQHE states. Finally, note that since we are dealing
with a gauge theory, a gauge has to be specified in order
to make the functional integral well defined. We will as-
sume from now on that a gauge fixing condition has been
imposed but, for the moment, we will not make any
specific choice of gauge.

Before we proceed to integrate the Fermi degrees of
freedom out, we perform the Hubbard-Stratonovich
transformation in terms of a scalar Bose field A(x)

fd 2 [d2MV Tz =2\ |, (3.2)
-
S= [ d% |¢*(2)[iDy+p+M2) JY(2)
L py)2+Le,Am P~ A(2)p
M 4 uvA P
+1[d%z [dP2 MV Nz —z)Mz) . B.T)

The Fermi fields can be integrated out without any
difficulty yielding, as usual, a fermion determinant. The
resulting partition function can thus be written in terms
of an effective action S 4 given by

S.g=—itrln [iD, +u—5:;D2 }

+Scs(A,— —S#OA)—fd z Mz)p

+— fd zfd3z’k )W N z—2z)Az'), (3.8)

where D, and D are the covariant derivatives of Eq.
(2.10) and Sg is the Chern-Simons action Eq. (2.2). The
field 4 x Tepresents a small fluctuating electromagnetic
field, with vanishing average everywhere, which will be
used to probe the system. The electromagnetic currents
will be calculated as first derivatives of Z with respect to
A u+ The full electromagnetic response will be obtained
in this way. Notice that we have used the invariance of
the measure DA, with respect to shifts to move A , out
of the covariant derivatives and into the Chern-Simons
term S¢g.

We are now ready to proceed with the semiclassical ap-
proximation. The path integral Z will be approximated
by expanding its degrees of freedom around stationary
configurations of the effective action S,.¢ in powers of the
fluctuations. This is the conventional WKB-like approxi-
mation. The classical configurations [a‘l (z)=(A u(2)>
and A(z)=({A(z))] can be obtained by demanding the S ¢
be stationary under small fluctuations. This requirement
yields the classical equations of motion
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AX ’ SA(z)

8A ,(2)

(3.9

.'/T,Xw

By varying S with respect to A ,(z) and A(z) we get
Gule)) g+ T el (FH)) —e(FH)]=0
o2 p—p+ [dP2'V Uz —2'){Mz"))=0. (3.10

In addition we must fix the particle density to be uniform
and equal to p, i.e.,

(ol2))=p , (3.11)

where ju(z)) F represents the expectation value of the
charge and current of the equivalent fermion problem.

These equations have many possible solutions, which
include uniform (liquid) state and Wigner crystals. There
are also solutions which represent defects, such as the
quasihole.

The solution with uniform particle density, which
represents a liquid phase, is only consistent if

Mz)=0. (3.12)

In the Wigner crystal state the density has, in addition to
p, an oscillatory component. Equation (3.10) requires
that (1) should also have an oscillatory component as
well. In this paper we will only discuss the liquid FQHE
states.

If the external electromagnetic fluctuation is assumed
to have zero average, the only time-independent uniform
solutions of Eq. (3.10) have uniform average statistical
flux (B) and vanishing average statistical electric field
(&) (unless there is a nonzero current in the ground
state) and satisfy

(BY=—L (&)=0.

0 (3.13)

Equation (3.13) shows that, for a translationally invariant
ground state, the effect of the statistical gauge fields, at
the level of the saddle-point approximation, is to reduce
the effective flux experienced by the fermions. The total
effective field is thus reduced from the value of the exter-
nal field B down to B,g=B +{(B)=B —p/0. Let us as-
sume that we have a situation in which we are trying to
find the ground state of N (interacting) electrons in the
presence of an external magnetic field of strength B. We
will further assume that the linear size L of the sample is
such that a total of N, quanta of the magnetic flux are
piercing the surface. In general, the filling fraction
v=N/N, is not an integer. Thus, a perturbative ap-
proach based on a Slater determinant wave function of
the occupied single-particle states does not yield a stable
answer. This is so because there is a macroscopic number
of essentially degenerate states which will mix with this
trial state. On the other hand, a Laughlin state is known
to represent a state with an energy gap. Thus, the corre-
lations have removed the massive degeneracy of the free
electrons. Furthermore, this gap is not equal to the Lan-
dau gap of the noninteracting electrons. Therefore, we
can expect our saddle-point expansion to succeed only if
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the effective theory ends up with a nonzero gap.

The uniform effective magnetic fields B, which solve
Eq. (3.13), define a new set of Landau levels. Each level
has a degeneracy equal to the total number of effective
flux quanta N and the separation between levels is the
effective cyclotron frequency w®¥=eB./Mc. Similarly,
there is an effective cyclotron radius /gT. It is easy to
check that the uniform saddle-point state which satisfies
Eq. (3.13) has a gap only if the effective field B4 experi-
enced by the N fermions is such that the fermions fill ex-
actly an integer number p of the effective Landau levels.
This is precisely the point of view advocated by Jain: the
FQHE is an IQHE of a system of electrons dressed by an
even number of flux quanta. However, this condition
cannot be met for arbitrary values of the filling fraction v
at fixed field (or at fixed density). Let N ff denote the
effective number of flux quanta piercing the surface after
screening. It is given by

2aNg =2mN,—E L. (3.14)
Thus, the effective cyclotron frequency w‘;ﬁ is reduced
from its free electron value of eB/M_, down to
0f=w.(1—v/270). The effective cyclotron radius is
given by I =(1,/V'1—v/270), which is larger than the
noninteracting value. Therefore, even though the bare
Landau levels may be separated by a sizable Landau gap
#iw,, the effective Landau levels have the smaller gap
ﬁcagff.

We will now find the solutions to this equation for the
cases of fermions, bosons, and, more generally, anyons.

A. Fermions
For the particular case of fermions, Eq. (3.14) reads

2aN§ =2wN,—272sN , (3.15)

where 2s is an even integer. The spectrum supported by
this state has an energy gap if the N fermions fill exactly p
of the Landau levels created by the effective field B 4. In
other words, the effective filling fraction is
ver=N /N =p. Using Eq. (3.15), we find that the filling
fraction v and the external magnetic field B must satisfy

ﬂ=£—2sN , (3.16)
P v

or, equivalently,
LI (3.17)
v p

The filling fraction v is in general equal to the ratio of
two integers, v=n/m. Equation (3.17) holds if the in-
tegers n and m satisfy the equation

m_1ia. (3.18)
n p
The effective Landau gap for these solutions is
fiw
fofT=—F"— | 3.19
e T 1+2sp 319
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which is small if either p or s are large. Thus, the energy
to excite a fermion is %o and it is considerably smaller
than the bare free-particle value %o, .

The states are thus parametrized by two integers p (the
number of filled Landau levels of the effective field) and 2s
(the number of flux quanta carried by each fermion). The
Laughlin sequence is an obvious solution of Eq. (3.18)
since, for n =1 and m odd, Eq. (3.18) yields the unique
solution p =1 and 2s =m —1. The effective fermions
thus fill up exactly one Landau level and 6 has to be
chosen to be 1/0=27(m —1). This is the Jain result. At
this mean-filled level the wave function is the Slater
determinant for one filled Landau level y; of Eq. (1.3).

We will show below that the additional factor
I, <, (z;—z;)™ " is due to fluctuations.
In addition to the Laughlin sequence (p=1,

2s =m —1), Eq. (3.18) has a host of other solutions. For
n <m, we can use the division algorithm to find a pair of
integers r and g (0=q <n) such that m =nr-+q. Equa-
tion (3.18) can only hold if r =2s and ¢ is a factor of n
such that ¢g/n=1/p. For instance, the sequence
m =2sn +1 is a solution if m is an odd integer (g = 1).
Clearly, this case has p =n filled Landau levels. This is
the first level of the hierarchy. Here too, our mean-field
results yield the same answers as in Jain’s approach.!!

B. Bosons
For the case of bosons, Eq. (3.14) becomes

2aN§ =27N,—2m(2s + N , (3.20)

where s is an arbitrary integer. Thus, for the case of bo-
sons, the allowed filling fractions v=n /m must satisfy
1_1

— =425 +1.
v p

(3.21)

In addition to the even denominator Laughlin sequence
(n =1, m =2s), we also get a first level of a hierarchy for
bosons m =n(2s +1)+1.

C. Anyons

Finally, let us discuss the more general case of anyons
with 6=(1/2m)(p/q) and statistics =g /p measured
relative to fermions. The allowed filling fractions now
are given by

1 _ 1 1
—=-=42 ,
s2779

v o r
where 7 is an arbitrary positive integer which is equal to
the number of filled Landau levels of the effective fer-
mions. For example, if we consider the case of semions
(i.e., 6=m/2), Eq. (3.22) becomes 1/v=1/r +2s—1.
One particular solution is the choice » =1, which corre-
sponds to the lowest effective level being completely
filled. This particular case has been discussed elsewhere
by one of us within the framework of the theory of the
singlet quantum Hall effect.3! In general, there are many
solutions to Eq. (3.22). These solutions are important for
the construction of the higher levels of the hierarchy of
FQHE states.

(3.22)
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The saddle-point approximation yields a very simple
spectrum which consists just of the single- and many-
particle excitations of fermions in the effective field B .
The single-particle gap is equal to #of. Notice that, al-
though the Coulomb energy does not enter explicitly in
this effective gap, its existence is a consequence of the
Coulomb interactions. However, there are many reasons
which suggest that this spectrum is not the right one.
First of all, the saddle-point approximation neglects the
fluctuations about the average field. In Sec. IV we show
that fluctuations give rise to a host of collective modes.
Also, in the strong-field limit B — o, both the bare and
the effective Landau gaps diverge. Thus, there should ex-
ist other particlelike states whose energy remains finite
even in the limit B— . Intuitively, we expect that the
energy of this charged excitation should be determined
primarily by the interactions. Such solutions do exist.
They are just Laughlin’s quasiparticle and quasihole
states.

The saddle-point equations (3.10) have a host of nonun-
iform solutions which have finite energy. They can be
viewed as soliton or vortex solutions. Our construction is
very close in spirit to the picture of the quasihole present-
ed by Laughlin.? In this paper we will only discuss the
qualitative features of these solutions. The details will be
discussed elsewhere. For the sake of simplicity we will
only discuss the case of fermions in the Laughlin 1/m se-
quence. Recall that this sequence is represented by the
solution with p =1 and m =2s +1. The uniform state
was constructed by filling up the lowest effective Landau
level. Let us consider the state which results from re-
moving a fermion from the single-particle state, centered
around the origin z =0 and the lowest angular momen-
tum, and placing it on the first unoccupied angular
momentum state. Physically, this new state lies on the
outer edge of the system. For a uniform effective field,
this states does not exist. But, if the effective field is in-
creased at the origin by an amount equal to one flux
quantum, the angular momentum of all its eigenstates is
raised by one whole unit. The radius Ry of the droplet
with N particles swells to a new value Ry +8R large
enough to include a new cyclotron orbit. Qualitatively, a
quasihole localized at z, has the mean-field wave function
¥, =V,(z,{z;}) given by

N
W, (zg, {z;}) =TT (z; —2z0)x1({2;}) » (3.23)
i=1

where x,({z;}) is the wave function for N fermions occu-
pying the lowest Landau level. Notice that this wave
function differs from the Laughlin state for the quasihole
by the prefactor [J;; (z;—z;)" ~1. Indeed, this prefac-
tor is also missing in the mean-field wave function for the
ground state. In our picture, both prefactors arise from
fluctuations which attach fluxes to the particles. The
quasihole wave function of Eq. (3.23) is an approximation
valid in the limit |z; —zy| >>I&F. From Eq. (3.10) it is easy
to see that the mean-field excitation energy of the
quasihole g, is given approximately by the Coulomb en-
ergy V(I§T).
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Finally, let us note some drawbacks of this approach.
It is clear that, as it stands, the semiclassical theory de-
scribed here is not capable of describing states in which
the filling fraction v has a nonzero integer part and some
Landau level other than the lowest is partially filled, such
as v=k +1/m (with k a positive integer). At a qualita-
tive level, there should be no difference between this
physical situation and the Laughlin states which have
k =0. However, it is clear that a wave function which is
a product of a Slater determinant of the filled first Lan-
dau level and a Laughlin wave function for the fractional-
ly filled second level is not fully antisymmetric. Similarly,
even if v<1, for values of v which do not satisfy Eq.
(3.17), the effective theory has a number p of filled levels
but the (p +1) st level remains fractionally filled. To
solve both of these situations Jain proposed a generaliza-
tion of his scheme.''3 This generalized approach
amounts to a fractionalization of the electric charge by
hand in such a way that the wave function now looks like
a product of Slater determinants raised to fractional
powers. Such wave functions have branch cuts ending at
the places where the particles are located. These cuts
should not be present in the wave function for electrons
which should be single valued. This means that the
anyons have “to sit on top of each other.” Thus, these
anyons are not part of the physical spectrum, i.e., they
are confined into bound states. Wen and Blok>? have re-
cently proposed a description of the hierarchy states
based on a bosonic Ginzburg-Landau description with
explicit charge fractionalization and were able to repro-
duce Jain’s results in that framework. However, for the
charge fractionalization to be physically meaningful it
must be the result of the dynamics of the problem. It
remains unclear to us whether the generalized ap-
proaches are a deep statement on the nature of the quan-
tum states of these systems or just an algorithm to gen-
erate wave functions with the desired properties. This is-
sue is also closely related to the more general question of
the dynamical separation of spin and charge in strongly
correlated Fermi systems. We will not discuss these is-
sues in this paper.

In this section we showed that, in the semiclassical or
mean-field approximation, the FQHE ground state of a
gas of fermions in a uniform magnetic field is equivalent
to an IQHE state for fermions bound to an even number
of flux quanta in the presence of a partially screened
external magnetic field. In the next section we discuss
the excitation spectrum in the semiclassical limit. This
will require the consideration of the zero-point motion
(Gaussian fluctuations) around the mean-field state.

1IV. THE EXCITATION SPECTRUM
IN THE SEMICLASSICAL LIMIT

In this section we consider the role of the Gaussian
fluctuations around the uniform classical solutions dis-
cussed in Sec. III. This is equivalent to a WKB approxi-
mation of the functional integral. We begin by consider-
ing the effective action of Eq. (3.8). This approximation
works provided that the external field is finite. In the
limit B — oo, nonuniform “solitonlike” solutions of the
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saddle-point equations are responsible for the dominant
fluctuation effects. In that limit, only the states in the
lowest Landau level can participate of the dynamics.
However, if B is large but finite the Gaussian fluctuations
are still important. We will see below that the collective
modes and the quantum numbers of the excitations are
the same in both limits although the dependence of vari-
ous effective parameters, such as gaps and propagation
speeds, may be different. In a sense, these two limits are
similar to the strong- and weak-coupling limits of the
spin-wave dynamics in a Hubbard model: the low-energy
spin degrees of freedom are described by a nonlinear sig-
ma model in both cases but the spin rigidity and the
spin-wave velocity are very different. In this paper we
only discuss the Gaussian approximation.

In Sec. III we showed that the saddle-point approxima-
tion of Eq. (3.9) has a uniform liquidlike solution of Egs.
(3.12) and (3.13). We will not consider the problem of the
relative stability of the liquid and Wigner crystal states.
Let A, (x) and A(x) denote the fluctuations of the statisti-
cal vector potential A , and of the collective mode A(x),
respectively, ie., we set A,— (.)4“) +A, and
A—{A)+A. The effective action of Eq. (3.8) can be ex-
panded in a series in powers of the fluctuations. We will
be interested only in keeping just up to quadratic terms in
the fluctuations. In the language of Feynman diagrams,
we are summing up all the one-loop bubble contributions.
Thus, the effective action at the quadratic level involves
the linear response kernels [evaluated in the random-
phase approximation (RPA)] for a system of fermions in
an external static uniform magnetic field B 4 with an in-
teger number of filled effective Landau levels. As usual,
the linear terms are canceled if the saddle-point equations
are satisfied. It will be convenient to shift the component
A, of the statistical vector potential by Ay—Ay+A. In
this way, the collective mode A disappeared from the fer-
mion determinant. Naturally, this means that the
Chern-Simons piece of the action now has the form
Scs(tﬂ”"-ﬂ!‘_auok).

At the quadratic (Gaussian) level the effective action
has the form

S<2):%fd3x d3y.>4#(x)II’“’(x,y)~>4v(y)

+S8cs(A,—A,—8,,A)+S,(A), 4.1)
where S, (L) is the piece of the action which depends on
the Hubbard-Stratonovich fields and thus carries the in-
formation about electron-electron interactions. S;(A) is
given by

SyM=1[d% [d2’MV Uz =z )Mz) . 42)

The effective action S is a quadratic functional of the
field A. Thus it is possible to carry out the functional in-
tegral over A first and to obtain an effective action for the
statistical gauge fields alone. As a matter of fact, A plays
a role very similar to the component A, of the statistical
gauge field. This is natural since they both couple to the
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particle density. By inspecting the Chern-Simons term in
Eq. (4.1), it is easy to see that the total A-dependent con-
tribution $?Y(A) to the action that we get from that term
has the form

ANA LOPEZ AND EDUARDO FRADKIN

4“4

SPM)=— [d% Mx)0[Bx)—B(x)]+S,(A) . (4.3)

The integration over the field A is straightforward. The
resulting effective action S is

|

2
Seﬁ:‘é—fd%r d3yAH(X)H’MV(X,YMV(.V)+%SCS(‘AM-A,u)_—%—fd3z d3z'[B(z)—B(2)|V(z —z")[B(z')—B(z")] .

(4.4)

Notice that the only approximation used in this formula is in the first term which follows from the expansion of the fer-
mion determinant in powers of A . The second term is exact.

The tensor I1,, is the polarization tensor of the equivalent fermion problem at the mean-field level and it can be ob-
tained by differentiating the fermion determinant

Zo[ A, 1=det @.5)

. 1 .,
1D0+u+k+—2 D ]—Z[O]exp

i
—z—dex dey A#(x)IIW(x,y)Av(y)+. R

The tensor I1,,, should not be confused with the true electromagnetic polarization tensor which measures the response of
the whole system to a weak electromagnetic field. We will come back to this issue in the next section.
It is straightforward to derive an expression for II ,, in terms of the one-particle Green functions G (x,y)

- 1 . >
G(x,y)= . 4.6
(x.7) <x Do+t (12D 4)] “.6
The components of the polarization tensor II,,,(x,y) are (A=1)

Myy(x,y)=iG (x,y)G (y,x) , (4.7a)
Hoj(x,y)=-2~1AZ[G(x,y)D,-yG (%)= G (y,x)D}1G (x,3)] (4.7b)
1,0(5,)=+ 5221 =G (6,)D} G (3,%)+G (5, )D}G (x,7)] .7¢)

ij(x,y)=il~8(x =)0 G(x,y)— 41:42 [DFG (x,y)][D¥G (y,x)]— 41"42 [D]."TG(y,x)][D,l’TG(x,y)]
- 41"42 G (»,x)[D;D}'G (x,y)1+ 41:42 [DF'DG (5,%)1G (x,p) . (4.7d)

It can be shown that the effective action of Eq. (4.5) is gauge invariant and that, in consequence, I1,,, is transverse i.e.,

AL, (x,»)=0 . 4.8)

In Appendix B we give detailed expressions for the various components of Il ,,. In particular we show that the action is
gauge invariant and that II,, is transverse, albeit only in a weak sense i.e., as a distribution. Equation (4.7) agrees with
the results of Randjbar-Daemi, Salam, and Strathdee,? but disagrees with the calculation of I1,, by Chen et al. 19

We will now extract from the effective action S, 4 the spectrum of low-lying collective excitations and the low-energy
response of the system. We will restrict our discussion to the long-wavelength modes. In a separate paper we discuss
the spectrum of magnetorotons as well as the number of distinct stable collective modes.>> The first step is to obtain an
expression for the effective action valid in the long-wavelength, low-energy, limit. The gradient expansion of II,, de-
rived in Appendix B yields the result

0
Ty
4

Ser=[d*z Scs(A,)+ %scsuz”— A,)— g [’z d%2'(B(2)—B(2)]V (z —2')[B(z)—B(2)] .

€ 2 X
26’ ZB]+

(4.9)

0
xy
(static) dielectric constant, diamagnetic susceptibility,

The coefficients €, Y, and agy are found to be given by where B =B —p/0, €, X, and 0, are, respectively, the

2
€= p ";! = % - 1 ) X= —ZP—M’ 90, = ZL R and Hall conductance of the equivalent fermion problem
2B e v/2w T ™ which has p filled Landau levels in the effective field B
(4.10)  and M is the electron bare mass. Once again, it is impor-
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tant to stress that these quantities are not the actual
responses of the system to a weak electromagnetic field,
suchas 4 w which we will calculate below. In fact, ogy is
the integer Hall conductance of the system of fermions
bound to an even number of flux quanta, in agreement
with Jain’s interpretation. The effective action of Eq.
(4.9) determines the response of the ground state of the
system to slowly varying external fields. The FQHE
states are incompressible and, hence, do not have any
low-energy modes. Thus, the effective action of Eq. (4.9)
does not describe the dynamics of the collective modes.
In contrast, the action of Eq. (4.4) does contain informa-
tion about collective modes.

Since we want to use the effective action of Eq. (4.9) to
determine the low-energy electromagnetic response of the
system, it is important to know how much the results of
this semiclassical theory are affected by non-Gaussian
corrections. By dimensional analysis and gauge invari-
ance we expect that the exact low-energy effective action
should have the form of Eq. (4.9), but with renormalized
coefficients. Indeed, higher-order perturbative correc-
tions, as well as nonperturbative effects due to other sad-
dle points, contribute in a significant way to the actual
values of € and Y. However, the induced Hall conduc-
tance 02), does not get corrected to any order in perturba-
tive theory. This is so because, at least for a system with
a gap and in the thermodynamic limit, agy is determined
by a topological invariant,>®3’ the first Chern character
€. In the problem at hand, we have @=p. Thus, the
Hall conductance that we will calculate below is actually
exact.

We will now discuss the spectrum of collective excita-
tions (within this Gaussian approximation) and compute
the Hall conductance. In another publication we will
present a semiclassical construction of the fractionally
charged quasiparticles and of the spectrum of collective
modes.®

A. Spectrum of collective excitations

The effective action of Eq. (4.4) gives a good descrip-
tion of the behavior of the collective modes. Here we will
restrict our discussion to the hydrodynamic regime
Q—0. In this limit, only the long-distance behavior of
the pair potential should matter. Although formally in-
consistent with the gradient expansion, we will keep the
full form of the potential V' (z).

We have calculated® the electromagnetic response
functions of the system from the propagator of the sta-
tistical gauge field A, determined by the effective action
of Eq. (4.4). We find that the Gaussian fluctuations of the
statistical gauge field represent the magnetoplasmon of
the FQHE states. The dispersion curve Q(Q) for this
mode is

172
, (4.11)

2
0o(Q)= |02 +[at?MP(Q)+Blol -2
eff

where the dimensionless coefficients a and 3 are given by

5255
a=—2TP
(2m0+p)?
2
_20_ [(p/2wP+3(p/2m)8] (4.12)

6* (1+p/2m0)?[(1+p/2m0)*—4] ~

If 7(Q)|Q|? vanishes in the limit Q—0, we find that
this collective mode has a zero-momentum gap
Qo(0)=w,. Thus, this collective mode has to be
identified as an inter-Landau level mode, or cyclotron res-
onance mode, whose existence is guaranteed by Kohn’s
theorem.*® Recently Lee and Zhang?® studied the boson-
ic representation of this theory. Their results also indi-
cate that the Gaussian fluctuations represent the cyclo-
tron mode. It is also interesting to remark that for a 1/r
potential, the dispersion curve becomes linear at small
momentum, i.e., Qy=~Q,(0)+const|Q|, in agreement
with the results of Kallin and Halperin.*

B. Hall conductance

We now demonstrate that this state does exhibit the
fractional quantum Hall effect. The simplest way to do
that is calculate the Hall conductance of the whole sys-
tem. Let us return to the effective action of Eq. (4.9).
The electromagnetic response can be determined by calcu-
lating the effective action for the external electromagnetic
field. At the Gaussian level, this effective action is ob-
tained by integrating out the fluctuations of the statistical
vector potential A ,. Since we are only interested in the
leading long-distance behavior, it is sufficient to keep only
those terms in Eq. (4.9) which have the smallest number
of derivatives, i.e., we can approximate S by

0

ox
Seam S sl A+ TS sl A~ A, .

P (4.13)

Upon integrating over the statistical vector potentials we
find that the effective action for the electromagnetic fields
is

em ("~ eeﬁ 1
Seﬁ(A#)zTSCS(A#) , (4.14)
where 0.4 is given by
L1, L 4.15)

0 b
eeﬂ' 0 Oxy

i.e., the Chern-Simons coupling constants are added ““in
parallel.”

The values of 6 and 02}, determined above yield the re-
sult

v

eeﬁ-:‘z—;‘ ’ (4.16)
where v is the filling fraction. The electromagnetic
current J, induced in the system is obtained by

differentiating the effective action S<¢(A4 ) Wwith respect
to the electromagnetic gauge field. The current is
6
Ju — eff
2

eyth vh . (4 17)



5256

Thus, if a weak external electric field E ; is applied, the in-
duced current is

O
; ek,El .

We can then identify the coefficient 6.4 with the actual
Hall conductance of the system o, and get

Ji= (4.18)

ny = Bcﬂ' = ﬁ ’
which is a fractional multiple of e2/h (in units in which
e=#=1). Notice that the coefficient ai‘; of the effective
action represents the integer Hall effect of the bound
states and it is different from the true Hall conductance
Oy Thus, the uniform states exhibit a fractional quan-
tum Hall effect with the correct value of the Hall conduc-

tance.

(4.19)

V. CONCLUSIONS AND DISCUSSION

In this paper we have presented a theory of the FQHE
based on a second-quantized fermion path-integral ap-
proach. We have shown that the problem of interacting
electrons moving on a plane in the presence of an exter-
nal magnetic field is equivalent to a family of systems of
fermions bound to an even number of fluxes and that this
theory has the fermion coupled to a Chern-Simons gauge
field with Chern-Simons coupling constant
60=(1/2wX2n). The semiclassical approximation of this
system has solutions which describe incompressible liquid
states, Wigner crystals, and solitonlike defects. The
liquid states belong to the Laughlin sequence and to the
first level of the hierarchy. We also give a brief descrip-
tion of the FQHE for bosons and anyons in this picture.
The semiclassical spectrum of collective modes of the
FQHE states has a gap to all excitations. We derive an
effective action for the Gaussian fluctuations in the hy-
drodynamic regime. The dispersion curve for the magne-
toplasmon is calculated in the low-momentum limit. The
fractionally quantized Hall conductance is calculated and
argued to be exact in this approximation. In two appen-
dixes, we presented a proof of the statement that ‘“an
even number of flux quanta does not change the theory”
and presented an explicit derivation of the polarization
tensor in the integer Hall regime. This tensor is shown to
be transverse.

There are many open questions that deserve attention.

J

(f|S|i)=constf 2(_1)P(xpl,~--
b ST 3

P

so that we can concentrate on processes involving unsym-
metrized initial and final states which differ only by the
permutation of a subset of the particle coordinates.

The Feynman path integral for the inner product

(xPl,...,xPN;+oo|x1,...,xN;—oo)

is

,xPN;+oo|x1,...
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The semiclassical calculation presented here yields a good
description of the uniform FQHE ground state, of its
low-energy electromagnetic response, and of the magne-
toplasmons. However, the saddle-point equations also
have solitonlike solutions which represent quasiholes,
quasielectrons, and possibly, quasielectron-quasihole
bound states. The vortexlike excitations are responsible
for other collective modes, such as the magnetophonons.
We will discuss these issues elsewhere.
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APPENDIX A

We prove our assertion that both theories yield the
same physical amplitudes (i.e., that they are equivalent)
by computing the same (arbitrary) amplitude in both
schemes. We follow here the methods of Ref. 40. We
find it simpler to do the calculation in path-integral
language. The path integral is constructed in the usual
manner.*! The transition amplitude for the system to
evolve from some arbitrary initial state |¥;) in the re-
mote past, to some other arbitrary final state |W f) in the
remote future can be written in terms of a Feynman path
integral involving arbitrary states at intermediate times.
The initial and final states represent identical fermions
and hence they are completely antisymmetric under par-
ticle exchanges. We can restrict ourselves for the sake of
simplicity to the case in which the initial state is the same
as the final state. The generalization is trivial. Also it
will be sufficient to choose any particular basis states,
such as

»Xp,) N

|‘I’,~,"‘oo>=§,(—l)P|xPl,...

where P are all possible permutations. The diagonal ma-
trix element of the evolution (S-matrix) operator has the
form

JXy;— ), (A2)
[
(xp, ., Xp st oolx,. .., xy;— o)
=f$21[t]' ) 'Z)ZN[t]e(i/ﬁ)S[zl(t),...,zN(t)] , (A3)

with the boundary conditions



S

lim z.()=x;
t— — o J U

lim z; (t)—xp . (A4)

t—+ o0

The action in Eq. (A3) is the standard action for nonrela-
tivistic quantum mechanics of particles coupled to the
electromagnetic gauge field

dz
dr

e dzt
—d—;(t)Au(zj(t))

S= f+°°d2

m
2

(AS)

i<j

where the second term in the integrand of Eq. (2.12) is
the shorthand for

e dZ;L
e (1) A,(z;(1))

e dz;
—W(t)-A(zj(t))—*-eAO(zj(t)) . (A6)

Let us consider now the same amplitude of Eq. (A3)
but for the system coupled to the Chern-Simons gauge
field. This amplitude has a path-integral representation
analogous to that of Eq. (A3). However, the action,
which we denote by S|, , now has two additional terms:
one to describe the coupling to the statistical vector po-
tentials A # and another, the Chern-Simons Sg term of
Eq. (2.2). The action S, is given by

(A7)
l

+ o0 dz!
S,,ew=s+f_w dtd—tj.ﬂ“(zj(t))—{—scs ,

<exp ‘ifdsz JHA , ]>C5=exp

where G m,(z,z’) is the Green function
’ 1 ’ ’
G, (z,z )=§Go(z,z )€,,2028(z —2') , (A11)
and G is the Coulomb Green function
—3%Gy(z,2")=8®Nz —2') . (A12)

By direct substitution of Eq. (A12) into Eq. (A11), we can
write the exponent I[J,] of the right-hand side (rhs) of
Eq. (A11) in the form

119,1= 2%9 [ d’2d%2'9,(2)7 (2")Goz,2")e#3,8(z —2') .
(A13)

The substitution of the definition of J, into Eq. (A13) al-
lows us to write I[.J, ] entirely in terms of line integrals

119, ]—— 2 ﬁr dz], ﬁp dzXG(z),,z5 )"

X9,8(z;—z,) . (A14)
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with the same boundary conditions as in Eq. (A4) and S is
the action of Eq. (AS). Note that all the terms involving
vector potentials of either type, both in S and in S,,, can
be written in the form of a line integral of the type
f T, dzl'A ,(z;), i.e., the line integral of the statistical vec-
tor potential along the set I'=UXN_; I'; of the world lines
of the particles. It is convenient to define the current
J*(x), which is three-vector of unit length tangent to the
worldlines and takes a nonzero value only on the world
lines

N

j=1

Jolz,t)=

I(z,t)= 2 &(z; (t)—z(t))——

ji=1

(A8)

In terms of J*, the second term in Eq. (A7) takes the
simpler form [d’z J*A,.

It is possible to perform the functional integral over
the statistical gauge fields exactly. These fields enter in
only two terms of S, : the current term and the Chern-
Simons term. Thus, the average over all configurations of
the statistical gauge fields has the form

<exp

where the notation (©Q)g indicates the average of the
operator @ over the statistical gauge fields with only a
Chern-Simons action. The result, in Euclidean space
(imaginary time) is

(A9)

i [d*z 9 (2AMz2) ])CsEexp(iI[j”]) ,

, (A10)

[

In practice it is easier to think in terms of the set I" of all
the world lines. The trajectories in Eq. (A14) are closed
due to the boundary conditions used. The trajectories are
just a collection of loops which close on the imaginary-
time direction. We can picture them as a set of loops
closing on the periodic direction of a cylinder (imaginary
time). Any change in the final state, i.e., a permutation,
results in another set of trajectories in which initial and
final coordinates are tied together in a different way. We
can think of the world lines as a set of wires which are
braided in all possible ways.

We are now going to show that the integrals in Eq.
(A14) are related to a topological invariant of the set of
wires (i.e., world lines) which is known as the linking
number. We follow here the arguments first presented by
Polyakov*? and by Witten.*> More specifically, what we
are going to show is that the integrand on the rhs of Eq.
(A14) is given by the expression

vr
19,]=55 (A15)
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where v is the linking number of the configuration of
world lines. We begin our argument by first comparing
the values of the amplitudes for two different permuta-
tions P and P’, which differ by a finite number of ex-
changes. Any exchange is equivalent to the knotting of
pairs of world lines, which may or may not have been
previously knotted. In particular, consider the simple
but generic case of a pair of unknotted world lines which
become a single knot upon exchange. In this case we
have two separate wires which, upon exchange, become a
single self-linking wire. This self-linking property is to-
pologically stable because the wires wrap around the
cylinder. Otherwise this is not a well-defined concept
since it can be undone by a smooth deformation, unless a
careful definition is given for the short-distance proper-
ties of the trajectories, i.e., the knot has to be “framed.”*
These issues will not matter to our discussion since they
only may give rise to an anomalous (or fractional)
“spin.”*?

By making further use of the magnetostatic analogy,
we can now regard J, as a current in three-dimensional
Euclidean space and use it to evaluate the expressions in
Egs. (A10)-(A14). Let @, be a vector field related to J,
by the equation (“Ampere’s Law”’)

VXC=J, (A16)
such that
V-C=0. (A17)

We can readily find the solution of Eq. (A16), subject to
the constraint Eq. (A17). Let ¢, be a “vector” potential
in the “Coulomb gauge,” i.e.,

@#zéﬂvkav¢x, a#¢#=0 . (A18)

Hence,
—=_na2

J,=—03%, . (A19)
¢,, can be solved in terms of the Green function G(z,z")

$,(2)= [ d*w Golz,w) T, (w) . (A20)
Thus, the field €, is given by

C 2= [ d*w €,,,8,G(z,w)T)(w) . (A21)

By substituting Eq. (A21) back into Eq. (A13), we find
that I[J,] takes the simpler form
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117,)=55 [ 4% €(2)7,(2) . (A22)
Now, since the currents J, \» are nonzero only on the world
lines, we can rewrite the volume integral in Eq. (A22) in
the form of a line integral over the configuration I'. The
set of closed loops I'" are the boundary of the surface X,
I’'=0Z. We can then apply Stokes’ theorem to get the re-
sult

1
1[7“]—%4&:32@,,@#&)
_1 1
—%fzdo‘ np_(VX@)H——Z—efde' nuﬂﬂ ,  (A23)

where n, is a vector field normal to the surface =. The in-
tegral fuz do n,J, is an integer which counts the number
of times the current J, pierces the surface 2. Thus, it is
also equal to the number of knots of the curve, T, i.e., the
linking number vr. Hence, Eq. (A15) is proven.

The result of Eq. (A15) has very important conse-
quences. It means that the average over the statistical
gauge fields Eq. (A10) has the simple form

.Yr
—

<exp [ifd3z T (2)AH(z) 20

. (A24)

)cs =exp

We are now in position to ask when the two systems are
equivalent. In other words, when is the average over the
statistical field equal to one or, at least, independent of
the linking number of the trajectory? In the first case we
would have proven that the amplitude in the system with
the statistical gauge fields is exactly equal to the same
amplitude calculated in their absence, whereas in the
second case all amplitudes differ by a constant phase fac-
tor, which can be dropped. By inspecting Eq. (A24) we
see that the amplitude is equal to one if

1

20
where 7 is an arbitrary integer. Let us now recall®! the
relation between the statistical angle & and the Chern-
Simons coupling constant 6, §=1/260. Equation (A25)
implies the validity of the condition 6=(1/2w7)/(1/2n)
which we argued for at the beginning of this section. In
short, attaching an even number of flux quanta to each
particle leaves the system unaltered. This is the main re-
sult that we wanted to prove.

=2mn , (A25)

APPENDIX B

In this appendix we show some details of the calculation of the polarization tensor II,,,. The components of II,, are

(#=1)
My(x,y)=iG (x,y)G (y,x) ,

Iy, (x,9)= =[G (x,9)D}G (3,x)— G (3,x)D} G (x,9)] ,

2M

(%)= 53— G (x,9)DF'G (5,%)+ G (5, DG (x,9)] ,

(Bla)

(B1b)

(Blc)
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i i

[DfG (x,»)][DYG (y,x)]—

Iy (x,9) = + - 8%(x —9)8,,G (x,9)— (DG (y,%)][DL'G (x,)]

4M? 4M?
+ 41:42 G(y,x) (D' DG (x, )]+ 41:42 [DF'DYG (»,%)1G (x,y) , (B1d)
where G (x,y) is the one-particle fermion Green function whose equation of motion is
(iDy+p—h[{A)]),G(x,y)=8%x —y) . (B2)

We work in the Landau gauge in which we can express the vector potential and the Landau wave functions as follows:
A (x)=—Bgx,, Ayx)=0, (B3)
— 172

Vﬁeﬂ' ikx \/ﬁ_ _ k k

2"m W B V By

exp
where H,, is the Hermite polynomial. We can write the one-particle fermion propagator in terms of the Landau wave
functions:

2

P (X)= , (B4)

-1
2

H, [v@cr

. hd dk —io (x,— p—1 dk -—iw —
iG(xy)=+0(xg=yg) 3 [T re Y0 i (XA (1) —O(yo—x0) 3, Jie m0 T (X)PE(Y)
m=0

m=p
(B5)

and then substitute this expression into the equations for the components of II,,. Here the energy w,, is given by
®,, =(Bg/M)m +1).
The Fourier transform of the polarization tensor is

,(Q,P)= [d’x d’y e %" T T ™™y (xy). (B6)

We should stress here that, except for Ily(x,y) all the other components of II,,(x,y) are not rotational invariants,
therefore we cannot choose any particular direction for the momentum transfer. In order to compute the expression
(B6) and given the form of the components of the polarization tensor [Eq. (B1)] we need to calculate terms of the form

—Qx)ei(Poyo—Py)

T, (0, P)= [d’x d’y ' %% 0,(x,)G (%,9)0,(x,9)G(3,%) , (B7)

where O,(x,y) and O,(x,y) are the identity in the case of Iy, a covariant derivative for Ily;, I, and the first terms of
I1;;, or a product of two of them for the last two terms of I;;. Equation (B7) can be written as follows:

i(Qox,—Qx) i(Pyxo—Px), pt+eodw —iolxy—y
T, ,(Q,P)= [d3x d3y e’ “0%0 M 0% H) —e oo
1,2 Q’ f Y f—oo 2

ij»

© dk P2 pdk’ | 016 @mk (X)@mic (¥) 105 (X, 3) [ @ i (Y VP kA X) ]
x3 Jom 250 e pra

_ 01 @i (X)@p i (¥)]05(X,3) [ @k (¥ )Pk (X))]
ot+(w, 0, )—in

, (B8)

where we have used the integral representation of the theta functions.
We will calculate the first component of the I1;,(Q, P) as an example; all the other components can be calculated in a
similar way. In this case we have to take O,(x,y)=1 and O,(x,y)=D{". Therefore

i 3 3. i(Qgxo—Qx) i(Pyxy—Px) +ood_a) —ialxy—yq)
T"Z(Q’P)__ZM fd x d’y e e f_w . e

®  odk Pl oo dk’ | [@mk(R)@h (W) ID P @i (Y )Pl (X))
+m2=pf 27 m,zzof 21 o—(w,, —o,)tin

_ (@i (X)@ i) 1D P (s (¥) i (X))
o+, —o,)—in

(B9)

Using the expressions of the Landau wave functions (B4), the definition of the covariant derivative
(DY’ =3y’ —iB.q4,), and integrating over x, and y, first, we obtain



5260 ANA LOPEZ AND EDUARDO FRADKIN 4
Beg =2 ® p=l L™ ( QN[0 *—(m —m")]+iQ,F,, .(0?)
T,,(Q,P)=(27)’8*(Q +P)m—) e™® m2=pm,2=0 - Q[Q[oQ—(com—w,,.r)Jr]in]Q2 =
QLR TM(@IQ  H(m —m")]+iQoF (D) B10)
[Qot (@, —@,, )—in] ’
where
Fp A @)=0 L2~ ™ (@) 4+2L - U@ (1 -8, 0)]—(m —m" )L™ (0 ?) (B11)

and 0 2=Q?/2B.
From equation (B10) we can write

T,,(Q,P)=02m)*6*(Q +P)T ,(Q), (B12)

which has to be satisfied by all the terms in IT,,, since it is translationally invariant. After computing all the terms in a
similar way, we write II uv( Q,P) in the form

1,(Q,P)=(27)*8%(Q +P)IL,(Q) (B13)
and get the following expressions for II,,,(Q):
w(Q)=QI(Q) , (B14a)
o (Q)=0Q0Q,;I1o(Q) +ie; O II,(Q) , (B14b)
;(Q)=00Q;I1(Q)—ie€; O I1,(Q) , (Bl4c)
1,;(Q)=0§8,I1y(Q)—iQoe; T;(Q)+(Q*;; — 0,2 )TT,(Q) +5,T1,(Q) . (B14d)
The functions II, II,, II,, and II; are given by
Bt _52 2 P! (m—m’) M’ = om—m— R
Q 2Am—m'—1)[f m—m 212
y(Qy,Q)= oM 7 m2=p m'2=0 02— (0, —w,)F ml —0 [L,; (@97, (B15)
B g2 & ot (m—m')
I , =t -0 2(m — m—l)Lm m' 2
1(Q0 Q) (27T)M2e m2=p m'2=0 Q(z)——(a) —,, )2 m' Q (Q )
X{Q Ly ™ (@) +2L 2 HQ (1 =8, 0)]—(m —m" )L™ (@ %)},
(B16)
Bex (m—m') m'l = .
I , — 2 2(m—m'—1)
(o Q=" e 2_,, MZ_O 0 (o, —w ) m 2
X[Lm~™ (Q2)+2L,;,"_;" IO (1-8,,0)]
X{QALE ™ (@) +2L =T (1—8,, )]
—2(m —m" )L™ (QY)} , (B17)
= B
— 2m=m'=Drg m—m’' 212 —_— ) — eff
II;(Q)= 2 )M 2 2 Q (L, () P(m —m’) p(27r)M . (B18)

mme

With the form of the I1,,,(Q) given in Egs. (B14), it is not clear that the polarization tensor is transverse. To clarify this
point we should analyze the last term in II,;(Q). If we split the sum in II; as a term with m and m’ such that
m —m’'=1 (i.e.,, m =p, m'=p —1), and another term with m —m’'#1 (notice that this last term is a series in powers of
O ?%andit vamshes when Q 2=0), we obtain

Lnl'—Z(m—m‘—l) m—m'( 7 2y12 ) — ﬁeff zeﬁ
mzp mz—o Om —m,1) m! (L Q@) m —m’) P(Z‘rr)M+P(27r)M ’ (B19)

Q= (2'n'

This shows that the density term cancels and that IT;(Q) is a regular function of Q and independent of Q,. The term in
the action where II;(Q) enters is

[ d00d*QA(Qo, QI (Q)A,(—Qp, —Q) . (B20)
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We will only consider the class of configurations of the statistical gauge field A, which vanish sufficiently fast at large
frequencies @, so that the integration contour implied in Eq. (B20) can be closed in the complex frequency plane
without enclosing any singularities. Thus the integrand is a holomorphic function of Q, with singularities at most at
infinity. Cauchy’s theorem tells us that the integral vanishes for such configurations. In a general case, these restric-
tions on the class of configurations may appear to be too restrictive. However, only sufficiently regular configurations
contribute in the semiclassical limit. Therefore we can drop the last term in expression (B14d) since it does not contrib-

ute to the action. It is now clear that the polarization tensor is transverse.
Finally, let us derive the gradient expansion for I1,,(Q). At Q =0 the functions Iy, IT;, IT, take the values

1 |pM
= |- B21
IT,(0) 2 | By (B21a)
m,0)=|=—|p, (B21b)
2
1 |p?
=— = . B21

I1,(0) Y. (B21c)
Thus, the small-momentum and low-frequency limit of the action is

S=1[d*QA(QI*(QIA (—Q)

HO(O) 3 2, uv v V(2
~—— [ QA QU@ —0#Q") —8!5](Q%,;, — 0,0, }A,(— Q)
I1,(0) I1,(0)
+de3Q.>4#(Q)(ie‘“’}‘Qk).>4v( —Q)+Zde3Q.)4j(Q)(Q28jk—QijMk( -Q), (B22)

where n®=1 and 5 =—1 and 7*Y=0 if u7v. In coordinate space we get the gradient expansion of the effective ac-
tion:

S=1[d*x(e6>—xB+0 e, A A") . (B23)
The coefficients ¢, X, and aﬁg,) are related with Il IT,, and II, through

e=1IIy(0), (B24a)

o D=11,(0), (B24b)

x=—I,(0) . (B24c)
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