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Dipolar electric field induced by a vortex moving in an anisotropic superconductor
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The dipolar electric field induced by an isolated vortex aligned along a principal axis and moving at
constant velocity in an anisotropic type-II superconductor is investigated. It is shown that the standard
dipolar-field case can be extended by the inclusion of a mass-anisotropy parameter P. It is shown that
the streamlines of the electric field can be easily calculated analytically. In addition, an inertial mass ten-
sor per unit length of vortex is found.
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where p is the dipole moment. We wish to consider the
electric field in the xy plane. We take z =0 and set
p=p(cosP, sing). Then the equation of the electric-field
streamlines (lines of force) is

dy E (x y)
dx E, (x,y)

—x tanP+3xy+2y tang
2x +3xy tang —y

In Ref. 1 the Bardeen-Stephen model of viscous Aux
motion in a type-II superconductor was extended to the
anisotropic case. The total rate of energy dissipation was
calculated and, from it, the viscosity tensor, in terms of a
phenomenological effective-mass tensor and normal-state
conductivity tensor. In this paper we further investigate
the dipolar electric field induced by the motion of a single
vortex moving at constant velocity in an anisotropic su-
perconductor. We show that the standard dipolar-field
case can be extended by the inclusion of a mass-
anisotropy parameter P. We show that the streamlines of
the electric field can be easily calculated analytically. We
also calculate the surface-charge density at the vortex-
core boundary in this local model of a type-II supercon-
ductor. In addition, by computing the electric-field ener-

gy per unit length of vortex, we find a vortex inertial-
mass tensor per unit length.

For comparison purposes we first recall a few selected
facts concerning the electric field of a point dipole. Lo-
cating the dipole at the origin, the electric field is given
b 8 —11

moving with constant velocity V= V(cosO, sinO) in an an-
isotropic type-II superconductor may be written as'

irt+m m V
e, (r)=

2e(m, x +m y )

X[x(m„x sinO —2m„xy cosO —
m~y sinO)

+y(m„x cosO+2m xy sinO —m~y cosO)],

where m„, m are effective masses. Inside the vortex
core, the field is uniform:

AV
e, (r) = (

—x sinO+y cosO) .
2e

(5)

4, (r)= — (y cosO —x sinO),
A'V

2eg, gy

2 2" +~
(6a)

These expressions for the electric field are expected to
hold for low field (H «H, 2) when the Ginzburg-Landau
parameter tc=A, /g is large and only for temperatures
close to the transition temperature. ' Furthermore, the
quasistatic approximation to the superAuid velocity was
made to obtain Eqs. (4) and (5), along with the use of the
asymptotic forms of modified Bessel functions K .'

The electrostatic potential, defined by e= —V+, can be
readily found from Eqs. (4) and (5). Inside the core re-
gion we have

2 2x y
g2 $2

(3)

In the anisotropic model, ' the vortex core is taken to
be elliptical in shape and its boundary is specified by the
equation

while outside the core we have

4, (r)=- mxmy V (y cosO —x sinO)

2e (mx+my )

(6b)

where the coherence lengths g, , i =1,2=x,y, are related
to the effective masses m; by g;=g/Qm;. (Further in-
formation on the anisotropic Ginzburg-Landau theory
may be found, e.g. , in Ref. 1.)

The electric field induced outside the core of an isolat-
ed vortex oriented along the z axis (a principal axis) and

+y &1

Equations (6) extend the electrostatic potential of Ref. 7
to the anisotropic case. The potential @ is continuous
across the vortex boundary, implying that its tangential
derivative is continuous there. However, the normal
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derivative B4/dn is not continuous across the boundary,
and the corresponding surface-charge density will be cal-
culated later on. The equipotential curves @=const are
everywhere locally orthogonal to the electric-field stream-
lines, the calculation of which a large part of this paper is
devoted. Inside the vortex core there are straight-line
equipotentials. By Eq. (6b), outside the core, the equipo-
tentials are given by a family of ellipses. Specifically, if
we define the constant c~—: fiQ—m m~ V/2e@„we

then have the equation of the equipotentials there as

m„(x —x, ) +m (y —y, )

~e 1 1
2

sin 0+ cos 0
4 m

The centers of the ellipses,

Cq, Cg,
(x„y, ) = — sin8, cos8

2ftlx 2m

(6c)
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FICx. 1. Equipotentials for vortex motion along (a) the x axis, (b) the line x =y, and (c) the y axis, for a fixed mass-anisotropy ratio
P=5. The horizontal axis is the x axis, the vertical axis is the y axis, and the z axis points out of the page. The equipotentials are
straight lines within the vortex core, whose boundary is also shown and given by the ellipses in Eq. (6c) outside the core.
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y (x)=xv (x),
we have

e, (l, v)
lnx = —I " '

dv.—e, (l, v)+ve, (l, v)

(8)

(9)

The transformation (8) results from other methods of
solution, as seen below, and an equivalent form of Eq. (9)

vary with the values of the potential. In Fig. 1 the equi-
potentials have been plotted for the three directions of
vortex motion, 8=0, vr/4, and vr/2, with the mass ratio
m /m =5.

Inside the vortex core, the electric-field streamlines are
simply straight lines. Outside the core, the equation
analogous to (2) for the streamlines is

dy esp(x») x +2/3xy tan8 —
/3y

x tan8 —2xy —
/3y tan8

where P is the effective-mass-anisotropy ratio m /m„.
Comparing Eq. (7) to Eq. (2), we can note that vortex
motion in the direction V corresponds to an induced di-
pole with axis perpendicular to V (/=8+m. /2). The iso-
tropic case P= 1 was treated by Bardeen and Stephen.

The first-order, nonlinear differential equation (7) will
be discussed from several mathematical points of view.
Although Eq. (7) is nonlinear, its special form makes it
elementary, in the sense that the solution may be reduced
to a quadrature. General equations of the form (7) have
been well studied in nonlinear systems. For example, by
elimination of the independent variable, it arises in the in-
vestigation of the phase space of a two-dimensional (2D)
autonomous system. Equation (7) is especially important
in giving the local behavior around the critical point (at
the origin) for such a system where the leading terms in
the functions e, and e, are quadratic. '

The right-hand side of Eq. (7), e,~/e, , is a homogene-
ous function of x and y of degree zero. Then Eq. (7) has
an integrating factor (xe, —ye,„),and with the aid of
Euler's theorem, its solution may be reduced to a quadra-
ture. ' ' By using the transformation

will also appear.
It is useful in the following to consider the special solu-

tions of Eq. (7) given by y =ax; i.e., the function v of Eq.
(8) is taken to be a constant a to be determined. These
solutions, if continued into the origin (within the vortex
core), would be tangential to the streamlines there. With
this form of the solution, we find that cx must satisfy the
cubic equation

/3a tan8+(2 —/3)a +(2/3 —1)a tan8+1=0 .

lU

Gx

I+(2/3 —1)v tan8+(2 —/3)v +Pv tan8
—(/3v tan8+2v —tan8)

is that it is separable.
Integrating Eq. (11) for arbitrary direction of vortex

motion 0, we have

Although the discriminant of this cubic equation can be
calculated and the solution of Eq. (10) given explicitly, we
will not do so here; the expression for the discriminant is
sufficiently complicated to be unilluminating by itself.
However, on physical grounds, we expect the general cu-
bic equation (10) to have one real root and two complex
conjugate roots. The solution y =ox, with a real, gives
the separatrix of the streamlines: Each streamline forms
a closed path on one side or the other of this line. This
can be seen in the plots of the streamlines for 0=0, m/4,
and ~/2, with /3=5, given in Ref. 1. For the case that
tan8=0, the cubic equation in (10) degenerates into a
simple quadratic equation. In this case of vortex motion
in the x direction, we have the slope of the separatrices as
a+ =+ I /V/3 —2.

The right-hand side of Eq. (7) is a function of y/x
alone. This means that the differential equation for the
streamlines is invariant under the simple stretching or
perspective transformation y ~y'=ay, x ~x'=ax. We
have here a simple example of a group invariance of a
differential equation. ' ' This implies that a similarity
variable exists, namely, the function v =y/x of Eq. (8).
The particular importance of the differential equation for
the function U,

lnx+const= —
—,'in[ —/3tan8v +(/3 —2)v +(1—2/3)tan8v —I]——,'(/3+ I)I (v —tan8)dv

/3v tan8+(2 —/3)v +(2/3 —1)v tan8+1

(12)

(y —a,x ) '(y —a~x) '(y —
aux ) '=const, (13)

where the constants v, , i = 1,2, 3 are such that

In principle, the integral in Eq. (12) can always be done.
Solving the cubic equation (10), the denominator of the
integrand can be factored, resulting in a sum of elementa-
ry integrations. Denoting the roots of the cubic equation
(10) by a, , i = 1,2, 3, the solution of Eq. (7) can be put in
the form

v] +v2 +v3 —1 and are related to u; by'

—/3a, tan 8—2a; + tan8

3/3a, .tan8+2(2 —/3)a, +(2/3 —l)tan8

(i =1,2, 3) . (14)

Equation (13) gives the general form of the electric-field
streamlines or lines of force due to an isolated vortex
moving in an anisotropic type-II superconductor.



DIPOLAR ELECTRIC FIELD INDUCED BY A VORTEX. . . 5233

By the construction in Ref. 1, the electric field [Eqs. (4)
and (5)] satisfies the condition that the tangential com-
ponent is continuous across the vortex-core boundary.
However, the normal component is discontinuous, with
an associated surface-charge density o.. We can find o.
from the relation o.=(e, —e, ).n/4', where n is the unit
outward normal vector:

xx+pyy
(15)

( 2+p2 2)1/2

It is easily checked that n is orthogonal to the superAuid
velocity v, (Ref. 1) at the core boundary. With the use of
Eq. (15), the surface-charge density is given as

CT- Hc2((z V sin(f —8)(cos g+p sin p)'~
(16)

27TC cos p+psin g
where H, z((, =$0/2m/„g» is the upper critical field for an
applied field oriented along the z axis and P is the angle
between the position vector on the vortex-core boundary
and the x axis. This surface-charge density results from
the use of a local model for the superconductor. That is,
the charge density would not exist solely on the vortex-
core boundary, but would be smeared out over a finite
distance in a nonlocal theory, as pointed out by Bardeen
and Stephen. We have plotted the dimensionless
surface-charge density (2mc/H, z((, V)o. as a function of
the angle g around the vortex core in Fig. 2. Figures
2(a) —2(c) correspond to vortex motion given by 8=0,

/4, and n. /2, respectively. For each figure the mass ra-
tio P takes the values 1, 5, and 25, giving the three curves
displayed. For vortex motion along the y axis, the isotro-
pic case in Fig. 2(c) shows the simple cosP dependence
obtained by Bardeen and Stephen. However, for general
p%1, these figures show that anisotropy introduces addi-
tional local maxima and minima in the surface-charge
density.

We conclude by finding a vortex inertial-mass tensor
per unit length p; associated with the electric field. For
an expression for the inertial mass of a vortex in the iso-
tropic case, obtained by means of time-dependent
Ginzburg-Landau theory, we mention Ref. 20 by Suhl.
In our simple approach, we do not consider any variation
in the order parameter which could contribute to the
inertial mass. (We recall that we are discussing only the
high-temperature case (T —T, ~

&& T„where the order
parameter is small. ) For a counterpart of an inertial mass
per unit length for a Josephson vortex, we mention Ref.
21.

We equate the vortex kinetic energy per unit length
—,'(M; V, V, to the electric-field energy E,f = f e d x/8'
per unit length produced by the vortex motion. Writing
6 $f E )f +8 ]f as a sum of field contributions within and
without the core region, respectively, we have'

AOHcz((. (17a)
16~c
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Then we find the inertial-mass tensor to be diagonal,
p,"=p;5,",i,j =1,2=x,y, with components

FIG. 2. The dimensionless surface-charge density (2~c/
H, z((, V)cr from Eq. (16) is plotted as a function of the angle f
around the vortex core, for di6'ering values of the mass-
anisotropy ratio P. Parts (a) —(c) correspond to the direction of
vortex motion given by 0=0, m/4, and ~/2, respectively.
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4&c2~~z (3+P)2

(18)

po(T)=
C 4~c

(20)

where c., is the energy per length of a vortex at rest and
H, &

is the lower critical field. ' ' Then the ratio
polp =H„/H, z is very small for high-T, materials.

It can be shown that the same expression (18) for the
inertial mass tensor is obtained if the expression for the
electric field involving modified Bessel functions is used.
It is seen that anisotropy in the effective-mass tensor
(with components m;, i =1,2, 3=x,y, z) is refiected in an-
isotropy in the inertial-mass tensor. The inertial-mass-
anisotropy ratio P=p /p„=(3+P)/(3+1/P) ranges
from 1 in the isotropic case to P/3 in the large P case.
The vortex mass per unit length vanishes at the transition
temperature T„where H, 2I~, vanishes.

To estimate the size of the inertial mass for high-T,
materials, we can consider the limiting isotropic case,
P~ l. As a function of temperature, we have that

,2( T)
p(T) = (19)

4mc

Assuming a 1 t dep—endence for H, 2( T), where
t —= T/T, is the reduced temperature, if we take
H, 2(0)=10 T and t =0.99, then we obtain an inertial
mass per unit length of vortex on the order of several
hundred electron masses. Because of the dependence on
H, 2, for conventional superconductors (for which H, 2 is
much smaller), p is on the order of the electron mass. It
is also interesting to compare the inertial mass (19) with
the rest mass per unit length defined by

Finally, we make a brief comparison to Suhl's work.
Our inertial mass is most closely related to his elec-
tromagnetic mass p, =g H, A, /4c A,&, where k& is a
shielding length for the electrostatic potential and H, is
the bulk thermodynamic critical field. Replacing A,& by
the coherence length g (Ref. 20) and using the relation
4vrA, H, =/AH, 2 (Ref. 3, p. 129), we have p, =p/4. Us-
ing the limiting form of the viscosity as P~ 1,
rl=poH, 2cr„ /c, where cr „ is the normal-state conductivi-
ty, we may estimate the vortex relation time r =p/g. We
find that r= 1/vcr„, which is to be compared with Suhl's

p, /g=A, /3rrtt A,zo „. Therefore, these simple estimates
show that our vortex mass per unit length and relaxation
time are on the order of Suhl's results when the shielding
distance A, & is taken to be the coherence length g.

We recall that in the above we have taken the vortex to
be aligned along the z axis. Corresponding results for a
vortex along the x or y axis may be obtained by cyclic
permutation (x~y~z~x). Again, we point out that
the results presented here are expected to be valid only
for temperatures close to the transition temperature, for
low magnetic field (H «H, 2), and in the high-a limit.
The result (18) for the inertial mass has recently been ex-
tended to lower temperatures for a discrete 3D supercon-
ductor in the case that the vortex is oriented parallel to
the superconducting layers of a Josephson-coupled layer
model. In this work the authors account for dimen-
sional crossover in the vortex structure and discuss the
importance of the inertial mass in the dynamics of high-
temperature superconductors.
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