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Dynamics and particle-hole interactions in liquid He: A Green s-function approach
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The dynamics of normal and fully spin-polarized He are studied for momentum transfers below 2
0
A . This study is based on a first-principles calculation of the dynamic susceptibility, y(Q, co). We in-

voke the Baym and Kadanoff (BK) procedure for generating an approximate particle-hole irreducible in-
teraction, I~„, which is needed in the calculation of y(g, co). The BK procedure yields an I~„ that con-
serves particle number, energy, and momentum. When the BK procedure is applied to the Galitskii-
Feynman-Hartree-Fock (GFHF) self-energy, the resulting Iph consists of direct and induced terms. Pre-
vious calculations using GFHF theory have neglected induced effects. For Q & 2 A, the induced term
contributes significantly to the strength of Iph. Landau parameters calculated with induced effects in-

cluded are greatly improved. We compare our {static) Iph to those obtained from other first-principles
calculations, from polarization-potential theories, and from the available experimental data. In spin-
polarized 'He, we find that Iph is strongly density dependent. In normal 'He, the same behavior is ob-
served for the spin-symmetric contribution. In contrast, the spin-antisymmetric contribution is nearly
independent of density. This finding is in agreement with experiment. For both systems a well-defined
zero-sound mode was determined. Using our microscopically determined Iph, effective mass, Landau pa-
rameter I' &, and a polarization-potential form for the frequency dependence of Iph, we obtained a zero-
sound dispersion that agrees well at low Q with the experimentally determined one. Finally, we com-
ment on the relevance of the spin-fluctuation contribution observed in our Iph for the case of normal
He.

I. INTRODUCTION

Inelastic neutron-scattering experiments' have been
highly successful at revealing the properties of the impor-
tant excitations in liquid He. These properties are mani-
fested in the dynamic structure function S(Q, co). In a
neutron-scattering experiment, both the density and
spin-density dynamic structure functions are observed.
Denoting the density component by Sc(Q, co) and the
spin-density part by St(Q, co), the total observed S(Q, co)
is given by

OI
S(Q, co) =Sc(Q,co)+ St(Q, co),

~c
where o.l/o. , is the ratio of the corresponding scattering
cross sections. Q and co represent the momentum and en-
ergy of the density Auctuations created by the scattered
neutron. The nature of these excitations depends on the
magnitude of the Q and co probed. In normal He, at
low Q and to, one finds a low-frequency (paramagnon) res-
onance superimposed on the single-pair particle-hole ex-
citations. This resonance, although sharp for small Q
( Q =0.S A '

), represents a damped nonpropagating
mode in the spin density. This damping is expected to be
enhanced by incoherent multipair excitations at elevated
Q, as has been shown by recently determined sum rules
At higher frequencies a well-defined zero-sound mode
(ZSM) in Sc(Q,co) is observed. The ZSM is always

slightly broadened from overlap with the multipair exci-
tations and is strongly (Landau) damped when it coin-
cides with the particle-hole band.

The neutron-scattering experiments of Scherm et al.
have produced accurate measurements of S(Q,co) for
normal He for wave vectors in the range 0.3&Q &2.0
A ' and for pressures ranging from saturated vapor pres-
sure (SVP) to 2 MPa. Their results include the density
dependences of the ZSM and the paramagnon resonance.
They find that at low Q the paramagnon resonance is
nearly independent of the pressure in contrast to elevated
Q ( = l. 3 A '), where S (Q, to) shows an increase in inten-
sity with increasing pressure. They also find that the
slope of the long-wavelength zero-sound dispersion in-
creases with increasing density. Hess and Pines have
used a finite-pressure generalization of the Aldrich and
Pines polarization-potential theory to obtain results in
good agreement with Scherm et a/. Although this ap-
proach has proven to be a very useful method for study-
ing the dynamics of He, its relationship to the many un-
derlying microscopic mechanisms is not always clear. It
is one of goals of the present work to use Galitskii-
Feynman-Hartree-Fock (GFHF) theory ' to study
these phenomena and make this connection.

In the present work we shall focus on investigating the
dynamics in systems of normal He and fully spin-
polarized helium ( Het). It it not yet possible to produce
100% spin-polarized liquid He in the laboratory. Never-
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theless, when contrasted to normal He, consideration of
He enables one to assess the importance of spin Quctua-

tions, since these are frozen out in the spin-polarized
case. In particular, the term involving Sr in Eq. (1) is ab-
sent. There have been many theoretical studies of He~,
and of particular relevance to this work is the prediction
of a ZSM in this system. "' We will address this issue
later in this paper.

Before proceeding, a remark on notation is in order.
The following formal development pertains to normal

I

He. To recover the results for He~, one need only con-
sider Sz as noted above. In addition, the superscript s
which appears on the four-point functions should be un-
derstood as referring to all spins up rather than as defined
in Eq. (16) below. We use g to denote the number of spin
states.

To calculate Sc r ( Q, co ) from standard (Green's func-
tion) perturbation theory, it is necessary to introduce the
particle-hole irreducible interaction I„h. This is achieved
by introducing the dynamic susceptibility XC r ( Q, to ):

Sc,r(Q ~)= 1
ImXc, r(Q ~) (2)

where n =N/0 is the particle number density and XC r(Q, co) is given by

Xcr(Q ~)= f dt e' '& T[Pt(Q t)+Pi(Q ~)][Pi(Q 0)+Pi(Q 0}j& .

In Eq. (2), the C (I) refers to the sum (difference) of the density-fiuctuation operators

P (Q, t)= ga~+q (t)a„(t) .
k

The expectation value is taken with respect to the full interacting ground state. The susceptibility is given by

d Bid p2
Xcr(Q)= f '

Xcr(P&+QP2 Pi P2+Q}
(2~) (2n. )

where the four-point p is the solution of the integral equation

4

X c(rp&+Q p~p2»p +2Q) = giG(p&+Q}G(p& ) (2') 5r r
—f ~Ip~h (Pi+QPPi~P +Q)Xcr(P +Q~P2P~P2+Q)P~ P2 (2 )4 P

(4)

(5)

(6)

This is shown diagrammatically in Fig. 1. Formal
definitions of (s,a) and the single-particle propagators G
are given in the next section. (Note that we have adopted
the notation that all vectors are four-vectors unless other-
wise specified. ) I h is irreducible in the sense that two
separate diagrams, one containing p &+Q and the other
containing p +Q, cannot be obtained by cutting a single
particle-hole pair in I h.

Aside from the polarization-potential approach ' '
and semiphenomenological approaches based on the in-
duced interaction of Babu and Brown, ' several first-
principles calculations of Izh have been carried out. The

relevant calculations pertaining to liquid He will be dis-
cussed below. However, it should be noted that a similar
development has been carried out for the electron gas at
metallic densities by Green, Neilson, and Szymanski. '

Following the work of Glyde and Hernadi, Tanatar,
Talbot, and Glyde' argued that for intermediate to large
momentum transfers (Q & 5.0 A '}I~h can be accurately
represented by the GFHF t matrix T. They showed that
to a good approximation, for large Q, the t matrix can be
reduced to a function of Q and co alone. The integrations
in Eq. (5) are then trivial, and X(Q, co) reduces to the
random-phase-approximation (RPA) expression

where

d4pX'(Q)= —
g&f,G(p+Q}G(p} .

(2m. )

FIG. 1. Diagrammatic representation of y in terms of I„h.
Momenta are four-momenta unless otherwise speci5ed. With
the exception of the "legs" of y, all directed lines are the single-
particle propagators 6 (k, co).

Using this method, they found close agreement with the
experimental results of Mook' and Sokol et al. '

At momentum transfers less than several inverse
angstroms, the t matrix is not expected to represent accu-
rately I h. From rather general arguments it is known
that the low-Q behavior of I~h must be repulsive in order
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for the system to support a ZSM. However, in this re-
gime the GFHF t matrix is a predominantly attractive in-
teraction. This fact is responsible for the binding of the
fIuid in the GFHF theory. Further insight is gained by
considering the Landau limit. The Landau parameter I'o
calculated directly from the t matrix was shown to be
large and negative. ' However, if one calculates I 0 from
the compressibility using the same approximation to the
ground-state energy, the result is positive. This is true
for both normal and spin-polarized He. An I o calculat-
ed from the compressibility includes the effects of varying
the interaction with respect to changes in the quasiparti-
cle distribution n (k) about the Fermi surface. This idea
is central to the self-energy rearrangement term con-
sidered in Refs. 7 and 18. More relevant to the present
work, it indicates the importance of including these "po-
larization" effects in Iph.

To determine a suitable form for I h that includes po-
larization effects, we have invoked the well-known
prescription of Baym and Kadanoff' 0 (BK). The im-
portance of the BK prescription is that for any approxi-
mation to the self-energy, the BK I h is guaranteed to
conserve number, energy, and momentum. The BK
prescription is most easily stated in coordinate space:

Iph(1, 2, 3,4) =i. 5X(1,3)
56 4, 2

(9)

where 1=(x„t&,o &). In this equation, X(1,3) and
G (4, 2) are self-consistently determined. The CxFHF
self-energy is known to yield a good representation of
the single-particle properties of He, and we choose it for
our ansatz for the self-energy. The GFHF self-energy is
depicted in Fig. 2 and is expressed in terms of the
exchange-symmetrized t matrix T'~ as follows:

X(k, , co, )

d4k,= —
~ g f T' (k, , k~, k„k2)G(k2) .

(2~)4 1 2' 1 2
0'2

(10)

review of GFHF theory. )
This choice for the self-energy yields the T approxima-

tion discussed quite generally by Baym and Kadanoff'
and has been used in nuclear matter calculations, for ex-
ample, by Klemt, Moszkowski, and Speth. ' The techni-
cal details for evaluating I h [Eq. (9)] with the form (10)
for X and reducing the result to a numerically tractable
form are deferred until Sec. III. The diagrammatic repre-
sentation of the result is shown in Fig. 3. It consists of
two terms. The first term is the t matrix considered in
Ref. 10 and follows from cutting the external 6 line in
Fig. 2. As discussed above, this term dominates in the
high-Q limit. The second term arises upon differentiating
the implicit 6 dependence of the t matrix. Consequently,
it contains polarization effects, as mentioned above. It is
obvious from Fig. 3 that the T approximation is the trun-
cation of a complete series of diagrams obtained by re-
placing one of t matrices in the polarization term withIph itself Thus the T approximation to Iph is the
second-order approximation to the full solution of the
cross-channel Bethe-Salpeter equation considered in the
induced interaction models following Babu and Brown. '

In the present study we shall refer to the second term in
I h as our induced term.

In Sec. IV we use our numerical calculations of Iph to
show that the induced term is as important as the direct
term in the low-Q limit. In that section we compare our
finite-momentum results to the polarization-potential re-
sults, correlated basis function results, " and calcula-
tions using the 6 matrix. ' ' The density dependence of
I h is presented. Zero-sound-mode dispersion curves are
calculated for normal and spin-polarized He. In the
ZSM calculations we use a model frequency dependence
for I h. We then discuss the formal relationship between
the Baym-Kadanoff Ipb and the Landau parameters. We
compare our Landau parameters with those of previous
calculations and experiment. The role of spin Quctua-
tions in determining effective-mass enhancement is exam-
ined. Finally, in Sec. V we close with a discussion of the
shortcomings of this and similar calculations and present
directions for future work.

We have omitted the spin labels since, for an isotropic
system, X&(k, co) =Xt(k, co). (In Sec. II we provide a brief

P2

P2

Ph + P+ &~~

P2+Q P)+Q P2+Q

P+Q p+Q

FIG. 2. Diagrammatic representation of the GFHF self-
energy.

FICx. 3. Diagrammatic representation of the particle-hole ir-
reducible interaction obtained from the GFHF self-energy and
the Baym-Kadanoff method. The first and second terms are re-
ferred to as the direct and induced terms, respectively.
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II. GFHF THEORY k2 k4 k2 k4
k 2 ki+ k2 k5 k4

GFHF theory is an extension of Hartree-Fock theory
in which the bare interaction V(r) is replaced by the
Galitskii-Feynman t matrix T. The corresponding self-
energy was already introduced in Sec. I and is shown in
Fig. 2. The t matrix, which is obtained by summing the
ladder diagrams (Fig. 4), has its primary effect in replac-
ing the hard core of V(r) with a renormalized "soft"
core. Analytically, T is obtained by solving the Bethe-
Salpeter equation

T(k„kz, k3, k4) = V(k, —k3)

d4k,
+i f V(k, —k5)G(k5)

(2~)4

XG(k, +k~ —k5)

X T(k5, k, +kz —k„k3,k4),

where V(k) is the Fourier transform of V(r) In t.he
present work V(r) is the HFDHE2 potential of Aziz
et a/. For an instantaneous interaction, T depends on
the frequency only through E =co, +roz. In contrast to
Brueckner G-matrix calculations, ' ' the t matrix keeps
the hole-hole intermediate states.

In Eqs. (10) and (11), the single-particle propagator
G (k, co) is taken to have the form

k) k3

which obeys the spin relation

T~ ~ ~ ~ (k„k~,k3, k4}=T(k„k3,k3yk4)5~ ~ 5g

(14)

The GFHF self-energy also has a contribution from. the
exchanged interaction. Consequently, it is useful to in-
troduce an exchange-symmetrized interaction

T'3 (k„k„k„k,)=T(k„k„k,, k, )5 5

—T(k(, kz, k4, k3)5

(15)

We also define, in analogy with the well-known Landau
parameters, the spin-symmetric and antisymmetric in-
teractions

FIG. 4. Bethe-Salpeter equation for the t matrix in the
particle-particle channel.

1 n(k) — n (k)
co e(k)+i —g co —e(k) i ri— (12) T"=l(T't't. t t+T't"~, » } . (16)

Here e(k) and n (k) are the single-particle energy and
momentum distribution. In the absence of a magnetic
field, G (k, co) is diagonal in spin space. Consequently, the
spin labels have been suppressed in Eq. (12). This form
for G (k, co) is based on the quasiparticle picture of a Fer-
mi liquid. In this expression there is the additional
assumption that the quasiparticle strength zj, = [1—BX(k,co)/Bco~, ~k~] is unity for all k. This is a pri-
mary approximation in the GFHF analysis. We note,
however, that, unless corrective background terms are
added to Eq. (12}, it is probably best to satisfy particle-
number conservation by setting z& strictly equal to one.

The calculation of the t matrix requires s(k) as input.
This is obtained from the (on-shell) GFHF self-energy
g(k, s(k)) by the relation

k
e(k) = +Re+ (k, s(k)),2' (13)

where m is the bare mass. Equation (13) is simply the as-
sertion that the poles of the single-particle Green's func-
tion, as expressed by a Dyson's equation, are the single-
particle energies. In turn, the self-energy follows from
the t matrix [Eq. (10)], and in this way self-consistency is
achieved.

The solution of Eq. (11) yields the "direct" t matrix,
1

k =
—,'(k, —k~),

k' = —,
'

( k3 —k4),

P=k, +k~=k3+k4,

(17)

and the total energy E as given above. Following Refs. 7
and 25, we have used an angle-averaged approximation in
which the input momentum distributions and energy
denominators are averaged with respect to the direction
of P. The resulting T depends on P only through its mag-
nitude:

T(ki, k~, k3, k4) = T(k, k', iPi, E) .

Consequently, in the angle-averaged approximation, T
depends on k, k', P, E, and cosOk k, the direction cosine
for k and k'.

Carrying out the spin sum in Eq. (10) replaces T'~ with
gT'. Using Eq. (12) and the analytic properties of the t
matrix, one obtains the following expression for X(k, co ):

The solution of Eq. (11) is detailed in Ref. 7. Here we
note only those features that are important to the present
work. Momentum conservation allows T to be expressed
as a function of the relative and center-of-mass three-
momenta:

2p dE ImT (k] kp k] k3 E)
ReX(k„co,)=g f ReT'(k„kz, k„kz, to, +s(kz))n(k~) gPf-(2'�)' co, +c, kz~

—E (19)
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FIG. 5. Single-particle energies for spin-polarized He at
o —3

n =0.015 and 0.024 A . These densities correspond to the ex-
treme values of density considered in this work for spin-

polarized 'He.

FIG. 6. Density dependence of the binding energy for spin-
polarized He obtained from GFHF theory (solid circles) and
the variational Monte Carlo simulations of Ref. 28 (open cir-
cles).

d k2
ImX(k„co, ) =g f 31mT'(k„k2, ki, k2, co, +e(k2))[8(p —s(k2)) —8(2p —coi —s(kz) j,

(2m. )
(20)

where p is the chemical potential. The second term in Eq. (19) arises from the poles of T above the real-frequency axis
which come from the two-hole intermediate states. Although this term has been included in the evaluation of the self-
energy in nuclear matter, it is neglected in the present work. Recent studies done on spin-polarized deuterium indi-
cate that this term gives a small correction to the single-particle spectrum.

The self-consistent scheme discussed in the Introduction consists of the simultaneous solution of Eqs. (10)—(13). For
completeness, we show graphs of several self-consistent spectra (Fig. 5) and a resulting binding-energy curve (Fig. 6)
that are the solutions of these equations. We include binding energies obtained by variational Monte Carlo simula-
tions for comparison. It is important to note that the spectra are continuous at the Fermi wave vector. This is not
the case in the Brueckner 6-matrix calculations. Finally, we note that in practice, the dependence of the t matrix on P
has been neglected in the calculation of the self-energy. In the case of He~, this has been accomplished by setting
I' =O. We note however, that in our analysis of the particle-hole irreducible interaction for normal He, we found im-
proved results by using an s(k) calculated with P set equal to 2k+. The iterated ground-state energy is found to be quite
independent of I'.

III. ANALYSIS OF PARTICLE-HOLE IRREDUCIBLE INTERACTION

In this section we derive an approximate expression for I„z. The diagram shown in Fig. 3 resulted from performing
the functional derivatives in Eq. (9), Fourier transforming back into momentum and frequency space, and performing
the spin summation. The analytic result is

d'p
II'i', (p, +Q,p2,p„p2+Q)=T"(p, +Qp2, p„p2+Q)+i f ~(T'GGT'+2" T'GGT'), (21)

where

T GGT =Tp, +Q,p ——,p2+—Q,p+ —G p+ —G p —+ T p++,p2, p —+,p,

and A'=3 and A'= —1 (A"=0) for normal (spin-polarized) He. We have introduced the vector q=p, —pz. Strict-
ly, for He, I' and T' are more appropriately labeled by I t & & &

and Tt & & &.
In principle, Eqs. (5), (6), and (21) are sufficient to determine y(g, co). However, if one is interested in collective

effects, the entire series in Eq. (6) must be summed. In full, this calculation would be prohibitively complicated. Thus
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we resort to introducing approximations that preserve the RPA expression given by Eq. (7). The immediate problem
then is to reduce the full momentum dependence of I h to a function of Q and co alone. To accomplish this we define a
new function I(Q, to) as follows. Iterating Eq. (6) and integrating the results as in Eq. (5) yields

y=y + f fGGI hGG+ f f fGGI hGGI hGG+ (22)

where we have suppressed the arguments for convenience. The RPA expression given in Eq. (7) ignores the momentum
and energy coupling between the propagators and vertices. In that case, I h is assumed to be independent of the inter-
nal integration variables. Upon carrying out the integrations, each GG pair contributes a g factor. A procedure that
would improve this approximation is to define I(Q, co) as

y(Q, ai) =y (Q, ni)+y (Q, ni)I(Q, co)y (Qco)+y (Q, co)I(Q, co)y (Q, co)I(Q, co)y (Qco)+. . .

where (in full)

dp) dp2I"(Q,co)—=
o ~ 4 4 G(p, )G(p, +Q)It'h (p i+Q p~2, pip~ +Q)G(p 2+Q)G( p2) .

y (Q, co) (2m ) (2')

(23)

(24)

This choice for I(Q, co) makes y(Q, co) exact to first order in I h. Consequently, we regard Eq. (23) as an improved
RPA, which we use here. This procedure can obviously be extended to include higher-order corrections. Parenthetical-
ly, this scheme is similar to that used by Green, Neilson, and Szymanski in their calculation of the proper polarization
contribution to y in the electron-gas problem.

Inserting Eq. (21) into Eq. (24) yields our expression for I (Q, ro). The corresponding diagram is shown in Fig. 7. We
will refer to the first and second terms as the direct and induced terms, respectively.

To evaluate the frequency integrals in I (Q), a further approximation is required. This is due to the complicated fre-
quency dependence of the interaction as defined by Eq. (21}. The t matrix is already a complicated function of the total
energy E having poles both above and below the real axis. The induced term is even more complicated in that it cannot
be reduced to a function of the total energy alone. For this reason, we restrict our microscopic calculation to the limit
of zero frequency (co=0). Later we consider a model form of the interaction to restore the frequency dependence. Qur
approximation is to neglect the hole-hole intermediate state terms of the t matrix so that the t matrix is analytic above
the real axis.

Consider then the frequency integrations in the direct term (Fig. 7). The co, integrations are easily performed by clos-
ing a contour in the upper half complex plane. Expressing only the frequency dependence of the t matrix, the
p &

contribution is

d p(
i f —G(p, +Q)G(p, )T"(co +co )

(2m)
1 pl p2

d p, n(p, +Q) —n(p, ) d p)ps, a

(2~)3 E pi+ —E p, (2~)

T"(co +E(pi+Q)) —T"(co +s(pi) }

E(pi+Q) —s(pi)

(25)

Each t matrix T(k, k', P, co) in Eq. (25) has a relative incoming (k), outgoing (k'), and center-of-mass (P) momenta
given by

—(pi p2+Q) k (pl p2 Q» P=pi+P2+Q . (26)

Equation (25) can be simplified by using the following observations. First, the frequency argument of the t matrix in the

C3 2P

p+Q +Q p+0

FIG. 7. Our approximation for I (Q) in diagrammatic form.
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first term can, to a good approximation, be set equal to co~ +E(kF ). This is due to the observation that the susceptibili-ty
ty factor

n (p)+Q) —n (p, )

s(pi+ Q) —s(p) )
(27)

is strongly peaked about ~pi~
= ~pi+Q~ =kz. This fact will be useful when we consider the induced term. Next, we

note that because of the known (approximate) linear frequency dependence of the GFHF t matrix, the integrand in the
second term is approximately n (p, )BT/Bco~, . Omitting this term is consistent with the approximation of setting

F
z& =1, as discussed in the previous section. Similarly, the co integrations may be done. The final result for Id;, is

Pp

dp, dyeIs,a(Q)
y (Q, O) (2n. ) (2n. )

n(p, +Q) n(—p, ) n (p2+ Q) —n (p2)T"(k,k', lpl, 2s(kF ))
( +Q) ( )

y (Q, 0) is the susceptibility given by Eq. (8). In the zero-frequency limit, it reduces to

d p n(p+Q) n(—p)
(2~)' s(p+Q) —E(p)

(29)

To distinguish this result from the one derived below, we refer to Eq. (28) as our approximation (I) expression for Id;, .
When considering the induced term, we found it necessary to develop a slightly more restrictive method for reducing

the multiple momentum dependences of I h. For clarity and comparison purposes, we first consider the direct term
rather than immediately considering the induced term. Our starting point is Eq. (28). Noting once again that the sus-
ceptibility factors appearing in Eq. (28) are sharply peaked about

I p) I

=
I p) +Q I

=
Ip21

= Ip2+ Q I

=kF (30)

implies, that to a good approximation, the t matrix can be factored out of the radial and polar p& and pz integrations.
The legs of T are evaluated at the Fermi surface. A similar observation was made by Pfitzner and %'olfle in their
study of the quasiparticle-scattering amplitude. Carrying out the radial and polar integrations yields a g (Q, O) factor,
which exactly cancels the denominator. The resulting expression is a function of Q and one remaining angle. A judi-
cious choice for the final angle to integrate over is necessary to ensure the proper Landau limit (Q ~0). Defining a Q-
dependent Landau angle as

kF'cos91. =(p)+Q) p, (31)

will accomplish this. Clearly, as Q goes to zero, this reduces to the usual Landau angle found in the quasiparticle in-
teraction. Our approximation (II) expression for the direct I (Q) is then

IS& Q
( Q )— Q I —(Q/2kF) g~ g~f d cos cos T"(—,'(q+Q), —,'(q —Q), ~2b+Q~, 2e(kz)),

1 —(Q/2k~) 2 2 2 (32)

where the integration limits and prefactor are a consequence of the restricted phase space imposed by Eq. (30). In Eq.
(32) we have introduced the vector b= —,'(p, +p2). It is understood that the momenta in these expressions are still re-
stricted by Eq. (30). In the Landau limit the direct term reduces to the expression used in Ref. 7 to evaluate the Lan-
dau parameter Fo directly from the t matrix:

Fo= f d(cos81 )T"(cos81 ) .dn

dc. kF
(33)

The density of states at the Fermi surface, dn /8 8
~ k, is introduced to make Fo' dimensionless. Obviously, one may ob-

F
tain the higher-order Landau parameters from Eq. (32) by setting Q =0 and integrating over the appropriate Legendre
polynomials. It should also be noted that the same Q =0 limit can be obtained directly from Eq. (28). This follows im-
mediately by expanding the susceptibility factors [Eq. (27)] about Q =0. Consequently, both approximations (I) and (II)
are guaranteed to yield the same Landau limit.

We are now in a position to consider the induced term as depicted in Fig. 7. With the assertion that the external mo-
menta be restricted by Eq. (30) and the on-shell prescription, it follows that co =s(p, ) —e(p2 ) =0. Thus we can extend
the arguments used to arrive at Eq. (32) to justify setting the frequency corresponding to p q/2 to E(kz). The resulting
induced term is

'1/ 1 —(g/2k~) g~ g~ d3
I,'„'d(Q) =

2
d cos cos

(1—Q/2kF ) 2 2 (2m)

" p+q ' -" p-q ' (T T +g. T;T )s(p+ q/2) —E(p —q/2)
(34)
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where

T i
——T ( —,

' (b —p+ Q+ q), —,
' (b —p+ Q —q), ~

1+p+ Q ~, 2s(kF ) ),
Tg = T ( —,'(b —p+q), —,'(b —p q) lb+pl, 2E(kF))

It is understood that the momenta in these expressions are still restricted by Eq. (30). These restrictions allow all the
momentum dependences to be written in terms of the integration variables (p, cos8, P~ ), Q, and the Landau angle HL .
The magnitudes of q and b are, for example, given by the simple expressions

OL
~q~= 4k~csin' —Q'

' 1/2
8L

fbi = kzcos +
2 1/2

(35)

The upper integration limit in Eq. (34) can be seen to follow from the first of these expressions. The final step needed to
evaluate these expressions is to expand the t matrices in a Legendre series:

T(k, k', ~PI, E)= g(2l +1)T,(Ikey, lk'I, IPI, E)Pi(cos8qi, ) .
1

(36)

In the next section we compare our Id;, calculated
from approximations (I) and (II). We argue that this
comparison suggests that an I;„d determined by Eq. (34),
which is based on the assumptions of approximation (II),
should be accurate.

IV. RESULTS

%'e begin this section by presenting the values of the
interaction I(Q)=Id;, (Q)+I;„d(Q), which are the finite-

Q solutions of Eqs. (28), (32), and (34). Recall that these
equations yield the static (co=0) irreducible interaction
I(Q). We consider spin-polarized He first, followed by
normal He. We close this section with a presentation of
Landau parameters, the ZSM, and the role of spin Auc-
tuations in determining effective-mass enhancements.

able approximation for Q near 2k+. Nevertheless, ap-
proximation (II) is expected to yield a reliable induced
term if one avoids the 2k+ regime. In the forthcoming
discussion, the direct term is calculated from Eq. (28) and
the induced term is calculated from Eq. (34).

In Fig. 9 we illustrate the importance of the induced
contribution for finite Q. The dashed line is the direct
part of I (Q), and the solid line is the full I (Q). It is clear
that the induced contribution has an important role in
determining strength of I(Q) for all Q shown. On the

10

A. Fully spin-polarized He

Figures 8 —12 show I (Q) for Het. Recall that in
spin-polarized He the spin fluctuations are frozen out
and the only interaction is I&& &&(Q). Figure (8) shows
the direct part of I(Q) given by the t matrix alone [Eqs.
(28) and (32)] for the GFHF saturation density
n =0.0172 A . (The Monte Carlo value of the satura-
tion density is approximately 0.016 A .) Two approxi-
mations (I) and (II) given by Eqs. (28) and (32), respec-
tively, used to reduce the momentum dependence of the
full I h, are shown. A comparison of the two methods is
necessary to test the validity of the more restrictive as-
sumptions used in approximation (II). It is evident from
Fig. 8 that the two methods agree well for Q up to 1.7kF.
It is not surprising that they differ appreciably near 2kF.
This is a consequence of the restrictions given by Eq. (30).
Inspection of these restrictions reveals that approxima-
tion (II) can give meaningful results only up to 2k~. In
fact, as Q approaches 2kF, the amount of integrated
phase space in approximation (II) quickly drops to zero.
For this reason approximation (I) is clearly the more reli-

—10

—15
0.5 1

Q/kF
1.5

FIG. 8. Two approximations for Id;, (Ql in spin-polarized
He at a density of n =0.0172 A . The solid curve (I) is Eq.

(28), and the dashed curve (II) is Eq. (32).
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FIG. 9. The direct (dashed curve) and direct + induced
(solid curve) terms of I(Q) in 3He" as in Fig. 8.

other hand, the direct term largely determines the Q
dependence of I(Q).

In Fig. 10 we compare our static I(Q), the correlated
basis function (CBF) result of Krotscheck, Clark, and
Jackson" and the 6-matrix calculation of Dickhoff and
co-workers. ' ' The density for all three curves is ap-

~ 0~ 0 ~
r~OOyyoO

~
O

$ ~

'Het

—10

Q/kF

FIG. 10. (Total) I(Q): the present work (solid curve),
Krotscheck, Clark, and Jackson (Ref. 11) using CBF theory
(dotted curve), and Polls and Dickhoff (Ref. 12) using the G ma-

trix and full cross-channel renormalization (dashed curve}. The
corresponding densities of He~ are n =0.0172, 0.0166, and
0.0169 A for the solid, dotted, and dashed curves, respective-
ly.

proximately 0.017 A . Krotscheck, Clark, and Jackson
have used CBF theory to calculate a local approximation
to I (Q) for normal and spin-polarized" He. The CBF
results compare well with polarization potential results
for normal He.

In accounting for the substantial difference between
our result and the 6-matrix results, ' ' some insight into
the importance of a full cross-channel renormalization is
gained. This issue is important to the proponents of the
many-body parquet formalism. We begin this discussion
with a review of the two primary reasons responsible for
the observed difference.

First, in the direct term used by Dickhoff and co-
workers, ' ' the effective interaction is the 6 matrix
rather than the GFHF t matrix. For nuclear systems the
6 matrix is expected to give an accurate representation of
the renormalization of the short-range correlations. The
6 matrix is based on the assumption that the two-hole in-
termediate states have a negligible role in this renormal-
ization process. Unlike the nucleon-nucleon potential,
the He- He potential has a very extended core in posi-
tion space. This implies that a Fourier representation of
the interaction will have important contributions coming
from small wave vectors. As a result, the hole-hole inter-
mediate states should not be neglected in He. More im-
portantly, however, the GFHF analysis uses a continuous
spectrum in contrast to a discontinuous one often used in
G-matrix calculations. On iteration, a continuous E(k)
yields a deeper, more negative direct interaction and a
more tightly bound system than does the 6 matrix for the
same density. A consequence of the deeper direct in-
teraction is that the corresponding Landau parameters
tend to be substantially more negative than those ob-
tained from a self-consistent calculation involving a spec-
trum with a gap.

Second, in restricting the set of diagrams that comprise
I~h to those prescribed by BK (the T approximation), we
have dropped terms beyond second order in T appearing
in the cross-channel series. Dickhoff and co-workers' '

have made the necessary approximations to sum the en-
tire cross-channel series. By comparing the direct terms
calculated from the t and 6 matrices, we can assess the
importance the higher-order terms in the cross channel.
In Fig. 10 we display our direct term and one taken from
Ref. 12. In the Landau limit, we find that the difference
in direct terms is more than sufFicient to account for the
difference observed in Fig. 10. To a slightly lesser degree,
this is also true at finite Q.

We conclude that the primary reason for the difference
between our Izh and the one obtained by Dickhoff and
co-workers is due to the different choices of spectrums
from which the interaction is calculated. This indicates
that summing the entire cross-channel series may not be
as important in obtaining the gross structure of I h as
summing higher-order self-energy diagrams. Including
higher-order self-energy diagrams will have a direct
infiuence on the spectrum. However, the following
caveat is important to note. Certain quantities such as I'
for normal He are extremely "delicate" and are expected
to require the full cross-channel series. This point is dis-
cussed below.
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F1G. 11. Id;, (Q) from the present work (solid curve) and the
G-matrix calculation of Ref. 12 (dashed curve) for He~ as in
Fig. 10.

FIG. 13. I' and I' for normal He at densities of (A) 0.0164
A and (B) 0.0188 A . Also shown is thepolarization poten-
tials I' and I' from Ref. 6 for n =0.0164 A (dotted curve).

The density dependence of I (Q) is displayed in Fig. 12.
Of noticeable interest is the rapid increase in the peak
strength of I h with increasing density. This should
enhance the possibility of a ZSM being experimentally
observed for a sufFiciently dense system. The direct part
of I h has a similar, although much weaker, density
dependence.

B. Normal He

40
'Het

30

20

0

—10
3 n—0.0172 A

4 —n=0.0151 A
'

—2—0 ~ ~ ~ I I ~ ~ I I I ~ ~ ~ ~ I I I I

0 05 1 15
Q/kF

FKJ. 12. Density dependence of I(Q) for spin-polarized He.

In normal He, I(Q) has spin-symmetric (I') and
spin-antisymmetric (I') components. Figure 13 is a plot

of the Q dependence of the GFHF I' and I' for two
values of density, n =0.0164 A (SVP) and n =0.0188
A . The SVP polarization potentials I' and I' are also
shown in that figure. Similar to He~, the GFHF I; matrix
tends to yield an I' that is smaller than that predicted by
other methods.

The behavior of I' shown in Fig. 13 requires some dis-
cussion. We begin by noting that our I' has several
characteristics which are desirable. Obviously, our I'
has a qualitative resemblance to the I' obtained by Al-
drich and Pines: The sign of I' agrees with theirs, and
the strength of I' is an order of magnitude less than that
for I'. Further, in contrast to the strong density depen-
dence of I', we find a nearly density-independent I'. For
low Q, this agrees with the experimental findings of
Scherm et al. , which suggest that the peak portion of
the paramagnon resonance changes little with increasing
pressure.

Nevertheless, for a Fermi liquid to be stable against a
ferromagnetic ordering, it must satisfy dn/d E~, I') —1.
Our I' violates this condition. Two points should be
made in regard to this. First, as emphasized by Aldrich
and Pines, an extremely accurate theory is required to
obtain an I' which displays the experimentally observed
behavior. More explicitly, they found that the short-
range part of I&& t& and It& && (in position space) must
differ by less than 3%%uo for the 3He system to be stable
against a spin-wave instability. The fact that the GFHFI' violates this stability condition is not surprising con-
sidering the small allowable tolerance. This shortcoming
is shared by other purely microscopic calculations
which attempt to calculate both ground- and excited-
state properties. Second and most important, Quader,
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Bedell, and Brown ' have used the induced-interaction
model' to show that ferromagnetic ordering cannot
occur in a Fermi liquid in the case of a short-range poten-
tial. In fact, their proof requires the entire cross channel
and y particle-hole channel to be summed consistently.
Since we did not sum the cross channel, our results fail to
meet this important criterion.

C. Landau parameters and zero sound

We now present the numerical solutions of Eqs. (28)
and (34) in the limit of Q =0. These results will be used
in the construction of a model for the frequency depen-
dence of I h. We begin with a brief review of the rela-
tionship between the Landao quasiparticle interaction
f~ ~ and the Baym-Kadanoff I h The .approach of Pog-

P1P2

gioli and Jackson is the most direct. Starting with the
Landau definition of the quasiparticle interaction

5E(p, )f
5n(pz)

(37)

they have shown that f~ ~ is related to the BK I„h [Eq.
(9)] by the integral equation

f (pl p2~pl&p2) ph(plp2rplrp2)+i, I(pi p pi p)
d p

(2m. )

XG (p)f (p p2 p p2) (38)

where we have been consistent with our previous nota-
tion. The relative (k, k') and center-of-mass P momenta
depend only on the Landau angle through

01
I ~I = Ik'I =

—,
'

I pi
—

p~l
= I +»n

01
IPI = Ipi+p21=2k~cos

(39)

Before proceeding, we note that Eq. (38) is well known
when I h is exact. Useful discussions have been given,
for example, by Nozieres and in the nuclear matter
problem by Dickhoff et al.

The work of Poggioli and Jackson is important to our
analysis for a second reason. They have argued that Eq.
(38) provides a perturbative scheme for determiningf and that to first order (in their model interaction)

f „ is simply I h. It should be noted that in their work
the use of a restricted (Brandow) space excluded the pos-
sibility of a term similar to our induced term from ap-
pearing. In the present work we approximate the Landau
parameters as the Q ~0 limit of I h.

In Tables I and II, we present our Landau parameters
for spin-polarized and normal He, respectively. In both
cases we list the contributions from the direct term and
from the direct plus the induced term. The Landau pa-
rameters, obtained from the direct term quoted in earlier
references, ' differ from those in Tables I and II because
of the fact that in the present work a real input spectrum
[Eq. (13)] was used, while in previous work a complex

TABLE I. Landau parameters and effective-mass ratios
( = 1+F1 /3 ) for spin-polarized He. The first and second
columns are the Landau parameters calculated from Id;, and
Id;, +I;„d, respectively. The G-matrix results are taken from
Ref. 23. The GFHF and G-matrix values are calculated at den-
sities of 0.0172 A and 0.0169A, respectively.

Fo
F1

m */m

GFHF
(direct)

—1.36
—0.46

GFHF
(total)

0.13
—0.97

0.67

G matrix
(direct)

—0.30
—1.55

G matrix
(total)

0.70
—0.95

0.68

TABLE II. Landau parameters and effective-mass ratios
( =1+F1/3) for normal He. The first and second columns are
the Landau parameters calculated from Id;, and Idjr+Ijnd re-
spectively. The experimental SVP values are taken from Ref.
35. The GFHF density is 0.0164 A

F$
Fa
FS

1

Fa
1

m /m

GFHF
(direct)

—9.6
—3.5

1.7

GFHF
(total)

0.20
—1.90

6.3
—0.40

3.1

Experiment

9.15
—0.70

5.27
—0.55

2.76

spectrum was used. For comparison, we have included
the experimental Landau parameters of Greywall for
normal He and the Landau parameters determined by
the G-matrix calculations of Ref. 23 for He . The im-
portance of the induced contribution is immediately ap-
parent from these tables. For He the I'0 is closer to
that predicted by the induced-interaction model of Bedell
and Quader. Finally, we note that although the Landau
parameters at SVP show significant improvement when
induced terms are added, Landau parameters calculated
at elevated pressures still differ significantly from those
reported by Greywall.

With I(Q) determined, the ZSM is obtained from the
poles of the RPA expression [Eq. (7)] for yc(Q, co). We
found the imaginary part of I(Q) to be several orders of
magnitude smaller than the real part. In this case, the
ZSM is undamped when Imyo is zero. The degree to
which the ZSM is pushed up out of the particle-hole band
depends, then, on the strength of I(Q) and the e efftcive
mass appearing in go. To evaluate go we used (8), (12),
and the GFHF single-particle energies. The GFHF
single-particle energies E(p) may be well approximated by
a quadratic with nz'/I =0.8 at the saturation density
n =0.0172 A . In He~ compressed to n =0.024 A
the E(p} shows some fiattening at p =p~ and gives a max-
imum value of m*=p(dE/dp) ' of m*/m =1.2, just
above p =p~.

In Fig. 14 the GFHF ZSM and particle-hole band are
shown for He~ for n =0 0201 A . The top of the
particle-hole band is determined directly from the GFHF
self-consistent spectrum. The ZSM is calculated from the
static I(Q), alone. The existence of a ZSM in 3Het has
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FIG. 14. Zero-sound-mode dispersion curves in spin-
polarized He at n =0.0201 A . This dispersion is calculated
directly from the poles of our RPA expression for y. The corre-
sponding I(Q) is shown in Fig. 12. The frequency dependence
of I(Q) has been ignored. Also shown is the top of the GFHF
particle-hole band. Use of a frequency-dependent I ( Q), as is de-

scribed in the text for normal 'He, causes the zero-sound mode

to merge into the particle-hole band.

FIG. 15. Zero-sound mode in normal He at n =0.0164 A
yo and the top of the particle-hole band are determined from a
quadratic spectrum where m * is taken from Table II. Shown in
this figure are the zero-sound modes obtained by using I'(Q)
alone (solid curve), by using a frequency-dependent I'(Q, co) as
discussed in the text (dashed curve), and the experimental re-
sults of Ref. 4 (solid circles).

xo(g ~)
xc(g ~)=

1 V s'( Q co )go( Q co )

where

(40)

also been predicted by Krotscheck, Clark, and Jackson"
and Polls and Dickhoff' in the calculations described
above.

In normal He, a well-defined ZSM is observed. "To ob-
tain results which are comparable with experiment, we
have calculated go using single-particle energies of the
form s(k)=k /2m*, with m /m =3.1, as determined
from our F;. The top of the particle-hole band shown in
Fig. 15 is obtained from this spectrum. The correspond-
ing yo(g, co) reduces to the well-known Lindhard func-
tion with the bare mass replaced by the efFective mass.
This procedure violates the spirit of the Baym-Kadanoff
prescription since the self-energies used in the calculation
of yo should be the same as those calculated in a self-
consistent evaluation of Eq. (10). The need for such an
ad hoc modification is an indication of the need to include
higher-order terms in the self-energy for He. The result-
ing ZSM, obtained from Eq. (7) using our static I(g), is
shown in Fig. 15 as a solid curve. It is important to note
that this model for y(g, co) does not satisfy the f-sum
rule. In polarization-potential theory, for example, one
constructs a y(g, co) which conserves the f-sum rule by
adding a frequency dependent term as follows:

2
dn Fs

1

1+F', /3
(41)

D. Role of spin Auctuations

Finally, we close this section with a comment on the
role of spin fluctuations in determining I(Q) and the
enhancement of the efFective mass m *. Here m * is given
by m*/m =1+F&/3 in Tables I and II with F& obtained
from I =Id;, +I;„d. Enhancement of m* in He is gen-
erally attributed to spin fIuctuations.

In spin-polarized He, where spin Auctuations are
frozen out, we obtained m '/m =0.7 at n =0.0172 A

In Eq. (41), UF is the Fermi velocity. This expression is
strictly valid for small Q. Obviously, using Eq (41) is still
another step removed from the rigorous prescription of
the Baym-KadanofF method where the frequency depen-
dence is exactly defined. Note also that for the sum-rule
argument to hold, it is necessary to use in yo an m'/m
which is consistent with F', . In Fig. 15 the dashed curve
shows the ZSM obtained from our I'(Q), which is taken
from Fig. 13, and F'„which is taken from Table II. For
small Q the agreement with the experimental ZSM is
quite satisfactory. One can define a similar frequency-
dependent interaction for He~. In this case, F, is nega-
tive, and the resulting interaction is less repulsive than
the frequency-independent one. This decrease in the in-
teraction is sufficient to cause the ZSM to be pushed back
into the particle-hale band. Thus, in He", with
m '/m =0.7, a ZSM is unlikely to exist.
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in good agreement with previous results. "' Thus, in
the absence of spin Auctuations, m*/m is not enhanced
above unity. In normal He we obtained a mass enhance-
ment to m*/m =3.1, in good agreement with experi-
ment. Using the t matrix alone in I, we obtained
m */m = 1.5. Thus most of the enhancement of m */m
above unity comes from the induced term of I in Eq. (21).
The induced term itself contains two terms: T'GGT' due
to density fluctuations and T'GGT' due to spin-density
fluctuations. In normal He we find that the density-
fluctuation term contributes 60/o to the induced term,
while the spin-fluctuation term contributes 40%%uo. Thus,
at the level of our calculation, both density and spin-
density fluctuations contribute substantially to the
effective-mass enhancement in normal He. These results
must be interpreted with caution since the T approxima-
tion was seen in the previous discussion to yield an I'
which violated the ferromagnetic stability condition. The
relation between spin fluctuations and the effective-mass
enhancement has most recently been studied by Coffey
and Pethick. '

In He~, with all spins aligned, the Pauli exclusion
principle acts between all pairs of particles. The Fermi
repulsion leads to pair correlations which apparently
dominate or suppress density fluctuations. " These pair
correlations apparently also reduce density fluctuations
or change the character of the T'GGT' term of (21) so
that m * is not enhanced by density fluctuations in He".
Indeed, the T'GGT' term in He~ reduces m * somewhat.
Thus, not only do spin fluctuations not contribute in
He~, but density fluctuations make only a small contri-

bution to m*. This effect is also observed in electron
and nuclear spin-polarized atomic deuterium where
m '/m & 1 and m * decreases with increasing density.

Before leaving this topic, we note that Friman and
Krotscheck have calculated the ring-diagram contribu-
tion to the self-energy for normal He. Their calculation
uses the local approximation to I(Q) determined in Ref.
22. Similar to us, they also report substantial contribu-
tions to the effective mass coming from both the density
and spin fluctuations.

V. CONCj. USIONS

We have implemented the Baym and Kadanoff method
[Eq. (9)] to obtain the irreducible particle-hole interaction
Iph which appears in the dynamic susceptibility. Substi-
tuting the GFHF self-energy into Eq. (9), we obtain the T
approximation to I h (depicted in Fig. 3) discussed by
BK. This T approximation for I„h is structurally the
same as the equation for I h derived by Babu and Brown.
It contains a direct (t matrix) and an induced term:
Iph Idlr +Iled In the T approximation, both vertices in
the I;„d are the t matrix. We have given further approxi-
mations which reduce I h to a function of the momentum
transfer Q, only.

Calculations for both normal and spin-polarized He
show that the characteristic Q dependence of I h =I(Q)
comes from the direct term alone. The induced term
gives a nearly constant positive contribution largely in-
dependent of Q. In particular, the increase of I(Q) with
Q, at low Q, which gives rise to upward dispersion of the

ZSM, comes almost entirely from the direct term.
We have also calculated Landau parameters from the

interaction I h and find that the induced term makes an
important contribution. Inclusion of the induced term
leads to a positive value of Fo for both normal and spin-
polarized He, although our F~ for normal He is still
much smaller than the experimental value. From our F',
we calculate an effective mass for normal He of 3.1, in
quite good agreement with experiment. For He~ we ob-
tain m /m =0.67, which is consistent with other calcu-
lations. In normal He we find that the enhancement of
m~ to m*/m =3.1 is due to both density and spin-
density fluctuations. While our calculations are only ap-
proximate, they suggest that density fluctuations are
equally important to spin fluctuations in enhancing m*.
Before conclusive statements can be made, one must cal-
culate the entire cross channel (perhaps as was done in
Ref. 23) in a method which would have feedback to the
spectrum.

Using a model frequency-dependent interaction calcu-
lated from our I(Q) and F', in a RPA expression for y,
we calculate a zero-sound mode which agrees well with
experiment for normal He at low Q. Applying the same
model to He~, we find that the frequency-dependent
term causes the ZSM to merge into the particle-hole
band.

Comparison of the present and other calcula-
tions ' ' '~ show that qualitatively similar results are ob-
tained from rather different formal approaches. It is
therefore tempting to conclude that the dynamics of He,
at low-momentum transfers, is well understood. Al-
though much has been learned from these studies, it is
important to keep in mind that they all share similar
shortcomings. The approximations used in the present
work are strongly motivated by the need to reduce
y(g, co) to a RPA form. This is due to the technical com-
plexity of a full solution of Eqs. (5) and (6) including the
full momentum and frequency dependences of I h. How-
ever, in reducing I h to a local, static function, much in-
teresting physical information is lost. For example, the
use of a real interaction in Eq. (40) precludes the possibil-
ity of damping of the ZSM, which is known experimen-
tally to be substantial. One advantage of the Careen's-
function approach is that all these effects are, in princi-
ple, included. It would therefore be desirable to come up
with a scheme which maintains this information to some
degree. One possibility, inspired by the work of Green,
Neilson, and Szymanski, ' would be to absorb the nonlo-
cal part of I h into a "screened" y, where it might be
treated perturbatively. This approach has the advantage
of maintaining the simple RPA structure for y while
keeping some of the more realistic properties of I„h.
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