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We have developed a method for studying superconductivity in the negative-U Hubbard model. It is
based on the Hubbard-alloy-analogy approximation applied to the Gor'kov equation for the model. We
find that, unlike the case of the BCS solution, the formation of. pairs and their condensation into a super-
conducting ground state take place at two different temperatures. We calculate the condensation tem-

perature T, for all U and discuss the nature of the normal state which, for large enough U, features a
macroscopically large number of pairs. Briefly, we argue that the model has relevance for high-
temperature superconductors.

I. INTRODUCTION

Investigating the real-space form of the BCS wave
function, Leggett' noted that, when the effective attrac-
tion between the electrons is strong enough to bind a pair
in free space, i.e., without the Fermi sea of the Cooper
problem, the ground-state wave function is best described
as a Bose-Einstein condensate of bound, "molecular"
pairs. Surprisingly, he found no sudden change, as in a
phase transition, as the strength of the interaction was in-
creased. However, at finite nonzero temperatures, the
physics of the strong-coupling case must be very different
from the picture provided by the Bardeen-Cooper-
Schrieffer theory. Clearly, for a sufficiently strong in-
teraction, the formation of pairs and their condensation
into the superfluid state takes place at two, separate tem-
peratures as in the pre-BCS-theory suggestion of
Schafroth et a/. Indeed, for asymptotically large cou-
pling constants, the problem becomes fairly straightfor-
ward to treat. In this regime, Pincus, Robaszkiewicz
et al. , and Nozieres and Schmitt-Rink found that,
above the condensation temperature T, but below the
pair-breaking temperature T, the electron system be-
comes equivalent to a hard-core bose gas on a lattice with
a charge 2e on each particle. In the present paper, our
purpose is to propose a tractable approximation scheme
which will facilitate the investigation of the most interest-
ing intermediate-coupling regime as well as the weak- and
strong-coupling limits, at all temperatures.

As the simplest relevant model we shall study a single-
band Hubbard model with an attractive interaction. It is
described by the Hamiltonian
H= —g I,,C,t C, +U—,'gC, ~ C, C,t C, , (I)

I, O

where the fermion operators C; and C; create and an-
nihilate, respectively, electrons with spin 0. in the single
tight-binding orbital associated with the site i, t; is the
amplitude for hopping from site j to site i with the diago-
nal part t, , being the local site energy, —co and U is, as
usual, the interaction energy of two electrons of opposite
spin on the same site. In what follows, we shall have in
mind the case where the sites labeled by i and j form a
three-dimensional lattice. Moreover, we take the interac-
tion energy U to be attractive: U (0.

Evidently, the interaction term in the above Hamiltoni-
an favors double occupancy of sites and, hence, charge
fluctuations. Indeed, Anderson used a version of this
negative-U model to describe strong static binding of
electrons at localized centers in amorphous semiconduc-
tors. ' Also, very similar models were used to describe a
variety of charge-ordering phenomena by Chakravarty
et al. ,

' Ionova et al. ,
"and Lubimov et al. '

If bound pairs form and they are mobile, superconduc-
tivity may also occur. It is this feature of the model we
shall focus on. For

~
U much less than the bandwidth W

(=2zt, where t is the nearest-neighbor hoping probability
amplitude and z is the number of nearest neighbors), Gor-
kov decoupling of the equation of motion for the one-
particle Green's function leads to the usual BCS-type re-
sults. In the opposite limit, ~U~ &) W, progress can be
made by making a canonical transformation which elimi-
nates singly occupied sites and reduces the problem to
that of the spin Hamiltonian

H.a
= g~~)(~;+&, &&g ) Bg(2S,'+ I ), — —

where the effective "exchange interaction" J;
=4t,

~
U~ ', the external "magnetic field" B =p —

Eo
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+ —,
'

~ U~ with p the electronic chemical potential, and the
z component of the magnetization M, is constrained by
the relation

for n electrons per site. Based on this spin Hamiltonian,
a fairly complete discussion of the phase diagram and the
low-energy excitation spectrum has been given by
Robaszkiewicz et al. , Bulaevskii et a/. ,

' Alexandrov
et al. ,

' and, most recently, Micnas et al. ' Our work is
complementary to these investigations in two respects.
Firstly, our scheme extrapolates between the small-
(U/W) and the large-(U/W) limits and should, therefore,
extend and agree with results based on the Hamiltonian
of Eq. (1). Secondly, since we retain the language of the
BCS theory and calculate quasiparticle Green's functions
and anomalous propagators, we shed light on some of the
unconventional phenomena predicted by the effective
spin Hamiltonian.

In short, our method is an adaptation of the Hubbard-
alloy-analogy approximation' for the problem at hand.
Recall that Hubbard was dealing with the positive-U
Hubbard model. He found that, for U/8' » 1, a
Hartree-Fock band split into two bands separated in en-
ergy by U. For one electron per site, the Hartree-Fock
band is half-filled and the system is predicted to be a met-
al. In the improved alloy-analogy approximation c.F falls
in the gap between the split bands and the system is
found to be a Mott-Hubbard insulator. In this state, the
electrons occupying the lower Hubbard band are local-
ized. Interestingly, the Bloch vector k here no longer de-
scribes different states of electronic motion but merely
different spin arrangements governed by an antiferromag-
netic spin Hamiltonian. As shown in Appendix A, this
latter is the U) 0 analogue of Eq. (1) and arises when
doubly occupied sites are eliminated by the same canoni-
cal transformation. Significantly, the exchange interac-
tion is again given by J; "=

4t;~ ~

U~—
Consequently, we may conclude that the alloy-analogy

approximation gives an adequate account of the demand-
ing U/8'»1 limit in the U&0 case and, hence, may
also suffice in the analogous limit of the U &0 sector of
the model. Most of this paper can be read as a presenta-
tion of evidence that it does.

Having called attention to the connection between the
U & 0 and U & 0 regimes, ' we note that the technique we
shall develop here is readily applicable for the U & 0 gen-
eralized Hubbard Hamiltonians which are of interest in
connection with high-temperature superconductivity. '

Our final introductory remark concerns the direct ap-
plicability of the above negative-U Hubbard model to the
new high-temperature superconductors. Our observation
here is that the high-T, and short coherence length of
these superconductors may be taken as hints that such a

model is relevant to them as a semiphenomenological
description. We may then adopt a strategy which by-
passes the real deep issue of what is the pairing mecha-
nism, and limits the investigation to the nature of the
condensation. One the basis of some experimental evi-
dence, we shall argue that this may be a fruitful approach
to the problem. Alternatively, one may combine an in-
terest in the negative-U Hubbard model with proposals
for explicit mechanisms of the attraction. This point of
view has been recently explored by Robaszkiewicz
et al. ' and Schuttler et al. The technique we develop
here may prove to be helpful in connection with all these
considerations.

The plan of the paper is as follows. In Sec. II we intro-
duce our method of random fields in fairly general terms.
In Sec. III we apply it to the problem of superconducting
pairing allowing for charge and spin as well as pairing
field Auctuations. We do not implement the full theory in
this paper. For illustration of its power we study the case
where only the local phase of the pairing field is random
and introduce the incoherent local pairing (ILP) state. In
Sec. IV we study the pairing energies of the BCS and ILP
states. In Sec. V we investigate the stability of the ILP
state to development of phase coherence and determine
the temperature at which full superconducting order sets
in. In Sec. VI we attempt to assess the significance of our
results.

II. THE METHOD OF RANDOM FIELDS

In the interest of clarity, we now give a brief outline of
our method without some of the complications we shall
encounter in the next section. We shall also mention
some of its previous applications in order to establish its
credibility.

The basic idea is due to Hubbard and is sometimes re-
ferred to as the alloy-analogy approximation. It has been
used and generalized extensively by Cyrot, ' Hubbard,
Hasegawa, Pindor et al. , Oguchi et al. , Gyorffy
et al. , Staunton et al. , and Economu et al. , to
mention a few cases. Here we give a slightly modified
version of Hubbard's original arguments.

Consider the equation of motion for the one-particle
finite-temperature Green's function.

6 (i,j; )=r—("T,(C, (r)C (0)) ),
where the imaginary time r=it/fi, ( ) denotes the aver-
age with respect to the equilibrium density matrix corre-
sponding to the Hubbard Hamiltonian in Eq. (1), T, is
the usual "time"-ordering operator, and C; (r) evolves
in imaginary time ~ according to the Heisenberg picture.
The standard arguments yield the following equation of
motion:

+p 5; &+t
&

G (ij;r)+ U(7 [C; (r)C, (r)C, (r)C, (0)].) =%5, ,5(r) . (4)
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=A'5(r)5;i , (7)

where the Green's function 6 (I,j;~) describes an elec-
tron moving in the random field which takes the value
Un; at the lattice point labeled by i. The prediction of
the theory for the one-particle Careen's function
G (i,j;~) is the average of G(i,j;r) over a suitably
defined ensemble of configurations labeled by the sets
In; j. Namely,

G (i j;~)=(G (i,j;~;In; j) .

At this point recipes differ. ' ' ' ' We advocate the
following simple procedure. We allow the charge densi-
ties n, at each site & to take on a finite number of charac-
teristic values n; labeled by v=1, 2, 3, . . . , etc. We
treat the occupation numbers n; as independent random
variables and assign to each occurrence n; the probabili-
ty P;(v). Thus, the average in Eq. (8) is with respect to
the distribution

To complete the prescription we must now select the
characteristic values n, and determine the correspond-
ing probabilities P;(v; ).

One of the principle features of our method is a self-
consistency condition which determines the characteris-
tic fluctuations: f n j. In the interest of clarity we shall
describe this condition in two steps. Firstly, we give the
recipe as a sequence of "gedanken" calculations. Second-

Evidently, in this formulation of the problem, the princi-
ple task of the many-body theory is to provide a tractable
scheme for finding the four-point expectation value on
the left-hand side of Eq. (4) in terms of the Green's func-
tion G (i,j;r) T. he Hartree-Fock approximation is
given by the decoupling

(V,[C; (w)C; (w)C;, (r)CJ (0)])

n;— (r)6 (ij ~), {5)

where n; (r) is the average occupation number defined
as

n, .(~)=(C,'.(~)C, .(r))
and is usually independent of ~. Substituting Eq. (S) into
Eq. (4) leads to the Hartree-Fock, self-consistent, one-
electron problem where the electron described by
6 {I,j;~) moves in the average electrostatic field due to
the other electrons with opposite spin.

The method of random fields is a way of going beyond
the Hartree-Fock approximation by taking into account
some of the fluctuations in the average field seen by an
electron. Explicitly, one decouples the four-point average
in Eq. (4) but makes up for some of the error by allowing
the occupation number n,- to Auctuate about its mean
n, . This leads to

ly, we propose a practical scheme for implementing them.
To begin with, consider an ensemble of sets In,

By solving Eq. (7) and using the weights in Eq. (9), we can
calculate the partially averaged charge densities n, in
terms of the Fourier coe%cients 6 (i,j;c,„)defined by

(10)

by evaluating the formula

=+—ge " (G (i,i;E„)),„,
where c„ is the usual Matsubara "frequency"
(irlP)(2n+ I), 5 is a positive infinitesimal energy, and
( ); denotes an average over the ensemble of all
configurations with the charge densities n;

""on the ith
site. In principle, n,. in Eq. (11) can be calculated for all
sites and for each allowed local configuration n, '" for
v= 1,2, . . . . When this is done, a new ensemble of
configurations is created. Let us denote it by In;'"'
Our procedure is to repeat the whole calculation using

I n "'"
j in place of [ n ' "

j and continue to iterate until

In,"'"'
j agrees with In, "jw'ithin some prescribed lim-

it; in other words, until we have reached a fixed point of
the algorithm.

The problem of an electron moving in a random poten-
tial field has a vast literature. For the particularly sim-

ple example above, where the potential function depends
on a set of independent random variables, there is a well-
tried method, called the coherent-potential approxima-
tion (CPA), for dealing with it. ' ' In what follows we
adopt this technique. The CPA can be shown to be a
mean-field theory of disorder and, hence, our theory
will treat the fluctuations about the Hartree-Fock poten-
tial in the spirit of a mean-field theory.

Of course, the above procedure is to be carried out for
a fixed set of probabilities P, (v). Specifying instructions
for choosing these is the final step in defining the method.
There are two different approaches which have been used
successfully. The first is that adopted by Hubbard in his
classic paper' where he introduced the method of ran-
dom fields. It consists of choosing a set of intrinsic prob-
abilities on the basis of physical intuition. The second
approach views the probabilities P; (v) as parameters to
be determined by requiring that some quantity, like the
ensemble-averaged free energy, is a minimum. ' ' In
this paper we shall make use of both schemes. In the in-
terest of e%cient presentation we shall not describe them
here any further but give such details as will be necessary
later on when our particular applications have been more
fully explained.

Let us now be more specific and consider, explicitly,
the example of four possible

fluctuations:

n,
' +,n,', n,' ~, n ~ on each site. For simplicity, we

take the + and —sites as pure charge fluctuations about
the mean occupation number n, . Namely,

(12)

Moreover, the T and $ states are taken to be pure spin
fluctuations. This implies that
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n, &+n;& =n;, n;&+n, &
=n, ,

n, &

—
n;& =p;, n;&

—n, & =p;, (13b)

where

=[1—V; (E„)G' (i, i;E„)j 'G' (i, i;c,„), (16)

V; =V, —X; (e).
The well-known CPA condition which determines the
coherent potential X; (E) may now be written as

gP;(v)G (i, i;e„)=G' (i, i;E„) .

where p; is the magnetic moment on the site i and, to
preserve conceptual simplicity, up ( t) and down ($) refers
to the same axis of spin quantization on each site. How-
ever, we note that it is frequently useful to allow the
orientation of the local axis of spin quantization to vary
from site to site.

We shall now briefly summarize the theory for these
simple fluctuations. The central feature of the CPA is the
Green's function G' (i,j;e„)which describes the motion
of an electron at the Matsubara frequency c„,on a non-
random, effective lattice. This Green's function satisfies
the following equation of motion:

g[[iE„+p—2; (s„)j5; &+t&) G' (lj;e„)=5, , (14)
1

where X; (s„) is the energy-dependent complex coherent
potential at site i. Consider now an impurity in this lat-
tice at point &', described by the potential

V; = Un, .'
It is easy to show that the impurity Green's function is
given by

G (i,i;E„)

tegral representation of the partition function. In these
approaches the CPA comes in as a technique for evaluat-
ing the functional integrals approximately. Although it is
a single-site static method, it goes beyond the random-
phase approximation (RPA) which includes only quadra-
tic fluctuations about the Hartree-Fock saddle points.
Evidently, the theory we shall describe in this paper can
also be arrived at by casting the problem into the form of
functional integrals over classical isospin fields represent-
ing traces over the Nambu space, and approximating
them using the CPA. Although some useful insights into
the limitations of our approach may be obtained in this
way, here we shall not pursue this line of inquiry any fur-
ther.

Hubbard's classic paper, where he first introduced the
alloy-analogy approximation, dealt with a positive- U
model and developed the charge-fluctuations-only version
of the above theory. As mentioned in the Introduction,
he found that, for large enough U, the Hartree-Fock
band, given by c.k =~k+ —,'Un, where ~k is the lattice
Fourier transform of the hopping integral t, , split into
two Hubbard bands: ck and c.k+ U. Evidently, for a
bandwidth W& U, there is a gap between the lower and
upper bands, as shown schematically in Fig. 1. Since, for
one electron per site, the lower band is filled, we have a
Mott insulator. The lower band corresponds to states in
which sites are singly occupied, and when it is filled, the
electrons are localized by correlation. In the large-U lim-
it it is well known on the basis of, more or less, exact
theory that the ground state is an antiferromagnetic insu-
lating one. To recover this we must open up the spin sec-
tor of the theory. There is a strong circumstantial evi-
dence that the full scheme would give a qualitatively
correct account of localized electrons interacting via anti-
ferromagnetic spin interactions both below and above the
Neel temperature T& in the U&) Wlimit. '

Although current theories of high-temperature super-

Note that the above relation describes an infinite set of
coupled equations: one for each site. As will be seen
later, this inhomogeneous CPA is a useful formal de-
vice. However, it can be solved explicitly only in the
homogeneous limit where all sites are the same, e.g. ,
X; (e„)=X (e„) for all i In this . case Eq. (17) can be
readily solved, for X (e), by numerical iteration.

Recently, the spin-only sector of the above theory
played an important role in the theory of metallic magne-

Deployed in the context of a positive-U Hub-
bard model, it facilitated the description of the paramag-
netic state. In contrast to the Stoner theory, where, after
the demise of long-range magnetic order at the Curie
temperature T„ there is only Pauli paramagnetism, the
inclusion of spin fluctuations led to a disordered local
moment (DLM) state ' ' with the Curie-Weiss suscep-
tibility. The high-temperature incoherent local pairing
state, which we shall discover in the context of the
negative-U Hubbard model, will be shown to be the su-
perconducting analogue of this DLM state.

From the formal point of view it may be helpful to note
that, in the above applications, many authors ' ar-
rived at the method advocated here via a functional in-

~go &

&Fr
rr

HF 0

FIG. 1. The Hartree-Fork and the split Hubbard bands for a
one-band Hubbard model.
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conductivity focus a great deal of attention on the above
circumstance, from the point of view of our present con-
cern the more interesting case is that of charge Auctua-
tions in the negative-U Hubbard model. In this sector of
the theory, for

~
U~ large enough compared with the band-

width 8' we get the same two Hubbard bands as in the
positive-U case but now it is the band corresponding to
the double occupancy of sites that is lower in energy.
This implies that singly occupied sites may be eliminated
from the theory by the canonical transformation men-
tioned in the Introduction. The result is the effective spin
Hamiltonian given in Eq. (2). Note that, for one electron
per site, the above picture implies pairs on every other
site and hence the state may be metallic. However, in
contrast to the Hartree-Fock theory, the current carrying
excitations correspond to a charge of 2e.

When applying the theory at hand to this situation,
one must search for the probability factors P (+ ), P( —),
P( 1 ), P( 1 ) such that the free energy is minimized. This
may lead to a variety of charge-ordering processes, as was
found by Robaszkiewicz et al. , ' on the basis of the
effective spin Hamiltonian given in Eq. (2). Competing
with these are transitions into a superconducting state.
The central purpose of this paper is to study the latter us-

ing a straightforward generalization of the method of
random fields described in this section.

Before pursuing the above task, we wish to pause t.'o

make a final general comment on the method. Note that
the four possible states specified at each site in our
method are closely analogous to the four Hubbard states:
no electron ~0&, one spin up electron

~ 1 &, one spin down
electron

~ 1 &, and a singlet pair
~
11 & which span the Hil-

bert space of a single-orbital Hubbard model on one site.
Evidently, ~0& and

~
1 J, & describe spinless charge Auctua-

tions and
~ 1 &, ~

1 & correspond to spin Iluctuations. In an
exact theory, the fluctuations between the states ~0&,

~

1' &, ~
1 &, and 1J, & are described by the Hubbard opera-

tors X; . In our theory only a classical and time-
independent representation of these fluctuations survives.
Nevertheless, the method can be seen as an attempt to
capture, albeit approximately, the essential physics de-
scribed by the Hubbard operators.

III. THE GOR'KOV EQUATIONS
AND THE METHOD OF RANDOM FIELDS

A. The Gor'kov equation

We shall work with the Nambu-style matrix Green's
function defined by

& V', [ C, ,(r)c,'„(0)I & & V, [ C, ,(r)C„(0)I &

'

& v, [c,t, (.)c,~„(0)) & & v, [c,t, (.)c„(0))&

The off-diagonal elements are the usual anomalous propagators of the BCS-Gor'kov theory. They are zero in the nor-
mal state and become finite in the superconducting state. Following the arguments which lead to Eq. (4), it can be
readily shown that G (i,j;r) satisfies the exact equation of motion

+P 51 I + tI. I
O'T G„(l,j;r) G,~(l,j;r)

G2, (1,j;r) G~2(l, j;r)
P 5It

Bv

& v', [c;$(7.)c;$(7.)c;t(7.)cjt(0)I & & T,[c;$(r)c;$(r)c;t(r)c,g(0)j & 1 ()

& "T,[c,, ( )cr, t( )cr, , ( )cr, t(0) I & & V,[c,", (r)c, „(r)C,1(r)c,„(0)I &

(19)

Since we now expect, in the Hartree-Fock approximation to Eq. (19), such anomalous averages as & C, ic, t & and
& C, tc, t & to be nonzero, we must decouple the four-point functions keeping all possible two-point averages. On doing
this, we find the usual Gor'kov equation,

+p —
Un;& 5; I + t I A, 5,. )

—p+ Un;& 5; &

—t I

G(l, j;r)=5(r)5; 1, (20)
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where

g*. = U(c,.t)c,tt ) = —UG2i(i, i;0+) (21)

ic„5
n =—ge " Gi, (k;E„)

n, k

U d
b.= ——gp „z (i c„Ei,, )(iE„+—Ei, )

where

Ei,=+(Et+ Un&
—p) + Ib,

I

(24)

(25)

Carrying out the sum over the Matsubata frequencies by
contour integration and replacing the sum over the Bril-
louin zone by an integration over the density of states

n (E)=+5(e —ez —Un i +p),
k

we find the gap equation

(26)

1=—U f dE n(E) tanh —,'pv E +b, ) . (27)2v'E'+ IgI'

and the average occupation numbers n,.&
and n,-& are

given by Eq. (11). As is conventional, 0+ denotes a small,
positive infinitesimal.

As stressed earlier, our aim is to go beyond the simple
approximation above. But, before doing that in the next
section, we shall complete our present discussion by solv-
ing Eq. (20). This will allow us to clarify some points
which will arise later.

In the homogeneous case where 5;=6, h,*=A* for

all i we can take the space and ~ Fourier transform of Eq.
(20). Introducing G(k;e„) by the relation

G(i,j;r)= g—e ' ' ""'G(k;E„), (22)
n, k

we find

ic.„—ck —Un &+P
0 G(k;E„)=1 .

tc„+ok+ Un )
—P

(23)

Solving this equation and using Eq. (21) leads to

W/2 E P1—
v'(s —p)'+

I
~ I'

X tanh[ —,'PV (E —p ) +
I
g

I

~] (29)

To highlight an important diA'erence between this and
the usual BCS result, we note that, for T=O, Eqs. (28)
and (29) can be solved analytically. After some straight-
forward algebra we find

v'n (2—n)
8
2

—2W/U+ )
—2W/U

1/2

(30)

Pai

For a half-611ed band, this relation is plotted in Fig. 2.
Evidently, for

I UI /W (& 1 and n = 1, we have the BCS-
like result that b, = We ~ ~. For

I UI /W && 1,
b, =—,'IUI. The former case is characteristic of pairing

with the assistance of the Pauli exclusion principle, name-

ly, of Cooper pairs. However, in the opposite limit, we

may recognize —,U as the binding energy per particle in a
"molecule" which would form even in free space without
the Fermi sea of other electrons. The smooth transition
between these two limits was the subject of Leggett's in-

vestigation. The point at stake in this paper is that, for
T & 0, the transition is not smooth. . As in the BCS
theory, Eqs. (28) and (29) yield kii T, =-5(0). In fact, for

I
UI/W»1 and n =1, we have kii T, —= —,'b(0)= —„' U. On

the other hand, the arguments of Rubaszkiewicz et al.
and Nozieres and Schmitt-Rink convincingly lead to the
conclusion that, for I UI/W»1, kii T, decreases with in-

creasing
I UI (kii T, -=W /I UI). Thus, for some value of

I UI/W, the BCS mean-field theory, as encapsulated by
Eqs. (28) and (29), must break down. Our principal con-
cern here is where and how this happens.

This is the BCS result for our model.
For simplicity, here and later, we will work with a

square density of states of bandwidth 8'. Evidently, 8'
should be though of as Zzt, where z is the number of
nearest neighbors, even though 8' does not arise from a
nearest-neighbor hopping model. By this we do not mean
to focus on two-dimensional systems, but use this form
only to simplify the algebra and to approximate the rise
and fall of a generic d-band density of states.

For this model density of states, the gap equation be-
eonles 0.0

XLP

HFG

d

1.0 2.0
—U

3.0 4.0

f lvr2

—wrz 2W v'(E ii, )2+ IgI&

X tanh[ —,'PV ( e —p ) +
I
b,

I

2]

and the chemical potential p is determined by

(28)

FIG. 2. The zero-temperature gap as a function of the in-
teraction constant U: as given by the Hartree-Fock-Gor'kov
theory (dashed line) and ILP state (solid line) for a band filling
n = 1. In this and subsequent figures all energies are in units of
the bandwith 8'.



5196 B. L. GYORFFY, J. B. STAUNTON, AND G. M. STOCKS

B. Beyond the Gor'kov decoupling

It is now a straightforward matter to apply the method
of random fields, as developed in Sec. II, to improve upon
the Cxor'kov approximation given in Eq. (20). Evidently,

we must consider the generalization of Eq. (7) for the case
of the matrix Green's function G(i,j;E„). Namely, by re-
moving the average sign —from n; and 6; and trans-
forming it into the Matsundera-frequency space, we may
rewrite Eq. (20) as

ie„+p Un—, g)5, , , +t,,
(31)

where n, and 6, are now independent random variables. As we explained earlier, our approximation for the Green s
function is the average

G(i,j;E„)= ( C(i j;e„))
with respect to some suitably chosen ensemble.

At this stage of theory, it makes no sense to consider more general Auctuations in n; then the four states n;~, n,~,
n;, n; depicted in Eqs. (12) and (13), together with fluctuations in the pair field. The qualitatively difFerent feature of
the theory is the Quctuating pairing potential 5;. It is a complex number which we take to be of the form

(33)

For simplicity, we assume that only the 0 phase fluctuates. Thus, the ensemble with respect to which the average in Eq.
(32) is to be taken is described by the distribution

(34)

Following the arguments in Sec. II, we carry out the averaging using the CPA. The coherent potential matrix Green s
function is defined by

[ie„+p,—XI,(e„)]5;(+t I

X2i(E. », I [iE„—p —X' (E„)]5; —t;
6'(I,j;e„)=15; (35)

To determine the coherent potential

X'„(E„) X')2(E„)
X '(e„)=

Xz', (E„) X2z(E„)

we replace it by the "impurity" potential

Un' ib, , ie" '

7l) g

find the corresponding impurity Green*s function

(36)

(37)

6 " '(i,i;E„)= 1 — V,. '(B, )
—X'(c,„) G'(i, i; E) G'(i, i;e„), (38)

and require that the CPA condition

g f dB,P;(v;;B;)6 ' '(i, i;E„)=G'(i,i;e„)
v ~

(39)

is fulfilled. Evidently, Eq. (39) is the fundamental equation of our inhomogeneous CPA.
We shall use the above theory as the basis for some formal manipulation. However, we can contemplate actually

solving Eq. (39) only in the homogeneous limit. In that case, P, (v, , B)=P(v, , B) an. d therefore X'(e„)=X(E„).Conse-
quently,

dkG'(i, i; E)= G'(k; E„),» (2~)'

where G'(k; E„)satisfies the equation

(40)

i e„—(Ek —p, ) —X»(e„)
—X2,(E„)

—X,2(e„)

+( o
) X ( )

G [k ( )]=1 (41)
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and the CPA condition reads

g fd8P(v, 8)G"' (i,i;c„)=G'(i,i;E„) . (42)

In order to illustrate how the above theory works, we
shall now consider the simple example where the phase of
the pairing potential 0,- is the only Auctuating quantity.
Namely, we set the occupation variables equal to their
average value which is taken to be the same on all sites.
We also take the magnitude of 6; to be 6 for all i. Thus,
we study the limit where

n; =n, 5, =he (43)

P;(8;)== 1
(44)

277

Clearly, the theory in Sec. III B, together with Eqs. (43)
and (44), completely defines the mathematical problem
that we are to solve.

Before moving on to do that, however, we wish to com-
ment on the physical nature of this incoherent local pair
state that we are about to decribe. Recall that the phase
of the complex order parameter g= ~P~e' in the
Ginzburg-Landau theory is the conjugate variable to the
number of Cooper pairs in the system. Thus, loosely
speaking, we may interpret the local phase of the order

io,.
parameter (C;&C;~)= U b,e ' as the conjugate variable
to the local occupation number N; which denotes the
number of pairs (bosons) at the site i In an exa. ct theory
there is a pair occupation number operator 8;. whose ei-
genvalues are 0 and 1 due to the exclusion principle
operating between the fermions which make up the pairs.
We would like to stress that X; above is not that operator
but some suitably coarse-grained version of it corre-

I

The formula for the impurity Green's function
G ' (i, i;E) is that given in Eq. (38) with V (8) and X re-
placing V;(8; ) and X'. In short, in a homogeneous state,
Eqs. (40)—(42) and (38) are a complete statement of the
theory for the one-particle Green's function.

C. The incoherent local pair state

sponding to the coarse-gained phase 0;. Nevertheless, on
some time scale, long compared to the hopping time i'/W
for the individual electrons but one which is not infinite,
we may make the following argument: when the phases
{8;I are well defined and are the same, P(8; )=5(8;—8),
the occupation numbers {N; I are ill defined, i.e., they
Auctuate wildly, and we cannot tell how many pairs are
at the site i. We say that, in this state, the local order pa-
rameters are coherent and the bosons are overlapping.
Thus, we interpret this situation as corresponding to the
presence of a Bose-Einstein condensate of pairs. Unless
the pairs are localized, this state is superconducting. On
the other hand, when the phases {8;I are random, i.e.,
P(8; )=1/2~, the occupation numbers are well defined
and, for a given residence time, we can tell how many bo-
sons are at a site. In this state, the local phases are in-
coherent and it is reasonable to construe that we are
describing an ensemble of bosons in their normal state.
This state is not superconducting but di8'ers from the
standard normal state of the electrons in that a significant
fraction of the electrons are bound in pairs.

Clearly, the above ILP state may be associated with the
state expected for T, & T & T according to the argu-
ments in the Introduction. In short, for T & T„there is a
coherent order parameter all through the lattice and we
may regard the state as a Bose-Einstein condensate of
pairs. Above T, the order parameter is incoherent from
site to site. This describes pairs in their normal state.
Above T, the pairs are broken up by thermal Auctua-
tions.

The calculation we are about to describe refers to the
case of random phases. The question whether there will
be pairs in the normal state or no pairs at all will be de-
cided by the calculation. In other words, our self-
consistent scheme will converge either to a solution for
which b, =O or to one with b,XO. Obviously, in the latter
case we have normal pairs.

Because the occupation numbers n; take their
Hartree-Fock values n;, it is best to define the Green's
function G'(k; E„) in Eq. (40) by

iE„—(Ek"—p, )
—X»(e„)

—X~i(E„)

—X,2(E„)

i E„+(ek"—p) —Xzz(E„)
G'(k;E„)=1 . (45)

and

—he'io

1 d8G (i, i;e„)=G'(i,i;E„) .
7T

—ae"
(46)

Finally, using Eq. (47), we may rewrite Eq. (46) as

Then, for the distribution P(8) in Eq. (44), the CPA
equations, which determine the self-energy matrix
X(i,i;E„), take the following form:

(50)

G (i, i;8)=D (i,i;e„)G'(i,i;E„), (47)

Moreover, the "impurity" Green's function is given by

I d8D' '(i, i;8)=l .
277

(51)

where
BZ

6'(i, i;c,„)=gG'(k;c, „),
k

(48)

To solve the above equation we note that a general
2 X 2 matrix in the Nambu isospin space, like the Green's
function G' or the self energy X will be of the form

D' '(i, i;E„)={1—[V—X( e)]G'(i, i; e) I (49) G'=6'1+6'r'+6'r +6' (52)
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where 1, r', r, and r are the usual complete set of 2X2
Pauli matrices

1-2 components G;, G2, and Xi and Xz must vanish.
Thus, we can assume at the outset that

1 0 1 0 0 —i 1 0 G»(i, i;E„) 0

0 10 1

respectively. Clearly,

i 0 0 —1
G'(i, i;E„)= 0 622(l, l; En )

The, Eqs. (45) and (48) imply that

(54)

V(8)=dr'cos8 —hr sin8 (53)

and, hence, varying 0 implies a rotation in the 1-2 sub-
space. Consequently, in a state which is locally gauge in-
variant, such as the one described by P;(8)=1/2ir, the

I

X„(E„)
X'(E„)=

X22( E„)

Using Eq. (49), this leads to

(55)

D'"(i, l 'e) = I ( &+X»6 iiG» )(1+X22622) ~ '6 ii622]
1+XZ2G22 b e' G22

he'~G ii 1+Xi)G ii
(56)

and our fundamental equation, Eq. (51), becomes

1+~22G22
(1+X;,6;, )(1+X22G22)—6 G;i622)

0

1+XiiG ii

1 0
0 1

(57)

We have solved these equations at a number of complex energies z following a very efficient iterative procedure de-
scribed in Appendix B. Instead of using some characteristic band structure for c.k", we made use of the square density
of states employed in Sec. III C. Namely, for a self-energy matrix X(z), we calculated the corresponding Green's func-
tion by evaluating, numerically, the following integral:

r

W/2 —pG' i, i;z =
—W/2 —p W

z —E —Xii(z)

0

0

1

z —e —X22(z)

(58)

Once X(z) and hence 6 (l.l.z) have been determined on a large number of z points, a further self-consistency cycle
begins, to determine the magnitude of the pairing potential h. For an assumed value of 5 we find the impurity Green s
«nction G (i, i;s„)and calculate the corresponding local pairing potential by evaluating the Matsubara sum

6(8)= ——ge " 6,2(i, i;E„) . (59)

Since it follows from Eq. (56) that D,2, and 5(8) are proportional to b,e', we can cancel he' on both sides of Eq.
(59) and find

1=——g e I [1+X»(E„)6»(i, i;E„)][1+X22(E„)G22(i,i;8„)]—6 6» (i,i; )E6' (i2,2i; )eI '[622(i, i;E„)] . (60)

Thus, on evaluating the right-hand side of this equation
for a starting value of 6, it is compared to 1. If it is not
1, within a prescribed accuracy 6 is modified and the
whole process, including solving Eq. (51), is repeated un-
til convergence is achieved.

Method of solution apart, Eq. (60) may be recognized
as the local gap equation in the present approximation.
Recall, however, that because the phase is random, the
state described is not superconducting even if Eq. (60) has
a solution for which b, &0.

Our solution for 6 as a function of U is plotted in Fig.
2. In this and subsequent figures we express our results in
units of the bandwidth 8'. Clearly for values of U having
a magnitude greater than some critical value U„where
U, -0.88' the ILP state with a finite "gap" 6 is a solu-
tion. Below U„ the above algorithm converges to 6=0.
This curve is the principal result of this section.

It should be noted that, for
l
U/Wl »1, b, —= —,

' U as on
the BCS solution. Note, however, that the ILP state de-
scribed above is not superconducting. Although it can be
shown that T —U is a characteristic temperature of the
problem, it is not T, where the superconducting state
yields to the normal state. In fact, it is the temperature
where thermal fIuctuations break up pairs. Thus, in the
ILP state, which is stable for T, (T & T, we have a nor-
mal liquid of charged bosons, i.e., electron pairs. The ex-
istence of this remarkable state is the most striking
geature of the strong pairing alternative to the usual BCS
scenario.

To investigate the ILP state further, we have calculat-
ed the quasiparticle density of states

X(E)= ~' Im(6»(i, i—; —is+0+ }) .
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FIG. 3. The quasiparticle density of states as predicted by
the Hartree-Fock-Gor'kov (dashed line) and ILP (solid line) ap-
proximations for n = 1.

For U = —1.08'this is shown in Fig. 3 together with the
BCS density of states N (E). Evidently, the V s singu-
larity of N (s) has been smoothed out by the phase
fiuctuations but a definite gap remains. This is an exam-
ple of the general remark that a "pairing gap" need not
mean superconductivity. Strikingly, in the present case it
merely means a normal Quid of pairs. Note, moreover,
that the observation of this gap in the nonsuperconduct-
ing state would be an unequivocal experimental proof
that a system is is in the ILP state.

Given the above interpretation of the ILP state, it is in-
teresting to ask what fraction of the electrons can be said
to have turned into bosonic pairs. The answer to this
question turns out not to be altogether straightforward.
Clearly, the operators b;—:C;&C;~ and b, :—C, &C;& create
and annihilate pairs at the site i. Although both b; and
b; commute with b~ and b~ for i' as good bosonic
operators should, on the same site the commutator

[b;,b; ]=C;tC;t+C;iC;i —1 =8' —1 (61)

tion that, in the ILP state, the bosons form a normal
liquid. Moreover, it suggests that we take

2

N
U

dOb g b (64)

as the average number of pairs at the site i. Thus, in the
homogeneous ILP state, the average number of bosons
per site is

(65)

We have solved the fundamental equations of the ILP
state for a number of electrons per site n (band filling).
We show our results in Fig. 4 for U= —88'. The curve
for such a large

~
U~ perfectly fits the formula

'n(2— n)—.4 (66)

0.4

Number of Bosons

Thus, for small n using Eqs. (65) and (66), we find
N —=—,'n. Namely, in this dilute limit all the electrons are
bound into pairs. As n increases towards 1.0, X falls
below —,'n. We may interpret this behavior as the conse-
quence of repulsive interactions between the pairs on
neighboring sites. In other words, in the dense system
some electrons do not form pairs because the repulsion
between pairs outweighs the gain in pairing. The fact
that the pair-pair interaction appears to be repulsive is
reassuring since it is necessary for stabilizing a Bose-
Einstein condensate.

Another interesting feature of the N~ versus n curve in
Fig. 4 is its particle-hole symmetry. Evidently, for n & 1

it is the holes that are pairing and, hence, n -2 is the di-
lute hole-pairs limit.

In short, for large enough U~, pairing will occur at
T (T —

—,
'

~ U~ without Bose-Einstein condensation. In
the next section we begin our investigations of what hap-

takes on the bosonic value 1 only if the site is doubly oc-
cupied. For empty and singly occupied sites, b;, b,. do not
behave like bose creation and annihilation operators. In
fact, the operator

g b; b; = g C;)C, tC;iC;i (62)

03

0.2

TLP

HFG

merely counts the number of double occupied sites which
is finite even if there are no bound pairs.

On the other hand, the expectation values (b;t) and
(b; ) behave more in line with expectations. It follows
from Eq. (21) that, at T=O, (b, )=XI~ U~. Th.us, b/~ U~

may be interpreted as the order parameter of a conven-
tional Bose-Einstein condensate. In the ILP state,

(63)

Reassuringly, this result is consistent with our interpreta-

0.1

0.0
0.0 1.0

n (electrons}
2.0

FIG. 4. The number of bosons, N (6/U), as a function of
band filling n in the Hartree-Fock-Gor'kov (dashed-line) and
ILP (solid line) theories. Note the curves lie on top of one
another.
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pens when we lower the temperature towards T=O by a
comparative study of the BCS and ILP ground-state free
energies.

an
ap

=N(p)=ksT+ge " G (i, i;e„)
i, cr n

(67)

IV. THE PAIRING ENERGY OF THE BCS
AND THE ILP STATE

To begin, we note that, by integrating the Maxwell re-
lation

iO,.for a particular gap [b,oe '] and occupation number In, ]
configuration, we obtain the following general formula
for the grand potential Q(p):

ic,„5 $
Q, (p) = ——ge " —ln

P „2 i E„1 8 "—F

i e„1+8"F +-,' Ugn; (68)

where the quantities with a caret label matrices in the site
representation such as

H "=H; "=(E + 'Un;)fi, — r, —

b, =Re '5;J., and 1=5;i Iloll denotes the operation of
taking the determinant of the matrix o. In the normal
state the analogous grand potential is given by

lattice site

AQ = [Q, (p) —Q„(p) ]/JV, (71)

where JV is the number of lattice sites. For the BCS state,
0, =0 and n,. =n for all i and we find

(p) = ——ye "
[—,'lnll 0 (e„)II

&(p)= ——ge " »IliE„1—8""II+ gn, '.
13„" 2U (69) —

—,'Inllse„ 1 —8 ""II

Naturally, taking the derivative of Eq. (68) with respect
to p leads to Eq. (67). More interestingly, minimizing Eq.
(68) with respect to b, , yields the gap equation

+—,'lnllie„ 1+8""II)

2U
(72)

b, ,
= —U—ge "C,~(i, i;E„) (70)

which also follows from Eq. (31).
We shall be interested in the condensation energy per

where the Green's-function matrix C(c,„)is the appropri-
ate solution of Eq. (31). Converting the Matsubata sum
over n into a contour integration in the usual way, the
above expression reduces, for our model density of states,
to

&&Bcs(p, T)= k, T J—
' "' " '[(l&e'+l~'I —IEI)ikgT—(Wr2) —~ 8'

2U
(73)

For T =0, only the first term contributes and the integration can be carried out analytically. The result is

(p=O, T=O) = [1—+I+(41~1'tw)]+ & '8'
2 2 2 1

4 U 28
1+&1+(41a I'y w)

—1+&1+(41a I'yw )
(74)

for a half-filled band, i.e., p=0. Note that b, Q (p, T=O) in Eq. (74) has a minimum at b, give by Eq. (30) which is the
solution of the appropriate gap equation. In Fig. 5 we compare this result for b,Q (p=O, T=O) with the correspond-
ing quantity for the ILP state.

To find 0' we note that, for a fixed pairing field I b,oe' ] in place of Eq. (72), we have

bQ(p, T)= —2k&T+e "
[—,'lnllG '(e„)11+—,'lnlliE„l —8 "II ——'inllie„1+8 "II]— Ib,

l

n

We now rewrite G '(E„)using

G(E„)= G '(E„)+G '(e„)[ V —X(E„)]G(E„)

as follows:

(75)

(76)
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[G(e„)] '=[G'(e„)] ' —[(t—X(e„)]=[0'(e„)] '[1—0'(e„)[t —R(e )]J .

Then,

(77)

b, Q(p, T)=—

and, hence,

Xe " [-,'»ll(& ') 'll —l»lli&. 1 —& ""II——,'»Ili&. 1+&""II+-,'»ill — '(g —&)II]—
n

. (78)

b O'"P(p, , T)=5Q'(p, T)+ g f dO, P, (6, )b. Q(p, T, O, ),
l

where to simplify the notation we introduced

~Q'(»T)= 2k~TX' " 4»Ii[6'«. )] 'll —l»lli&. 1 —&""II—l»ilia. l+&""II]—
n

and

2k~ T
&Q(p, T, 6))= — ye "

—,'lnlll —6'(i, i;E„)[V(e,) —X'(e„)]ll .

(79)

(80)

(81)

Equation (79) is the principal result of the above discussion and is the basis of all the arguments to be deployed present-
ly.

In this section our interest focuses on the ILP state studied in Sec. III 3C. In this case, P;(8;)= I/2m for all i To.
simplify matters we also take the limit of a half-filled band @=0 and T=O. Then the sum over the Matsundera frequen-
cies in Eq. (79) becomes an integral over the real axis. Explicitly, for the square density of states used in Eq. (73), we
find

bQ (p=O, T=O)= fimp ~~& dE 1g, dz —ln 1—
—mr2 8' ' 2

X;,(z) 1+—ln 1—
z —(c,—p) 2

Xz2(z)

Z+6 —P

+ 'fdz—f "»Ill —G'(»[E(~) —X'(»]ll .
2 —~ 2' (82)

0.4

Total Energy

I LP

HFG-f

HFG-AF

0.0

We have evaluated this expression for a large number of
values for Z in Eq. (50) by using the contour, in the com-
plex energy plane, shown in Fig. 6. The results are com-
pared to EQ (p, =O, T=O) in Fig. 5.

Evidently even though the minimum of AQ'" occurs
at larger values of b, than the minimum of EQ, hQ "
is always above EQ . Thus, the ground state is the

Hartree-Fock-Gor'kov, i.e., the BCS ground state. How-
ever, at finite temperature we must associate extra entro-

py with the random phases in the ILP state and, hence,
eventually the ILP state will have the lower free energy.
In the next section we develop a method for determining
the temperature where this happens.

V. THE SUPERCONDUCTING TRANSITION
TEMPERATURE T,

We determine T, by finding the temperature at which
the ILP state becomes unstable to development of phase

Integration Contour

n(e)

-0.2

-0.4
0.0 1.0 2.0

FIG. 5. The ground-state energy of the Hartree-Fock-
Cxor'kov state (dashed line) and ILP state (solid line) and the an-
tiferrosuperconducting state (dot-dashed line) for U = —2.08'
and n =1.

W/2

Re(E)
%'/2

FIG. 6. The complex energy contour used to evaluate the
various energy integrals numerically.
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coherence between sites. The strategy is to consider a
small deviation 5P,.(8) from P, (8)=I/2' and calculate
the corresponding change in the average gap (5;(8))
self-consistently. The first temperature where there is a
(b,;(0))WO solution is the transition temperature. For
reasons which will be evident presently, we shall also al-
low the magnitude of the gap 6 to change with the devel-
opment of coherence described by 5P;(8). In short, we
consider two contributions: 6& and 62 to

(b,;(0))= f d0P(0)b, ;(8) .

Namely,

(83)

(84)

1 —pan, .~ e,. ~

l

(86)

where EA(0; ) is as given in Eq. (81) and Z, is the normal-
ization constant; for a more careful derivation see Ref.
26. Recall that, in the ILP state, bQ;(8;) was indepen-

1
dent of 0,. and, hence, P;(0)= for all i To lowe.st or-

der in the deviation from the ILP state,

where

b );=DO f d05P, (8)e'

f d85b, (8) '

27'

and hQ is the ILP gap.
In a sensible mean-field theory, the natural choice for

P, (6) is

X;2(i,i;c„)=g f d0 A, ,2(i,j;c„;0)5PJ(6)
J

+g f d8y, z(i,j; c„;8)55o J(8)
J

(92)

(1—/3b, J )b., —I3b, :-b,2=0,
U:-b, , +(1—M)62=0,

(93)

with a similar expression for X2,(i, i;c„), where A, , 2 and

y, 2 are a pair of linear response functions to be deter-
mined presently. By expanding both sides of the CPA
equation, Eq. (39), to lowest order in Xz, and using Eq.
(92), one can derive a set of Bethe-Salpeter-like equations
for the response functions defined in Eq. (92). Using
these the expansions of Eqs. (89) and (91) can be turned
into a set of self-consistency equations for 6, , and 62, .
In general, they describe an arbitrary inhomogeneous
perturbation about the ILP state. They can be readily
solved by taking the lattice Fourier transform of all the
relevant equations and the results describe the finite wave
vector, q, fluctuations about the ILP state. As an in-
teresting case, we have investigated the zone-boundary
(q =

—,
' K, where K is a reciprocal-lattice vector) fiuctua-

tions. If these have negative energy, the system would
have been unstable to a transition into an antiferrosuper-
conducting state where the order parameter takes on two
different values on two interpenetrating sublattices. We
study this interesting case briefly in Appendix C. Howev-
er, our present concern is with the homogeneous case
where 6&; =5& and Az; =62 for all i. In this limit, after
some lengthy but straightforward algebra, we find the fol-
lowing basic equations for 6, and A2..

5Z,
5P; (8; ) = — +P5b, A;(8; )

ZQ ZQ

where

(87)

where

iE„s 12 n
—X (c)

13 „X)(„c)[1 +X'„( „c)G))(i,i;c„)]
(94)

(95)

(560, (8, )) = f d0MA;(0) .

Thus,

5, ;
= —bo f d8550;(8)e'

2m

Similarly, we note that

(88)

(89)

(90)

M = —U—ge "
[
—X&2(c„)

+G»(i, i;c„)Gz~(i,i;c„)],

2)(c„)=[1+2»(i,i;c„)G»(i,i;c„)],
X [1+Xq2(i, i;c„)]622(i,i;c„)
—DOG

& &
(i,i;c„)Gzz (i,i;c„),

(96)

(97)

where the impurity Green s function G &2(i, i;c„)is given

by Eq. (76). Consequently,

and

X,2(c„)= f d k [G'„(k;c„)G~2(k; c„)

b2,. = — ge " d8 G,2(i, i;c„)e
277 'lT

n

(91) —G»(i, i;c„)G22(i,i;c„)] . (98)

We now expand the right-hand sides of Eqs. (89) and
(91) to lowest order in X;z(i, i;c„). In the ILP state, X&2
was zero. However, in the slightly coherent state, it is
given by (1 —I3, b, J)(1—M)+I3, Ub, :- =0 . (99)

Evidently, the ILP state becomes unstable to a lining up
of the local phases at the temperature kz T, = I /P„
where
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Consequently, the principal formal result of this section
1S

0.3
Transition Temperature

or

k T =Z'J —UZ'='(I —M)-', (100)
0.2

I LP

HFG

I I

HFG Transition Temperature

U=-
U»

I

0.0 2.0 4.0 6.0

FKx. 7. The temperature dependence of the Hartree-Fock-
Gor'kov gap for n = 1 and various values of the interaction con-
stant U.

[I—M(T=T, )]=0 .

Equation (99) depends on the temperature in two dis-
tinct ways. Firstly, there is the explicit factor P. This
comes from the temperature dependence of 5P;(8) and its
physical origin is the entropy associated with the random
phases of the pairing fields Ae' . The second kind of tem-
perature dependence is through the Matsubata frequen-
cies in the definitions of the response functions J, :-, M,
and Xiz given in Eqs. (94)—(96) and (98). This is due to
thermal excitations of electron-hole pairs. It turns out
that, at temperatures T—T„ the above entropy of
electron-hole pairs can be safely neglected. As evidence
for this, we show the solution of the BCS gap equation,
Eqs. (28) and (29) in Fig. 7 for various values of U. We
note, in anticipation of our results, that, for each U,
T, « Tnc, and, hence, b. ( T- T, ) is practically

(T=O). We took advantage of this fortunate cir-
cumstance and evaluated J, :-,M, D, and X&2 at T=O us-
ing the T =0, ILP state solution discussed in the previous
section. To do this we converted the Matsubata sums
into a contour integrals and evaluated them numerically
taking a su%ciently dense set of points to ensure conver-
gence.

We have calculated T, using Eq. (100) for a half-filled
band, n=1, for various values of U. The results are
shown in Fig. 8 together with T, . As expected, for
large enough

~ U~, the ILP state is stable to temperatures
much below T, . In fact, even at U= —1.0W T, is
small enough that the entropy contribution of the
electron-hole pairs is negligible. Further support for this
conclusion is provided by Fig. 2 where, for U= —1.0W,
the gap is -0.45 W and, hence, much larger than
k&T, -0.04Wat U= —1.0Win Fig. 8.

0.1

0.0
0.0 1.0 2.0 3.0 4.0

FIG. 8. The instability temperature T, of the ILP state (solid
line) and BCS state (dashed line) for n =1. This is our predic-
tion for the superconducting transition temperature.

In light of our discussion in the Introduction, it is also
a very satisfactory feature of Fig. 8 that T, decreases
with increasing U for

~
U~/W)) 1. In fact, analyzing our

numerical solutions, we find that, for ~U~/W))1, the
formula

1 W
U' (101)

fits them very well. This relation is, then, the principal
result of this section.

Remarkably, Eq. (101) displays the dependence of
k&T, on W /~ U~ we have anticipated in Sec. I on the
basis of Bose-Einstein condensation of bound pairs. The
central point is that the arguments leading to
kiiT, —W /~ U~ implied a large-~ U~ (~ U~/W)&1) expan-
sion. Hence, we may conclude that our method of ran-
dom fields successfully extrapolates between the small-

~ U~ BCS, and large-~ U~ ILP limits. Moreover, it does so
without transforming away, as other approaches do, the
naturally occurring electronic degrees of freedoms in
favor of pseudospins or e6'ective bosons.

The factor b, /U in Eq. (101) deserves several com-
ments. Firstly, in Sec. III C, we have interpreted it as the
number of bosons N~. For comparison, we recall that
Nozieres and Schmitt-Rink found

k T, =(II/'/IUI)X s"
in the large-

~ U~ and noninteracting Bose limit.
Robaszkiewicz et al. also found the same result by using
the effective spin Hamiltonian in Eq. (2) and the RPA ap-
proximation. Although near the half-filled band, n =1,
where the pairs are strongly interacting, we do not expect
the free-boson factor N z, in the dilute limit the lack of
such behavior must be considered as a shortcoming of the
theory. We speculate that our calculation does not repro-
duce this result because we have neglected the charge and
spin fl.uctuations in our application of the method of ran-
dom fields. We shall remedy this omission in a future
publication.

As our second comment, we observe that the above
dependence of k~ T, on the band filling n, via Eq. (66), is
the same as that of ABcs/U, where A~cs is given in Eq.
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(30). This fact can be readily understood by noting that,
for large

~
U~ [( W/~ U~ && 1)], the amplitude of the pairing

field b,(9)=he' does not fluctuate much in the ILP state
and, hence, it takes on a value very close to that of the
Hartree-Fock-Gor'kov solution. This behavior is analo-
gous to the U dependence of 6 displayed in Fig. 2. In
other words, for the strong pairing force, the amplitude
of the pairing field, and hence the number of pairs, does
not depend much on the state of intersite phase coher-
ence of the pairing field.

Thirdly, we note that the above situation arises be-
cause, for W/~U~ &&1, the J term dominates on the
right-hand side of Eq. (100). This is understandable be-
cause J can be shown to be a response function related to
phase-phase correlations. In our calculations, when
W/~ U~ increases to unity and beyond, the second term,
which is due to amplitude fluctuations, becomes compa-
rable to the first [(1—M) becomes sinall]. Also, in this
regime Eq. (66) no longer holds. In fact, as the rise of T,
in Fig. 8 shows, the system appears to undergo a transi-
tion as a function of

~
U~/W. The physics of this transi-

tion is most interesting: the number of bound pairs in the
normal state is decreasing and their role in forming the
condensate is taken over by Cooper pairs. Somewhat
surprisingly, when this happens T, rises. Clearly, the
maximum T, in this model is governed by the balance of
these competing processes.

By bound pairs we mean pairs of electrons which
would bind even if there were only two electrons on the
entire lattice. On the other hand, Cooper pairs form only
with the help of the exclusion principle. Evidently, when
a bound pair forms on a site there is a gain of U in poten-
tial energy. However, there is a loss in kinetic energy.
To estimate this, we note that, for large U~ (&t), the
effective hopping integral for a pair is 2t X t /U; z times
this is the kinetic energy of a bound pair, which can be
contrasted to 2tz, the kinetic energy of two independent
pairs. More generally, in the strongly attractive limit,

~ U~ &&zt, we have bound pairs, but for
~
U~ &&r, a lone

pair of electrons would not bind in three dimensions.
Consequently, for

~
U &&zt, pairs form only by the Coop-

er mechanism as in the BCS theory. Clearly, the transi-
tion from the former of these regimes to the latter is the
physics behind the phase transition noted to take place
near

~ U~ zt = W. I-nterestingly, from this point of view,
the case of two dimensions is rather special and is attract-
ing considerable attention.

To highlight the intricate process at work, we note
that, near the critical value of

~ U, ~/W, the amplitude b,

is rapidly collapsing in the ILP state. This is demonstrat-
ed in Fig. 2. Evidently, this is the consequence of the fact
that the attractive force described by U is losing its abili-
ty to bind. Thus, the number of pairs which exist in the
ILP state prior to condensation is rapidly decreasing.
Nevertheless, as noted above, at the same time as 6 falls,

AT, rises rapidly, due to the second term in Eq. (100),
towards the kz T, value.

This implies that exclusion-principle-assisted Cooper
pairs are formed to compensate for the losses of real
pairs. It may be helpful to observe that the above process

is rather analogous to the formation of magnetic mo-
ments in metals. In good moment systems, like Fe, local
moments exist below and above the Curie temperature
and they are about the same size whether they are lined
up or not. By contrast in highly itinerant metals, like Ni
or Cr, moments seem to exist only if assisted by long-
range order.

VI. CONCLUSIONS

We have studied pairing, condensation, and supercon-
ductivity using a one-band Hubbard model with an at-
tractive interaction between the electrons. It may be
helpful if we began our summary by recapitulating the
physical picture in the strong-coupling limit. Within the
framework described by the Hamiltonian given in Eq. (1),
for

~ g & zt the single occupied sites can be eliminated
and the model becomes that of interacting bosons hop-
ping from site to site with the probability amplitude
2t /U . Evidently, the state of such a system may be
gas, liquid, superAuid, or crystalline. Although the corre-
sponding phase diagram has been studied in some detail
by Micnas et al. ,

' even here there are many open ques-
tions. Of particular interest is the relative stability of the
highly quantum crystalline state and the superAuid phase.
This problem is especially intriguing in two dimensions
where both phases are subject to the Kosterlitz-Thouless
analysis.

In the present work, our aim was to develop a theory
which, while retaining the language of the electronic de-
grees of freedom in the spirit of the BCS theory, is able to
describe the strong-coupling regime where, hitherto, only
effective boson or pseudo-spin Hamiltonians could be
used. The approximation scheme we have proposed con-
sists of applying the method of random fields in conjunc-
tion with the Gor'kov decoupling procedure. When fully
implemented, including charge, spin as well as pairing
field fIuctuations, it has been designed to treat all the
phases we have mentioned above within what might be
called a mean-field approximation. To illustrate the
method we have treated the pairing field Auctuations
only. This restricted the applicability of our actual calcu-
lations to a study of the normal metal to superconductor
phase transition. Our principle results are summarized in
Eq. (100). We argued that they are consistent with the
notion that this phase transition is equivalent to a normal
Bose liquid to superAuid transition of bound electron
pairs.

Of course, for
~

U~ &&zt = W, the theory reduces to the
BCS predictions for the present model. These are given,
for reference, in Eqs. (30) and (74).

Finally, our most interesting results concern the inter-
mediate regime

~ U~ -zt = W. Here, our theory describes
the transition from bound pairs to Cooper pairs as

~ U~

approaches 8 from above. This transition is depicted in
Fig. 8 near

~
U~ ——1.0W. Also, in Eq. (100) it corre-

sponds to k~T, being doininated by J for ~U~ &&W.
While near

~ U~ —W, the main contribution is due to M
being close to unity in the second term. The response
function J describes site-to-site phase coherence of the
pairing field. We have interpreted the development of
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Let us rewrite the Hubbard Hamiltonian in Eq. (1) as
follows:

H= T)+ T2+T3+T+ V4 (A 1)

where

T)= g tj(1—&; )C; C (1—R' ),
t,j , o.

T, = g t,,(1—
&, )C, C, .R,

T3= gt, 6', C; C (1—n. ; ),

T4 = g t(j R(, aC( , aCJ', aRJ', —~— '

such coherence as an indication that the Bose-Einstein
condensation of preexisting pairs is taking place. As

~
U~

approaches 8, such pairs no longer form. This is sig-
naled by the collapse of the gap amplitude 6 in the ILP
state shown in Fig. 2. As 6'" goes to zero, 6 J goes to
zero. It is the strength of the theory that, when this hap-
pens, Eq. (100) still describes k?) T, but now the second
term, which corresponds to the production of Cooper
pairs, dominates. As usual, such pairs condense when
they are formed and k&T, recovers its BCS value. Thus,
the theory interpolates smoothly between the two ex-
tremes.

Although the present theory may not be the final word
on the nature of this crossover, for instance, taking fully
into account the thermal fluctuations of electron-hole
pairs would smooth out the sharp rise in Fig. 8, it
highlights the significance of working with electronic
variables if we are to identify the competing physical pro-
cesses in the crossover regime. Evidently, it is in this re-
gime that the maximum T, is determined.

In conclusion, we wish to comment on the relevance of
the negative-U Hubbard model to high-temperature su-
perconductivity. Clearly, the model we studied is too
simple to describe the chemically derived picture of Wil-
son or the bipolaron mechanism of Alexandrov et al. '

However, such qualitative features as the existence of bo-
sonic pairs above T, and their competition with Cooper
pairing must be a generic feature of any model with
strong local pairing correlations. Thus, it is sensible to
think about experiments which would identify such pairs
in the normal state. For instance, if the pairs are singlets,
their existence in the normal state implies a reduction of
the local susceptibility. This e6'ect may show up in NMR
experiments. Indeed, some evidence that it does already
has been reported.
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APPENDIX A: EFFECTIVE HAMILTONIANS

To lowest order in s we find

H, tt =H+i [S,H ]+ .

= T] + T2+ T3+ T4+ V

+i [S„T,]+i[S,, T? ]+i[S„T3]
+i[S;,T~]+i[S„V] . (A3)

Let us chose the, hitherto, arbitrary operator S such that

T?+ T3+i[S,V] =0 . (A4)

Using the original form of H, given in Eqs. (Al) and (A2),
it is easy to show that Eq. (A4) implies that

S= ——(T? —T3) .l

U
(A5)

where T;, =4t; I[(U(..
(ii) For U = —

~
U~ in the subspace of no singly occupied

sites,

H,s= —gJ; (S;+S; SSj') B—g(2S;+—'),

where T; =4t,jI(U~, .8=)Lt —so+ —,'~ U~, and S =
—,'(R; —1)

with O'; =8';&+6;&.

APPENDIX B

In this appendix we describe a very efficient iteration
scheme for solving the CPA equation, Eq. (51), in the
discretized form

yS (e)D("=1.
0

Using Eq. (49), it is straightforward to rewrite this as

yS (0)X',"=0,
0

where

X (())—[(y V(()))—1 Gc]—1

Note now that
—yp(g)~(()) [(y n y n+1) —1 Gc(y n)]

—1

0

is solved when X,"=X,"+', where X", and X,"+' are the
self-energy at the end of the nth and (n+1)th iteration.
Finally, we recast the above form into the following rela-
tion:

y n y n+1+ [L
—1 Gc(y n)]

Substituting this result into Eq. (A3) we find the follow-
ing.

(i) For U=
~ U~ in the subspace of no doubly occupied

sites,

H,tt=T, + V+gJ;j(S; Sj.——„'),

V= —,
' UQR'; R;.

l, CJ

and study its canonical transform
H =e' Heeff

We iterate the above recursion relation numerically start-
ing with the average-t-matrix approximation (ATA) for
X„i.e.,

y g=P —
GRATA—C
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where the self-energy X was generated from the aver-
aged t matrix,

tATA —yp(g)(~ y(6)G )y(8)
0

and the relation
GRATA (

—) +6 )
—}

X

APPENDIX C.
ANTIFERROSUPKRCONDUCTIVITY

For simplicity consider two interpenetrating "lattices"
as shown in Fig. 9. Assuming that the gap 6 takes on
different values, 6& and 6&&, respectively, on the two sub-
lattices the finite-temperature Gor'kov equation is given
by

FIG. 9. The two interpenetrating sublattices of the antiferro-
superconductivity considered in Appendix C.
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FIG. &0. A comparison of the ground-state energies of the ferromagnetic (dashed line) and antiferromagnetic (dot-dashed line) su-
perconducting states as functions of the gap 5 for n = 1.
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This leads to the coupled gap equations

k, n

Although the antiferrosuperconducting gap 6 " always
works out to be greater than 5" for the same U and inter-
sublattice hopping integral t, the latter state has lower en-
ergy. Explicitly, we find the condensation energies to be

b.„=——Qe " Gz; (k, ic„) . ,

k, n

Surprisingly, as well as the conventional case of h&=A»,
the above equations also have a solution for Ai= —6».
In analogy with the terminology of ferroelectricity and
antiferroelectricity, we shall refer to the cases
5,. =5II=6" and hi =5 I

=6 " as ferro- and antiferrosu-
perconductivity, respectively. The possibility of this
latter solution has been noted by Allen.

Proceeding in the usual manner, we find for T=O that

b,"=—Ub, "Q 1

4+[Eo+t(k)] + b,
i

and

OAF UgAFy 1

for a normal-state dispersion relation sz =Eo—t cos(ka).
We have evaluated these expressions for various values of
U. The results are shown in Fig. 10. Evidently,
5E"&6E for all U. Thus, we conclude that the anti-
ferrosuperconduting soluting corresponds to a metastable
state. Whether the same could be said in cases of more
general models remains to be investigated.
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