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We have investigated the t Jm-odel and its variants using the string basis (of Shraiman, Siggia,
Emery, aud LirL) and the hopping basis (of Trugman); both bases are generated by the hopping term
in the Hamiltonian applied repeatedly to the Neel state with a single hole. For the string basis,
states to order t are treated exactly, so that the Green function is obtained to order t; the tree
approximation (of Brinkman and Rice) is used for the remainder. The hopping basis, which relaxes
constraints imposed in the string basis, contains all states generated by up to eight hops. Properties
studied include the wave function, the ground-state energy, the effective mass, the bandwidth, the
spectral function, the self-energy, and the density of states. For the U = oo model, there are no
quasiparticles; the ferromagnetic polaron is missed. For the t- J model, both the string and hopping
bases provide excellent results for J ) 0.1t. The Ising limit of the t-J model is treated well by the
string basis, but the Heisenberg limit J& = J requires the hopping basis, which gives apparently
good results for all J ) 0.14. The mass is highly anisotropic; for example, at J=0.4t the masses
parallel and perpendicular to the magnetic zone face are m~~ = 20.4m and m~ ——2.1m.

I. INTRODUCTION

The high-temperature superconductors now number
over a dozen compounds, all containing the Cu-02 planes
of the original material. Anderson has maintained from
the beginning, and has recently argued forcefully, that
these are highly correlated systems whose understanding
requires the solution of the two-dimensional, single-band
Hubbard model: "tA'e must solve the old problem of dop-
ing a single Mott-Hubbard band before we can begin the
problem of high T, ." The transition from antiferromag-
netic insulator to superconductor on doping the parent
compounds La2Cu04 and YBa2CusOs, and the observa-
tion of short-range antiferromagnetic order in supercon-
ducting material above its transition temperature are
certainly not at variance with this approach.

The Hubbard model has been studied for many years;
recent, attention has focused on its large-U limit, the t-
J model, which reduces to the antiferromagnetic, spin-&
Heisenberg model at half filling. The ground state of the
latter has been established by many workers (conclusively
by Liang ) to be a. Neel state (with the staggered mag-
netization reduced to about 60% of the classical value by
quantum fluctuations); numerical techniques and results
are reviewed by Barnes. The Neel state is then a nat-
ural starting point for a numerical investigation of hole
motion.

The string of bad bonds generated by hole motion in
an antiferromagnet figures prominently in many papers;
perhaps-' t, he earliest treatment is by Bulaevskii et al. ,

who argued that the hole is trapped in a linear potential
(in the continuum limit). Brinkrnan and Rice consid-
ered the J = 0 limit, and summed the retracing paths to
all orders. The string basis was proposed by Shraiman
and Siggia o (who treated the case of nonzero J), and
an analytical Lanczos procedure for generating the ba-

sis was devised by Emery and I,in; the basis has been
used also in other. papers. 2 ~ In an important advance,
Trugman showed that certain paths in a Neel antifer-
romagnet displace the hole (by ~2a or 2a) to sites on
the same sublattice, leaving the Neel background undis-
turbed; that is, the hole is not trapped (but it must pass
through a barrier ' ). The string idea is used in a di-
agrammatic approach, 5 and it can be extended to two-
hole states~ to examine the possible binding of a pair
of holes. rs Closely related to the string basis is the hop-
ping basis suggested by Trugman; both bases use the
states generated by the hopping term in the Hamiltonian
starting (usually) from the Neel state with a single hole.

The string idea is most useful in the Ising limit of the
t-J model, when the hopping time scale is much shorter
than the time scale for spin Hips (which repair the dam-
age to the Neel background done by the hole as it moves
through the lattice). Recent numerical work has sug-
gested, however, that the idea may prove useful in the
Heisenberg limit: the spectral function (obtained from
Lanczos calculations on 4x4 systems and from diag-
onalization of the Hamiltonian in the hopping basis )
shows quasiparticle peaks that suggest stringlike excita-
tions; also, t, he ground-st, ate energy has power-law depen-
dence on J/t, with an exponent, about 10'%%uo larger than
the value 3 for strings.

The string and hopping bases have several advantages
over exact, -diagonalization studies (wluch have provided
much of the current understanding of the t Jmodel). (-i)
EAectively infinite systems can be treated, eliminating
finite-size effects (particularly unphysical interference ef-
fects due to periodic boundary conditions); little is known
of the finite-size eA'ects inherent to exact-diagonalization
studies on small lattices (typically 4 x 4)—these effects
could be important, in view of arguments for a long-
range, dipolar spin distortion around the hole. (ii)
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All momenta can be studied (rather than just a few),
and the effective (band) mass is easily obtained. (iii)
The degeneracy of the momenta (ir, 0) and (z./2, 7r/2)
found in 4 x 4 calculations is lifted in the larger systems
(if enough states are included). (iv) The computational
effort is concentrated on determining the structure in the
immediate vicinity of the hole, rather than in attempting
to find the structure of the entire system, the structure
far from the hole being of no import for hole proper-
ties. (v) The infinite system allows the broken symme-
try; a minor consequence is that the momenta (0,0) and
(ir, ir) are degenerate (unlike finite-system results). On
the other hand, the hopping term in the Hamiltonian is
inefFicient in generating spin flips (particularly flips far
from the hole).

This paper uses the string and hopping bases to study
a single hole in the f, Jmode-l and its variants. Section II
describes the Lanczos procedure of Emery and Linii for
generating the string basis (and our implementation of
it), and also the hopping basis. i4 i7 Sections III, IV, and
V present results for the U = oo, t, J, , an-d t, Jmod-els,
respectively, and Sec. VI discusses the results.

string of misaligned spina. In the Lanczos procedure of
Emery and Lin, " the string state in+ 1) (of length n+ 1)
is generated by applying Hi to the previous state ln):

I»+1) =Hil») —~ I») —I I» —1)

H& is tridiagonal in this basis, which is orthogonal and
easily normalized. (For an infinite lattice, a„= 0 since
the hole is on different sublattices in strings ln) and
ln+ 1), but for finite lattices a„can be nonzero. )

For calculational convenience we have not worked di-
rectly in the Lanczos basis but rather in a basis with no
backward steps (no immediate returns to previous con-
figurations). The states are generated as follows:

in+ 1) = H, ln) —b„l» —1),
where b„= —4$ if n = 1, and —3t if n ) 1; the number of
components of ln) is (4)3" i for n ) 1. The second (6„)
term assures that only forward steps are taken; unlike the
states ln + 1) and ln —1), the states ln+ 1) and ln —1)
have no trivial overlaps. Note that the loop graphs are
included. The Lanczos basis vectors of Emery and Lin~

are linear combinations of our ln) states:

II. STRING AND HOPPINC BASES

The t-1 Hamiltonian~ is H = Hq + H, + H~ where

Hi — t) —(ct c~~ + H.c.),
(ij+0

(2)

H, =,' ) (s+s; s;s+);
(ijp

in the t-J model proper, the coupling constants J, and
J~ are identical and equal to 4g /U2. In the hopping
term, c; = c; (1 —n, )to prevent -double occupancy.
The above orrrits several terms: (i) three-site terms (stud-
ied by Trugrnani7 and others) which arise in the canon-
ical transformation from the Hubbard model to the t-J
model; (ii) the term —(J/4) P&, & n, n~ (which merely
adjusts the zero of energy for the one-hole states we con-
sider); and (iii) a direct next-nearest-neighbor hopping
term (corresponding to oxygen-oxygen hopping in the
Cu-02 planes). The parameters t and J are not known
precisely, but it is believed that J is in the range 0.1t—
0.54, so that truncation of t, he canonical transformation
at order t2/U is likely adequate.

The starting state for the string basis is the Bloch state
of a single hole in a Neel antiferromagnet; this state is
defined to be the string state of length 0:

1
10) = ) e'" "'&., cot l@N;,i),

n = e~» rn
»=0

the coe%cients e„» can be determined recursively from
Eq. (5).

The matrix elements of H, and H~ are easily found;
the Appendix gives the leading matrix elements for the
three terms in H. Note that H is not tridiagonal when
the terms H, and H~ are included. In particular, H, is
not diagonal in the string basis; although each compo-
nent of a given string state ln) is an eigenstate of H, ,

the components have different Ising energies in general.
Calculations can be done for any size lattice and we have
results for lattices from 4 x 4 to 12 x 12. The latter is
effectively infinite since we treat strings up to length 10;
that is, we have determined the states ln) for n = 0 to
n = 10 inclusive. AVe have evaluated analytically the ma-
trix elements of H& and H, for strings up to length 10
and the matrix elements of H~ up to length 9.

For an infinite lattice, the matrix elements can be de-
termined in the limit of very long strings. As Brinkman
and Rice have noted, for very long strings only the re-
tracing paths (tree graphs) with no closed loops need
be retained; other paths which also leave the spin back-
ground undisturbed are a negligibly small fraction of the
total. In this retracing-path or tree approximation, the
(n + 1)th string has three times more components than
the nth. These st, rings (which have no closed loops)
asymptotically find themselves in a linear potential gen-
erated by the Ising term in the Hamiltonian. Finally, the
spin-flip term connects ln) with ln + 2). The limiting
values (in the normalized Lanczos basis) are

where N is the number of sites, T is the translation op-
erator, l@Ng,i) is the Neel state, and cot destroys a down-
spin electron at the origin. As the hole hops in the Neel
background under the action of H&, it leaves behind a

lim (»IH~I»+1) = -v3&,

lim (nlH, ln) = (n, + 1/2) J, ,

(Sa)

(8b)
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lim {nlH~ ln + 2} = D(Q) j~/2. (8c)

Equation (Sa) is due to Brinkman and Rice, 9 and Eqs.
(8b) and (8c) to Emery and Lin; as in Ref. 11, D(Q)
is

D(Q) = cos Q + cos Q„+ cos Q cos Q„.

Because we are working with an antiferromagnetic back-
gound, the spatial periodicity is doubled, and we use the
magnetic reciprocal-lattice vectors Q = I- + kv and
Q& —— k~ —k&. We treated the first ll (n = 0 — 10
inclusive) string states exactly, and then included the
above asymptotic matrix elements up to length several
hundred.

When the spin-Rip terms in the Ikamiltonian are not
important, the ground-state wave function is composed
of only a few short strings, for a wide range of parame-
ters. When the spin Qips are important, , the ground-state
energy (which we measure relative to the Neel state) is
unreliable but quantities (such as the bandwidth, the ef-
fective masses, etc.) depending on energy differences are
more accurately evaluated. But the string basis, which
has s-wave symmetry, cannot treat properly the Heisen-
berg limit (J~ ——J, ) of the t-J model. To treat this
limit, it is important to relax the constraints on the com-
ponents of a string state by using instead the hopping
basis ~4 ~

The difference between the string and hopping bases is
illustrated by considering the string basis to order 2. This
has 17 diferent components (or spin configurations), but
only three states: the Neel state with a single hole has
one coeKcient, the four components in order 1 a second,
and the 12 components in order 2 a third. One sees that
the string basis involves diagonalizing a smaller matrix,
but has s-wave symmetry, and therefore treats improp-
erly states with momentuin diferent from (0,0), even in
order 1. Further, there is no symmetry reason, even for
momentum (0,0), for the 12 order-2 states to have the
same coefIIcient. That is, the string basis places unrea-
sonable constraints on the states, as noted previously.
In the hopping basis, on the other hand, the 17 spin con-
figurations to order 2 are allowed to have different coef-
ficients. Carried to completion, the hopping basis spans
the Hilbert space for dimension d & 2 (but not for d = 1).

We generated the hopping basis by applying the hop-
ping term H& repeatedly to t, he Neel state with a single
hole. The ground state was found by diagonalizing the
full Hamiltonian in the basis of states generated by up to
eight hops, a total of 9786 distinct, states; previous work
used smaller bases. The method is a variant of that of
Trugman, ' who included also states generated by the
three-site hopping term, and has been used also by Inoue
and Maekawa. 22

Since the hopping basis treats each spin configuration
as independent, it can treat the Heisenberg limit and
states of symmetry other than s wave; on the other hand,
it is limited to a smaller number of hops (eight in our case
versus ten for the string basis), and it cannot be extended
to infinite order by the tree approximation. The two
methods are competitive for the t- J, model at moderate

values of J, /t(& 0.1); the string method fails for the
t J-model (with J~ = J,), whereas the hopping basis
appears to give good results for J & O. lt (even for J & t,
which is outside both the physical region and the region
of validity of the model).

A Green function is defined by

G(k, ~) = —) e'" t" "lG, (~)

with

Gv(~) = {il(~ —H) 'I~}.

Here li} = T, cptlgN;, ~} represents a hole at site i in an
otherwise Neel background. As defined, the function is
useful only for the J=O and t J, mo-dels; to treat the t J-
model, we would require the ground state of the Heisen-
berg model (otherwise the spectrum would be dominated
by the excitations of the antiferromagnet, not those of the
hole). Since the Taylor series in H/~ converges only for

& zt (z is the coordination number of the lattice),
we use instead a continued-fraction representation. The
Green function is split into dispersionless and dispersive
contributions:

G(k, ~) = G, ;(~) + ) e'" Gg(~), (12)

where 6 = r; —r&. The spectral-density function is

1
A (k, cu) = ——Im G(k, ~ + i~);

in principle e = 0+, but nonzero e is useful in plotting
results.

III. U = oo MODEL

This section studies the properties of a single hole in
the t Jmodel a-t J = 0 (V = oo). Of course the ground
state of a single hole at U = oo is ferromagnetic2s (the
momentum is k = (vr, x) in a 4 x 4 Lanczos calculation).
Our study of a hole hopping in an antiferromagnetic
background is intended to lay a basis for understanding
the t J, and t J-models of-Secs. IV and V.

The J = 0 limit of the t-J model was examined by
Brinkman and Rice, who enumerated paths and noted
the existence of closed paths which restore the Neel back-
ground and return the hole to its original position; the
shortest such loop runs three times around a plaquette.
In the tree approximation (which sums the retracing
paths to all orders), the Green function is dispersionless,
and the band mass infinite. The site-diagonal term G;, in
Eq. (12) has been evaluated using a moment expan-
sion and also analyt, ically including only retracing paths.
The bandwidth (a misleading term since quasiparticles
do not, exist in the tree approximation, and the band
mass is infinite) is approximately 4~3t (versus St for a
ferromagnetic background); Brinkman and Rice argued
that exponentially small band tails continue to +48.

Subsequently, Trugman pointed out paths which also
restore the Neel background, but displace the hole by
~2a or 2a to a point on the same sublattice; the shortest
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1/m,' = 0 E/c)I;, gk&) is isotropic and close to twice the
bare mass m = 1/(2/): rn" = 2.087m.

Inclusion of the Trugman paths makes a major mod-
i6cation to the wave function, If only the tree graphs
(retracing paths) are included, the average string length
diverges as longer walks are taken. The wave function
is extended also in the string basis, when the maximum
string length is 5 or less; but there is an abrupt transition
to an apparently localized wave function at string length
6, when the wave function includes the shortest Trugman
path. Beyond length 6, the average string length remains
finite. Figure 2 shows the amplitude of the wave func-
t, ion (which is exponential at large string lengths). The
plot is qualitative only (convergence is not obtained even
at, string length 10); we caution that the validity of the
string basis is doubtful at such large lengths.

IV. i-Jz MODEL

The Ising term H, in the Hamiltonian acts to con-
fine the hole, and the string basis can be truncated
at reasonable size even when J, is small, the truncation
becoming more accurate with increasing J, . The wave
functions are plotted in Fig. 2; for J, ( 0.11, the wave
function depends significantly on the order of the approx-
imation (the number of string states treated exactly),
but we expect our string calculation (which includes all
loop processes to order t ) to be reasonably accurate for
J, ) 0.1t. The analytical calculation of 3ohnson e] al.
includes only the leadiiig loop path (of order I, ) and is
likely good down to J, = 0.2$. But our string calculation
still misses the ferromagnetic tendency for very small J, .

Figure 3 plots the ground-state energy as a function of
J„and also the second-order perturbation theory result
—8fz/3 j, and the following fit in the range O. lt & J, (

0.8$ (with the exponent constrained to the continuum-
theory valueio 2s): (E+j,)/f = —3.580+2.860(j,/t) /

[The energy offset of j,/5 is due to our definition of the
reference state as ~0) (the Neel state with a hole), rather
than the Neel state as in other work. io ~s] The above co-
efficients are comparable with the values (—3.464,2.74)
of Shraiman and Siggia (whose string basis included
only retracing paths) and with the Monte Carlo values~s

(—3.63,2.93). As seen from Table I, the ground-state
energies obtained by three diA'erent methods, Monte
Carlo (adjusted for the diA'erent energy zero), string
basis, and hopping basis, agree well for J, & 02k;
4 x 4 Lanczos results (from independent calculations) give
much the same results. The hopping energies are slightly
better for J, ) 0.17t (approximately), when the average
string length is small (because of the greater freedom in
the coefIicients), but the string energies are better for
J, ( 0.17$ because the string calculation includes more
hops and uses the tree approximation to extend the re-
sults. For J, ~ 0.1t, the 8 x 8 Mont, e Carlo values suAer
from finite-size effects (see Fig. 2 of Barnes ef al. 2e); the
departure from (J,jf) / behavior in this region is not
a ferromagnetic tendency —the ferromagnetic polaron,
with energy E 4t + 8—.5(j,t) /, starts to form atio
J, =5x10

For all J, , the energy minimum is at k=(0,0) and
the maximum at k=(+, 0). Figure 4 plots the disper-
sion relation over the Brillouin zone; the correspond-
ing density of states shows a logarithmic singularity in
the middle of the band due to saddle points at the A
points (+x/2, kx/2). These results are similar to those
for the ferromagnet, but rotated by x/4 to the mag-
netic Brillouin zone; perturbation theory in the large-
J, limit gives the leading momentum-dependent term as

TABLE I. Comparison of Monte Carlo (Ref. 26), string-
basis and hopping-basis results for the ground-state energy
of the t- J model. The Monte Carlo systems were of size
8 x 8 for J,/t & 1.5 and 6 x 6 for J, /t & 1.5; energies without
error estimates have undetermined systematic errors. The last
column gives the average string length & I ) (as determined
by the string method).

—4 ~ i ~:, I, ~ I s l c i ~ i I i s s ~ 1 I I I ~

0 2 3

FiG. 3. Ground-state energy of the t- 1 model compared
to large- J perturbation theory and the continuum theory
(Ref. 10).

0
0.01
0,02
0,05
0.1
0.2
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0

Monte Carlo

3+71
—3.47
—3.29
—3.10

—2.830 + 0.007
—2.444 + 0.008
—2.142 + 0.008
—1.903 6 0.011
—1.706 + 0.006
—1.359 + 0.010
-1.113+ 0.004
—0.946 + 0.006
—0.811 + 0.002

String
basis

—3.4940
—3.4280
—3.3742
—3.2429
—3.0741
—2.8152
—2.4298
-2.1380
—1.9053
—1.7144
—1.3596
—1.1164
-0,9414
-0.8107

Hopping
basis

—3.3940
—3.3573
—3.3216
—3.2205
—3.0694
—2.8169
—2,4315
—2.1391
—1.9060
—1.7148
—1.3597
—1.1164
—0.9414
—0.8107

8.56
6.30
5.40
3.91
2.80
1.95
1 ~ 31
0.98
0.77
0.63
0.40
0.28
0.20
0.15
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ky

0

itatively except at very small J, (where the string re-
sults are invalid; but, in contrast to many calculations,
the string bandwidth does not vanish at j, = 0). The
string results agree reasonably well with those of John-
son et ar. , who have, however, questioned the peak in
the bandwidth (the peak appears to be real in our cal-
culations). The large-J, fit to the bandwidth has the
form W = Aexp[ —B(j,jt) / ], which arises naturally
from tunneling through the triangular barrier [see Fig.
3(b) of Trugman "] generated by the Ising term H, as
the hole loops 1& times around a plaquette. In rough
agreement with Johnson et al. ,

~ we find A=3.158 and

0.3

0
kx

(a)

FIG. 4. Contour plot (interval 0.01) of the dispersion rela-
tion for the lowest quasiparticle in the t- J model at J = 0.41;
-~&I; k 7I. The minimum is at the origin and the max-
imum at (7r, 0); the saddle point is at (+z/2, +z./2), on the
magnetic zone boundary (dashed lines).

oc (t / j, )(cos Q + cos q&), due to the Trugman paths,
which is like the ferromagnetic result with k ~ Q.

Figure 5 compares the bandwidth W = E(x, 0)—
E(0, 0) in our string calculation (the hopping-basis band-
width is about IFo smaller) with the exact (Lanczos)
bandwidth for a 4 x 4 system. The results agree qual-

0.1—

0-6

0.25 I I I I I I
I I I I I

ly

I
I

l
\/

-/ \

0.15—

length 10

exact 4 x 4 —-----
(b)

I
I

I
I

I
I n

v=0.05

0.10 0 -""

0.05

0 ~ ~ t ~ I t s ~ I I

0 0.5 2.0
e I I I 'a|.5 2.0

/
/

/
/

I I I I I

0
u&/t

I

8 4

FIG. 6. Spectral function (a) and self-energy (b) far the t
J~ madel at J~=0.05t and k = (0, 0). Strings up ta length 10
are treated exactly, and strings of length ll —250 in the tree
approximation; the functions are unchanged to higher order
in the tree approximation —that is, the fine structure is not
due to trunca. tion at length 250.

FIG. 5. Bandwidth W = E(7r, 0) —E(0, 0) of the tJ-
model. The string basis (solid line) gives results in reasonable
agreement with those of johnson et ul. (Ref. 15), but there
are differences at small J~. The exact-diagona}ization result
for a 4 x 4 system (dashed line) also shows a peak. The
dotted line is a fit, to the large- J, result (Ref. 15) far tunneling
through a triangular barrier.
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state wave function and energy to second order in 1/J,
(obtained by diagonalizing H in the basis I0), Il), and I2)
for J, )) t, J~) are

—2.20

—2.40—

I») = Io)+ 11)+
4t (8~3 t2 2D(&)J~

5~3J, )
(14)

L —2,80

o.=0.00 "..... .". -

cx—0 25--------
a=1.00

The second term on the right-hand side of Eq. (15) is
responsible for the incorrect behavior when J, ) t, and
o. = 4, The hopping basis corrects this unphysical be-
havior; for large J, the bandwidth falls off as t /J in
agreement with perturbation theory and in contrast to
4 x 4 Lanczos results (see the discussion in Ref. 29).

Figure 8 gives a contour plot of the dispersion relation
for J, = 0.4t and J~ ——O.lt; the minimum is at k =
(x/2, 7r/2) for these values. Figure 9 plots the energy
along the high-symmetry directions for J, = 0.4t and
three values of a. The density of states for J, = 0.4t
and J~ ——0.11 is shown in Fig. 10; in addition to the
logarithmic singularity (from the saddle points) and the
discontinuities at the lower and upper energies, there is
a discontinuity due to the local 111aximum at (7r, 0) (seen
clearly in Fig. 9). With increasing n, the region around
(vr, 0) becomes flatter, the discontinuity in the density of
states disappears, and the logarithmic singularity moves
from the center of the band (for the t J, model) -toward
the discontinuity at the lower band edge. That is, the
density of states seems to be evolving to a form similar
to that for the lower band in the commensurate spin-
density wave at zero doping in the Hubbard model. These
results are similar to other numerical work. 3 The average

—3.00

—3.20

—3.40

I"IG. 9. Dispersion relation of the t- J madel for J =0.4t
and three values of the transverse coupling J~ = o J„ I', X,
and A are k=(0,0), (s, 0), and (n'/2, x/2), respectively. Note
the relative maximum at the X point for J~ = 0.25J, and
J& = J, . Only relative values of the energy are significant;
in particular, the J~ ——0 and J~ ——0.25J, results are from
string calculations, while the Heisenberg result (J~ = J,)
was obtained using the hopping basis (hence the large energy
drop).

string length (for fixed n) behaves as J, , but over a
much smaller region than in the t;J, model. Chen and
Schiittler i have argued for a. bandwidth W Idefined as
W = E(ir/2, n'/2) —E(0, 0)j behaving as W oc exp(t/J)P
due to polaron formation around the hole. For fixed o, =

.0 ~ I I
I

I I I ~ ~ I I 1 I I I I
I

a =0.0

ky

0.8—

0.6

0.4
O
A

0.2—

Jx
0—2.44

I ~
' I ~ ~ ~ I I ~ I I ~ t ~ I I ~ ' ~

—2.40 —2.36 —2.32 —2.28 —2.24

FIG. 8. Contour plot (interval 0.01) of the dispersion rela-
tion for the lowest quasiparticle in the t- J model at J = 0.4t
and J~ ——0.1t; —m & k, k„& x. The minimum is at the
center of the magnetic zone face, and the maximum at the
origin; there is a relative maximum at (s, 0).

FIG. 10. Density of states (in arbitrary units) for the tJ-
model with J =0.4t, and J~ ——0 and O. l t; the discontinuity
at cu/t —2.35 is due to I.he local maximum at the X point—see I'ig. 9.
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4, we find that ln W is linear in t/J, for 0.2 ( J, /t ( 0.6,
in weak confirmation of this idea. The results of this
paragraph were obtained using the string basis.

The band mass around the (n'/2, 7r/2) minimum is
anisotropic. For example, at J,=0.4$, J~ =0.1/ the
band masses parallel and perpendicular to the zone face

mll ——2.125m and mg —O.ljl8m. At J,=J~ —0.4t the
anisotropy is even greater: m~I

—20.4m and ra~ ——2.].0m.
A heavy mass along the zone boundary agrees with previ-
ous results obtained by fitting to Lanczos calculations on
an 18-site cluster, ~ and by use of the hopping basis. "
Our masses are heavier than t, hose of Elser ef al. , but
comparable to those of Trugman. '

We have also examined the spectral function, but do
not present detailed results for the reason given in Sec.
II. As noted by Trugman, the hopping basis accurately
captures the low-energy behavior; the structure at higher
energy is sensitive to the number of hops included, be-
coming smoother as more states are included.

The string method can be applied also in one dimen-
sion (where, however, the string basis does not span the
Hilbert space). All matrix elements can be evaluated ex-
actly; the Green function for a hole moving in a Neel
background in the limit J~ && t is

G(k, ~) = ( (J,/2+ J~ cos 2k) +
+[(cu —J, /2 —J~ cos 2k)2 —4t2]i/ )

This generalizes a result of von Szczepanski ef al. (who
treated the case J, = 0).

VE. DISCUSSION

For the U = oo model (with an antiferromagnetic back-
ground), the string method (which includes Trugman
pat, hs to many orders) gives apparently localized wave
functions (in contrast to the extended wave functions
predicted by the tree approximation). But the imagi-
nary part ImE of the self-energy is large when ReZ = ~,
and there are no quasiparticles.

For the t- J, model, the string and hopping results ap-
pear accurate for J, & 0, 1$; both methods give ground-
state energies in excellent agreement with Monte Carlo
values. Both the string and hopping methods fail when
t, he ferromagnetic polaron begins to form around the
hole, when 0 J, /g 5 x 10; at J, = 0, even strings
up to length 10 do not capture the polaron.

For the t-J model, which is the model of interest for
the high-T, materials, the string method is less useful
(because it imposes unreasonable constraints on the ba-
sis). The validity of the string method is likely restricted
to J~ & 0.1$, and so the Heisenberg limit J~ ——J, for
physically interesting values of the parameters cannot be
discussed. But in the region J~ ( 0.1$, the string re-
sults agree with other results: the ground-state momen-
tum is at the center of the zone edge, the bandwidth is
given accurately, etc. On the other hand, the hopping
basis seems to give accurate results for all J ) 0, 1S, even
though constructing a basis from H& alone is questionable
when g and J~ are of the same order. Spin flips far from
the hole (these are not easily generated by Hi), though

TABLE II. Leading matrix elements in the ln) basis.

0, 0

(n(H, lm)/( —t) (n) H, )m) / j.
0

(n[H~ (m)/( jg/2)

30

2, 0 8p~ + 4pq
(~) (2)

8 + 24'~ + 12pq

36+ 8p~ 122 + 24'~

4, 0

4, 4

5, 5

108 + 16'~

16pq(~)

324 + 64pq + 32'~

20'~(~)

446 + 56pq

12+@
(~)

56'~(~)

1578 + 272pq + 112pq

32 + 64'~ + 36'~

48'~ + 487~ + 32'~ + 32pq

16

136+ 240// + 148// ) + 32pq + 32pg

32 + 256pq + 112'~ + 64yq + 64yq
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vItal for the ground-state energy, appear to be unimpor-
tant for the hole properties; the suggestion is that the
hole is well confined (except for small 2), making only
short excurslons, and that the spin Hips generated by H&

are sufBcient to describe the hole properties.
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APPENDIX

Table II gives the leading nonzero matrix elements (up
to six strings) in the ~n) basis for the three terms of H
in Eqs. (1), (2), and (3); only elements with n & m are

given since the matrix is symmetric. The leading 16 ele-
ments (m, n = 0 —3) agree with those given by Emery.
Note that the ~n) basis, defined by Eq. (6), is not nor-
malized. The matrix elements in the Lanczos basis ~n)
are constructed using Eq. (7). The results reported in
the text were obtained with the full 11 x 11 matrix for Hq

and H, , and the 10 x 10 matrix for H~, the asymptotic
relations of Eq. (8) were used for (n(H& ~m) and (n~H, (m)
(n or m ) 10) and (n~H~~m) (n or m ) 9). The cubic
harmonics (normalized so that ~pq ~

( 1) are defined by

p&() —(cos Q + cos Q„)/2,

= cos Q cos Q„,(2)

pq~
1 —(cos 2Q + cos 2Q&)/2,

pq
) —(cos 2Q - cos Q& + cos Q cos 2Q&)/2 .
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