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A characterization of the electron-phonon coupling in the high-temperature superconductors is im-
portant both in helping to ascertain the role of phonons in the superconductivity and in helping to
characterize the phonon “background” contribution to the temperature-dependent resistivity. Here we
present a “frozen phonon” and equivalent diagrammatic scheme for calculating the electron-phonon
coupling in the presence of very strong Coulomb correlations. The inclusion of these correlations is
essential for creating the insulating state at half-filling. Furthermore, these effects substantially reduce
the electron-phonon contribution to the resistivity, so that the experimentally measured coupling con-
stant of the resistivity A=~0.2-0.4 can be reconciled with the necessarily smaller electron-phonon contri-
bution. Our frozen-phonon scheme is based on a Coulomb renormalized band structure of the copper-
oxygen plane alone. Coulomb correlations lead to a suppression of charge fluctuations as the insulator is
approached and thereby a significant reduction in the electron-phonon coupling. Low-frequency modes
(0==12 meV) imply a quasilinear phonon resistivitiy down to temperatures of the order of 50 K. This
band structure also provides reasonable values for the plasma frequency, which like the experimental
measurements show a decrease as the insulator is approached. This can be attributed physically to an
enhanced effective mass, which is a precursor to Mott localization at half-filling. The combination of the
plasma frequency and electron-phonon coupling leads to a relatively concentration-independent resistivi-
ty slope, whose magnitude accounts for a large fraction of the measured linear resistivity at moderate
and high hole concentrations x. However, this phonon background is significantly less than the mea-
sured resistivity slope as the insulator is approached. This suggests that electron-electron scattering may
be playing a more dominant role at small x. Following the Mott-lIoffe-Regel criterion, we analyze the
implications of our results for the breakdown of the metallic state at finite concentrations x. We con-
clude with the observation that the strength of the electron-phonon interaction appears to us from trans-
port data, as well as our microscopic calculations to be too weak to be the primary mechanism responsi-
ble for high-temperature superconductivity. On the other hand, we cannot with certainty rule this
mechanism out.
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I. INTRODUCTION

Because of the evidently renewed interest in phonon
mechanisms for explaining high-temperature supercon-
ductivity, it is important to study microscopically the
electron-phonon coupling in some detail. In such studies
it is, furthermore, essential to keep two factors in mind:
(1) the metallic cuprates have evolved from Mott insula-
tors, so that strong Coulomb correlations are present in
these systems and (2) transport data have now been
sufficiently analyzed so that the constraints imposed by
such data on the electron-phonon interaction must be
taken into account. In this paper we study the nature of
the electron-phonon interactions in doped Mott insula-
tors such as the two-dimensional metallic cuprates, pay-
ing particular attention to these two factors. We find
that strong Coulomb correlation effects lead to a
significant screening of the electron-phonon coupling in
the metallic phase. This screening becomes progressively
more important as the insulator is approached. We then
determine the role of this coupling on the temperature
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and hole concentration dependence of the electrical resis-
tivity.

Since the discovery of high-temperature superconduc-
tivity in the copper oxides, many theories have been pro-
posed! to provide a consistent explanation for both nor-
mal and superconducting properties. There is, however,
no clear agreement on the appropriate theoretical
description for these materials even in their normal state,
and it is generally believed that characterizing the cu-
prates above T, is a necessary first step in unraveling the
superconducting mechanism. In view of recent photo-
emission data,? which shows some features of the calcu-
lated local-density-approximation (LDA) band structure,
Fermi-liquid-based approaches must be taken seriously.
In a series of papers, we have undertaken a systematic
analysis of the normal-state magnetic® and transport*
properties using a Fermi-liquid-based scheme. The
present paper is a continuation of this study and
represents a longer version of a previous short publica-
tion on the electron-phonon coupling.* In our picture, the
ground state, in the absence of superconductivity, is as-
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sumed to correspond to a Fermi liquid. However, on the
basis of both phenomenological® and microscopic®* anal-
yses, we have found that the characteristic degeneracy
temperature of the Fermi liquid is relatively low. Near
optimal stoichiometry the metallic cuprates behave as
fully coherent Fermi liquids only at temperatures below
100-350 K. Above this “coherence” temperature, T,
the d electrons begin to show signs of incipient localiza-
tion.

Our picture is highly influenced by similar behavior in
the heavy-fermion metals (which are generally described
by an analogous Hamiltonian) and where the f electrons
are the direct counterpart of the Cu 3d states and the
characteristic energy scale T, is roughly 2 orders of
magnitude smaller. The anomalies exhibited in the heavy
fermions above 1-2 K are similar to those seen in the cu-
prates above 100-200 K. Thus, the NMR relaxation
shows deviations from Korringa behavior, the Hall
coefficient Ry assumes a large magnitude and is tempera-
ture dependent. Finally, the resistivity is found to exhibit
deviations from the canonical T2 dependence of a Fermi
liquid. All of these phenomena have their counterparts
in the copper oxides,>® albeit at higher temperatures, and
all of these have been interpreted in the heavy fermions
as arising from the loss of full f-electron coherence. Ulti-
mately, in the heavy-fermion metals, the f electrons
behave as independent local moments, although this
occurs at high temperatures (T =150 K) so that the
counterpart phenomenon in the cuprates would not be
experimentally accessible. A summary of our picture of
the cuprates would characterize them as “partially
coherent” Fermi liquids over much, if not all, of the
normal-state temperature regime and this may explain
the many anomalies seen in the normal state. This
Fermi-liquid scheme is in the general category of “almost
localized” Fermi liquids to which also belong the quan-
tum liquid, *He, and the heavy-fermion metals.

As further support for this picture, it should be noted
that, in those cuprates which have hole concentrations in
excess of the “optimal” concentration for superconduc-
tivity, many Fermi-liquid-like features are observed. In
these overdoped, but still superconducting, samples, Ry
is found to approach a smaller and temperature-
independent value, the NMR relaxation appears more
Korringa-like” and a T? contribution to the resistivity
has been observed.? This is consistent with the physical
picture we have proposed’ in which the coherence energy
scale T, monotonically increases with hole concentra-
tion. The half-filled insulator, which corresponds to a
Mott localized state, is associated with T, =0.
Coherent Fermi-liquid behavior is observable in the nor-
mal state when T,/T_,, <1, which thus corresponds in
our theory to “overdoped” systems. In contrast, as the
insulator is approached, T, becomes sufficiently small
so that the entire normal-state temperature region is out-
side of the Fermi-liquid regime.

Indeed, our microscopic calculations support this more
phenomenologically derived picture. Using a (coherent)
Fermi-liquid picture, we find good agreement® with Hall
coefficient data until x decreases to about x =0.10-0.15
in La,_,Sr,CuO, systems. The electron-phonon contri-
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bution to the resistivity, which will be presented below, is
also found to account* for most of the measured value of
the resistivity slope until hole concentrations
x=~=0.10-0.15, where it becomes clear that some
inelastic-scattering mechanism, other than the traditional
electron-phonon coupling, must be dominating the resis-
tivity. We speculate that the breakdown of a Fermi-
liquid-based explanation of the Hall data is due to an “‘ex-
traordinary” Hall effect, such as is present in heavy fer-
mions.!® Similarly, the additional inelastic scattering
seen in the resistivity data may arise from electron-
electron scattering which evidently becomes stronger as
the insulator is approached.

Within this physical picture our calculation of the
electron-phonon interaction provides an estimate of the
associated “background” contribution to the resistivity.
We demonstrate that, because of low-lying phonon
modes, the electron-phonon component of the resistivity
is nearly linear above T,. We stress that our calculations
do not imply that the remarkably linear resistivity of the
cuprates is entirely due to phonons, but rather that they
contribute a significant fraction of the resistivity slope.
As a result their contribution must be subtracted in order
to ascertain the importance of other more exotic scatter-
ing contributions to the resistivity. We believe that ig-
noring this phonon contribution in attempting to fit the
linear resistivity, as is generally done,!! is incorrect. On
the other hand, it is equally incorrect to take the point of
view that phonons are the sole source of this linearity.

To assess the general transport properties and the im-
portance of phonons in the copper oxides, we list some of
the conclusions drawn from experiments which need to
be explained.

(1) The linear resistivity persists through a wide range
of temperature without any indication of saturation.!?
This has been interpreted as indicating that the mean free
path of an electron is larger than the copper-oxygen bond
length and the overall inelastic coupling constant A is
small.'?

(2) The plasma frequency w, of the copper oxides,
which is found to be T independent, ranges'®!* from 0.8
to 1.6 eV which is about roughly - of the corresponding
value in transition metals such as Cu and Ag.li The con-
centration dependence is found to be o, «<V'x for both
La,_, Sr,CuO, and YBa,Cu;0,_g (where 8 can be relat-
ed to x using simple stoichiometry arguments) as is
shown in Fig. 1(a). Because w3 «n/m?*, this may be in-
terpreted as either a decreasing carrier number n <x or
as an increasing effective mass m* «< 1 /x as the insulator
is approached.

(3) The scattering lifetime 7 in the copper oxides
is approximately 5X 10~ '* sec and it is almost concentra-
tion independent as shown in Fig. 1(b). This measured
value of 7 is roughly  of the value in metallic copper.
The appropriate inelastic coupling constant A defined by
7 !=27AT is roughly 0.2-0.4, which provides an upper
bound for the electron-phonon coupling.

(4) The slope of the resistivity increases dramatically as
the metal-insulator transition is approached.*!” The
overall variation in slope is almost a factor of 100, but
throughout most of the metallic regime the concentration
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dependence is rather weak. These trends which are fairly
universal in the cuprates have not been given much prior
attention, although it is our opinion that they provide an
important constraint on the nature of the linear resistivi-
ty.

In contrast to previous calculations,'® the present work
emphasizes the importance of Coulomb correlations for
calculations of the electron-phonon interaction. Previous
LDA-based or weakly Coulomb correlated theories of
this interaction have led to some inconsistencies. All
Fermi-liquid approaches must explain at the same time a
small coupling constant and a moderately heavy effective
mass which is seen in ac conductivity Drude fits. These
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FIG. 1. Experimentally measured (a) plasma frequency and
(b) transport lifetime as a function of doping concentration.
The triangles indicate strontium doping in La,CuQO, from Ref.
13 and the squares represent a w» <x fit of this data (for x
around optimal doping). The crosses in (a) indicate oxygen con-
centration dependence in YBa,Cu;0,_5 from Ref. 16 scaled to
an effective hole concentration x. “Corrected fit” in (b) corre-
sponds to fitted data (squares) in (a).
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two properties would seem to be incompatible in conven-
tional theories where the source of the effective mass is
the electron-phonon self energy. Although Allen and
co-workers have shown that a quasilinear resistivity is ob-
tained from the phonon contribution,'® Gurvitch and
Fiory have argued that their LDA results do not satisfy'?
the Mott-Ioffe-Regel condition'® in which the mean free
path of electrons must be larger than the minimum
scattering length. The data are, however, consistent with
the present picture in which, although the phonons are
weakly coupled to electrons, strong Coulomb correlations
are responsible for the large effective mass or low plasma
frequency.?’

We outline the remainder of this paper. In Sec. ITA
we discuss our frozen-phonon approach for calculating
the electron-phonon transition matrix element for a two-
dimensional zone edge (q=X) phonon in the presence of
strong Coulomb correlations. In Sec. II B these results
are reproduced using a diagrammatic (auxiliary boson)
formalism. Here the wave vector is taken to be arbitrary.
Finally, in Sec. III we discuss various transport proper-
ties which result from these electron-phonon interactions
and present comparisons with a variety of experiments.
The reader who is uninterested in the formal aspects may
skip directly to Sec. III. Many of the complicated details
of our calculations are relegated to Appendices A and B.

II. FORMAL RESULTS

In this section, we calculate the electron-phonon in-
teraction using the frozen-phonon method. This tech-
nique is often applied?! to deduce electron-phonon cou-
pling in the context of more conventional band-structure
approaches which are highly numerical. Here we
proceed somewhat more analytically. Our starting point
is the three-band Hubbard Hamiltonian which describes
the copper-oxide plane. Following the work*? of
McMahan, Martin, and Satpathy, we construct a semi-
realistic model Hamiltonian which includes a next-
nearest-neighbor interaction (i.e., oxygen-oxygen overlap)

H=3 spC;]:;CJT']U +282DJUD1‘,0
ihmo i,o
+ 3 V(CliD,+D],Cl,)
(ij),m0o
+ 3 ylercn+cifcl,)
G (7)o

+2Udn“n“ N (21)
1

where ¢, and e} are the oxygen and (unrenormalized)
copper energy levels, C ]’Z (Cj,) and D,»Ta (D;,) are
creation (destruction) operators for the oxygen electrons
at site j and spin o and copper electrons at site i, with
spin o, respectively. The hopping interaction V;; is be-
tween neighboring copper and oxygen sites, while ¢;; de-
scribes the transfer between two nearest-neighbor oxygen
sites, and n,-,a=D,-:raD,~,¢,. Here 7 (=x,y) represents two
oxygen orbitals (p, and p,), and (jl) (n#7') denotes the
nearest-neighboring orbitals 77 and 7’ at sites j and /, re-
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spectively. The Coulomb repulsion between electrons on
Cusites is Uj.

It is generally assumed that U, is the largest energy
scale in the problem. At infinite U, a mean-field theory
may be derived using the auxiliary boson approach; this
model has been extensively studied by ourselves®~>° and,
in slightly different variations, by others.?* It is based on
a 1/N expansion, where N is the spin degeneracy of the
Cu and O sites. Here we work in the electron picture (al-
though similar results also can be derived in the ‘“hole”
picture). This allows us to take semirealistic values for
the parameters in Eq. (2.1) and still preserve the Mott lo-
calization (m*— ) at half-filling. This localization
arises from a suppression of the renormalized hybridiza-
tion as x —0.

In the limit of infinite U,;, we introduce an auxiliary
boson e; which corresponds to the Cu®* valence state, in

which the d ,_ , state is empty. The fermion operator
d; , represents a Cu®" state with spin o. In this case, the
dxz_yz level is 1 full. Imposing the donstraint via a
Lagrange multiplier A; at each site that there be no dou-

ble occupancy of the deyZ orbital requires that

Sdf d;,+ele;=1.

o

(2.2)

In the mean-field limit, the operator e; is replaced by its
expectation value e, which is spatially uniform and simi-
larly A; is replaced by the average A, so that the Hamil-
tonian may be written as

Hmf= 2 Ep C]?;II'C]{’O’ + Esddgadi,o

hmo i,o
+ 3 Veo(Clld,,+H.c.)
(ij),mo
+ X
G, m#n', o
Finally the parameters e, and A, may be variationally
obtained by minimizing the resulting mean-field free en-
ergy. A diagonalization of the Hamiltonian [Eq. (2.3)]
for the case of zero oxygen-oxygen overlap ¢t =0 yields a
simple dispersion relation Ei for the renormalized band
structure

t(ClTCl +H.c.) . 2.3)

e + e 2 172
€q €, €&y
Ei=—o—=%| |75 | trivi
=g, tryyilcotd, )t . (2.4a)

In Eq. 2.4a), e, =¢€% + Ao, 7o=e, V, and the dispersion

k.a k,a
cos? — +cos?—2—

> (2.4b)

ri=4

arises entirely from the hopping terms between copper
and oxygen orbitals. Associated with the eigenenergies of
the mean-field Hamiltonian are the eigenstates o, ,, By o»
and 8, , which correspond to the antibonding, bonding,
and nonbonding states, respectively. In most of this pa-
per we consider the case of nonzero t, so that £, does not
reduce to a simple expression.

It may be seen that the effects of infinite U, are two-
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fold: (1) the renormalized hybridization r,=eyV is great-
ly reduced, particularly as the half-filled limit is ap-
proached, since double occupancy of the d site must be
avoided, and (2) the position of the d level g, is renormal-
ized in order to accommodate no more than one electron
in the d orbital. The former effect thus corresponds to
Mott localization of the d electrons, which, in the metal-
lic phase, is responsible for the low-energy scale T, dis-
cussed above. This, in turn, arises from the factor e
which vanishes as the hole concentration approaches
Zero.

A. Frozen-phonon study

The procedure for calculating the electron-phonon
coupling within the frozen-phonon scheme involves a
standard sequence of steps applied to this renormalized
band structure. First the frozen phonon (with charac-
teristic wave vector q) is introduced as a static displace-
ment of the ions within the 2D copper-oxide plane. Next,
the electronic dispersion is recomputed in the presence of
this distortion. Comparison with the electronic energy in
the undistorted lattice indicates a “mixing” of states hav-
ing wave vector k with those of k+q. The associated
transition matrix element is readily related to the
electron-phonon coupling at wave vector q.

In the present paper we extend the standard frozen-
phonon calculations to include the strong Coulomb
correlations which are believed to lead to the insulating
state of the cuprates at half filling. These Coulomb corre-
lations are incorporated via the renormalized band struc-
ture which is derived from Eq. (2.3) and its extension, in
the presence of a frozen phonon. To provide an overview
of the general formulation, a simpler example, which
focuses on a 1D model containing both Cu and O com-
ponents, is presented in Appendix A. In order to clarify
the present application of the frozen-phonon scheme, we
first summarize the relevant notation and vocabulary.

The electron-phonon Hamiltonian is written in terms
of a vector representation of the quasiparticle basis
operators @, ,. These basis operators, deduced from a
diagonalization of the (undistorted) Hamiltonian [Eq.
(2.3)], are the eigenstates ay ,, Qyyq,> €tc., Which were
referred to earlier. The difference between the distorted
and undistorted Hamiltonians is called My, which is
directly related to the electron-phonon coupling. A natu-
ral basis for representing this difference matrix is the
band representation, C},, and d, ,, corresponding to the
various oxygen and copper electron operators. Thus, M,
contains contributions from changes (induced by the stat-
ic distortion) in the copper-oxygen hybridization, the d-
band center of gravity, and the oxygen-oxygen overlap.
The values of these shifts are linear in the ionic displace-
ment and their “bare” values can be deduced following
Ref. 24. Conversion of My, to the quasiparticle basis o,
involves a unitary transformation U.

In the strong-U,; limit, the matrix M, is self-
consistently derived. In this way, important screening
effects enter as renormalizations of the bare shifts in the
copper-oxygen hybridization and d-band center of gravi-
ty. These self-consistently obtained?’ screening contribu-
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tions are parametrized in terms of the quantities e, and
Ao-

In order to make analytical progress, we further sim-
plify the ionic component by considering only the zone
edge (q=X=1/a) phonons. These X phonons appear to
couple most effectively since they lead to strong perturba-
tions in the crystalline potential associated with charge
transfer between like atoms. In contrast to these longitu-
dinal modes, correlation effects deriving from the trans-
verse modes at =X are not as dramatic since they main-
tain the equivalence of like atoms. Because there are a
large number of X phonons in two dimensions, we build
on the lattice-dynamics calculation of Ref. 26. In
La,CuO, in the tetragonal phase, a potential induced
breathing model shows that there are 21 modes, 4 of
which are unstable.?’ It is not at all clear how to incorp-
orate these unstable modes in a consistent fashion.
Furthermore, the associated motion appears to couple
only weakly to the electronic degrees of freedom. Hence,
we ignore these negative-frequency modes here. The
remaining 17 modes are categorized by considering only
the motion of those copper and oxygen ions which are in
the plane. Our simple 2D models do not distinguish be-
tween modes which involve motion of atoms, other than
those in the plane. In this way, six distinct types of 2D
copper-oxygen phonon modes are found. These are
shown in Fig. 2.

Following this frozen-phonon (FP) procedure, we cal-
culate the renormalized band structure and the quasipar-
ticle states in the distorted (X-mode) lattice. The distort-
ed Hamiltonian in the infinite U, limit is written in terms
of auxiliary boson operators? as

HY = il n
Zedn i,n,o 1na+ze ClmaC i,m,o

ln,O’ lmn

+2V an 2C1+8ma+Hc)
i,n,o 5m.,]

+% 2 ng.f‘ﬂ,a' E tﬁciq;—&,m',a +H.c. ’
i,m,m',o 8(n'#n)

(2.5)
o
(a) /o (b) ©)
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FIG. 2. The six planar modes projected from the lattice-
dynamics calculation of Ref. 26. The open and solid circles in-
dicate copper and oxygen, respectively.
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where the index n =1,2 denotes two positions for the
copper orbitals and the indices m (=1,2) denote two ine-
quivalent oxygen 51tes As in the undistorted case, the
operators €], and d}, create Cu®" and Cu®" states, re-
spectively, whereas C,”m » creates an electron at the mth
oxygen site within the ith unit cell. The constraint equa-
tions are imposed on each copper site

zdi,n,adi,n,a+ei,nei,n:1 . (26)

Note {e;,) is not identical to {e;,) since the distortion
changes the local environment of the two copper sites. A
renormalized band structure is directly obtained from Eq.
(2.5) by replacing the boson operators by their corre-
sponding expectation values and introducing the con-
straint equation [Eq. (2.6)] via a Lagrange multiplier. Ex-
cept for the states near k,; ==+(7/2a)(1,1,0), the renor-
malized band structure obtained from a solution of the
mean-field equations for H%, is similar to that obtained
by folding the Brillouin zone (BZ) of the undistorted lat-
tice. Following the details described in Appendix A for
the simple 1D case, we express the quasiparticle opera-
tors as

Ay & dl,k,u

ax+Q,0 dz,k,o

dy,o Ciko -
Peo™ 180ig0 | 0 [Coio | 2

Bx,o Cl o

Bx+qQ,0 Ciro

where the operators «, 8, and 3 destroy a quasiparticle in
the antibonding, nonbonding, and bonding bands, respec-
tively.

Within this mean-field approximation, the difference
between the Hamiltonians corresponding to the distorted,
H%, and undistorted, H,, cases may be readily deduced
from Egs. (2.5) and (2.3):

He—pthFP —H,

= z(plt,aM_D q)k,o
k,o

+27» (e2—1)—2A4led—1), (2.8)

where the A,’s are Lagrange multipliers introduced to
satisfy the constraint equation of (2.6) and
M,=U-M,-U'" is the transformed distortion matrix
(which includes “‘screening” effects via the parameters e,
and A,).

In this analysis we focus on intraband scatterings be-
tween a, , and oy, x , because these states near Ep are
strongly scattered by the ionic displacement (zone-folding
effect). Furthermore, other contributions such as inter-
band scattering require higher energies than a phonon
can provide. These intraband terms are written as

H, W= > ’g\x(alt,aak+x,a+alt+x,0ak,a)' (2.92)

k,o
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Here the electron-phonon coupling in the quasiparticle
basis is

Ex= (e olHepnlawix o) - (2.9b)

We may express this matrix element in terms of phonon
creation (destruction) operators a;r(,v (ax,) for a wave
vector X with quantized displacement (with A =1)

172

PO 1
gx,v~ 8x,v m (a;(,v+a_x,v)) , (2.10a)
where the electron-phonon transition matrix element is
. 8H
gX,vzs}:TO<ak,a EI—{"EX,V ak+x’a'> (2.10b)

and €y , is the polarization vector for a normal mode v.
N, is the number of ions in each unit cell. My , is the re-
duced mass corresponding to a phonon mode (X,v).
Here, oy , is a normal mode frequency.

The electron-phonon matrix elements in Eq. (2.10b)
can now be evaluated in terms of changes in the ‘“bare”
Hamiltonian parameters which arise from a lattice distor-
tion. Following Ref. 24, it may be seen that the overlap
integral or hybridization between copper 3d_ 2,2 and oxy-
gen 2p orbital distance is highly anisotropic. A small dis-
tortion along the longitudinal direction (bonding axis)
leads to significant changes in hybridization. This can be
represented as linearly proportional to the ionic displace-
ment when the distortion is small (see Appendix B)

8V s p— 1y SR
V,(R+8R)—V(R)~ ¢8R =—TV=

(2.11a)
and
t(R+8R)—t(R)z-—2t(R)87R . (2.11b)

Along the transverse direction (perpendicular to the

1 1 1 1 1
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BT
>
»
X L
\'
1
r_ M,
M, M, 4
1 I + t I
0.0 0.1 0.2 0.3

Doping Concentration

FIG. 3. Concentration dependence of the Fermi surface aver-
aged electron-phonon transition matrix elements for the six pla-
nar modes shown in Fig. 2.

5153

bonding axis), however, the change in hybridization is al-
most negligible. These changes in V ultimately lead to
changes in the variational parameters such as e, and A,,.
When these parameters are self-consistently calculated,
they are found to vary linearly with displacement about
the equilibrium (or undistorted) values e, and A

Se
e, ~eoi§-8R
and
8o
kl—Azz——BR S8R , (2.12)

where 8e;/8R and 6A,/8R may be identified as the
Coulomb correlation-induced screening responses. These
functions depend on Ep and their concentration depen-
dence may be calculated using a somewhat simplified
analysis.?®

Within this frozen-phonon scheme, the coupling con-
stants are then numerically obtained. In Fig. 3, we plot
the Fermi surface average ¢ ))gs of the resulting
electron-phonon matrix elements for the six types of X
phonons shown in Fig. 2 as a function of concentration.?’
It is clear from Fig. 3 that the charge-transfer modes M,
M5, and M couple to the electrons more strongly than
others although their coupling is still weak compared to
the zero Coulomb correlation case. The matrix elements
for the copper charge-transfer modes (M5 and M) are
roughly three to four times larger than those of the oxy-
gen charge-transfer mode (M ). This is a result of the
enhancement of the variational response by on-site
Coulomb correlations. It is shown analytically, in Ap-
pendix B, that the various (gx , ) gs all vanish quadrat-

ically (in the bose amplitude) near the metal-insulator
transition. However, near this transition the frozen-
phonon picture will breakdown since the electronic ener-
gy scales then become comparable to those of the pho-
nons. A more detailed discussion of this point is present-
ed in Sec. III.

B. Diagrammatic calculation

In this section, the main results of the frozen-phonon
calculation in Sec. II A are reproduced by using a di-
agrammatic auxiliary boson formalism. A similar, but in-
dependently derived, approach has been presented in Ref.
30 for the heavy-fermion problem. By evaluating the
relevant Feynman diagrams, we show that the screened
electron-phonon coupling constant, like the transition
matrix elements, vanishes quadratically (in the Bose am-
plitude) near the metal-insulator transition. Although, in
the diagrammatic formulation, the coupling constant can
be calculated for an arbitrary wave vector with
significantly less effort than with the frozen-phonon
method, the details pertaining to the mode dependence of
the coupling constants are often too difficult to extract.
For this reason we calculate (to lowest order) the dia-
grams which represent the screened coupling constant.
In Fig. 4, we show all diagrams within the mean-field or-
der. Although the second diagram [Fig. 4(b)] may appear
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(a) (b)

FIG. 4. Diagrams for the screened electron-phonon coupling
constant. (a) and (b) refer to contributions from the renormal-
ized band structure and the slave boson screening effect, respec-
tively.

as order O (1/N) because of the boson propagator, this,
in fact, is a mean-field diagram (the summation over spin
degeneracy in the polarization bubble cancels the /1N
factor). Since the goal here is to understand the screen-
ing effects from these diagrams as half-filling is ap-
proached, the second diagram must be included if we are
to correctly account for the distortion-induced response.

For the purpose of simplicity, we exclude the oxygen-
oxygen hopping terms and consider, as we have done in
the frozen-phonon calculation, only intraband scattering
processes. As a result, the dispersion relation for the re-
normalized band structure is written in Egs. (2.4) above.

To make progress, we explicitly write the two diagrams
shown in Fig. 4. The first diagram [Fig. 4(a)] represents
the usual renormalized band-structure contribution to
the coupling constant

2 (0440004 » (2.13a)

85=¢q v
where g° q is the unscreened electron-phonon coupling
constant and the angle 8, is defined in Eq. (2.4a). The
coherence factors C2%, which arise from the diagonaliza-
tion of the Hamiltonian, relate to the various projections
on the antibonding, bonding, etc., states and are dis-
cussed in more detail in Ref. 31. As indicated by the
presence of the boson propagator, the second diagram, on
the other hand, includes the screening response. This di-
agram is expressed as

gq_gq VEC+ 6k+q’6k) Aq)

>

paa’==%

era(e 9p+q) p 1?+qN >

(2.13b)

where the noninteracting quasiparticle Greens function
for the @ band'is Gf=(io—Ef)”! and the factor N
comes from the summation over spin degeneracy. We
use a four-momenta representation where ¢ =(iw,q).
Equation (2.13b) describes the additional screening
response, via auxiliary bosons induced by a lattice distor-
tion. The boson propagator D, in Eq. (2.13b) includes
the random-phase-approximation (RPA) screening which
arises from the Gaussian fluctuations about the saddle
point
m(g)] !,

1
D(q)=-1V[H0— (2.14a)
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where I is the unscreened boson propagator
2 iAy irg
n,= V irg 0 (2.14b)

and the polarization bubble diagram is given by

1
n,=-5 3 CEY (B O+ )CE By 4 O)GEGE 1, -
k,aa'=%

(2.14¢)

The boson propagator D,, is represented by a 2X2 ma-
trix to describe two interaction channels, the hybridiza-
tion and d-energy-level screening response. When Egs.
(2.14) are substituted into Eqgs. (2.13), the expression for
the screened coupling constant, gg° =g +gg, is easily de-

rived
gff_gq“g C," (x4 61)
+N2C (O +q6k)
nr
X |—= N - . (2.15)

We simplify the expression in Eq. (2.15) by explicitly
expressing the coherence factors Cff"’ near the metal-
insulator transition. First, we categorize two screening
responses which come from the » and A channels, respec-
tively. These are further decomposed into screening con-
tributions from the bonding (—) and antibonding (+)
bands. We approximate the coherence factors

CH+~ Ek,a"0
(Ed——sp) ’
—2My o & otd
C e T =, (2.16a)
d P €gq Ep)
+ — (27/£+q+§k,q)r%
CHmyy | —kta T 2kaT0
2(£d_8p)
where & o=Vi+qT vk and My o=Vyiq¥x Equation

(2.16a) is derived by retaining terms up to order 3. Simi-
larly, the A-channel coherence factors are expanded to
lowest nonvanishing order,

2
’
Cit~i j—_Ska® =1,
2(eg—¢,)
_inqu%
Cy =—"7, (2.16b)
(Ed—‘Ep)
Yyt
i~ Yxro
8d_8p

It should be stressed that Egs. (2.16) are valid when
ro<<e;—¢,. Near the metal-insulator transition, this
condition is satisfied because r,—0 while ¢;,—¢, ap-
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proaches a constant. When the doping concentration be-
comes larger, however, the expansion will not be simple
since higher-order terms in 7, will no longer be negligi-
ble.

J

2

Hrr(q)zz )?k,q+
k ( d P

where
, 1 ,
Xkq= " 73-201?+qu? ,
i,w
and

Yk,q:7’12<)(1:r,(; +7/i+le:,q+ .
The contribution from the rA channel is identical to the
Ar channel and found to be linearly proportional to »,
irg

0, ()~ ———— 3 (x Xiq —Xiq) -
X

2.17
(Ed_ep) ( o)

Finally, the AA-channel bubble diagram is written as

I, (q)
2

)

~—3 |xiq + (Xiq—ExgXig) (2.17¢)
k

(Sd —€ P )2
When these diagrams are explicitly evaluated, the inter-
nal degrees of freedom k in the polarization bubble must
summed. However, since we are only interested in quali-
tative behavior here, we do not explicitly perform this
summation.

Collecting together all contributions by substituting
Egs. (2.16) and (2.17) into Eq. (2.15), we obtain the
screened electron-phonon coupling constant

gsc =gO 27‘%
1 9p3det(M,—1II)
Aobk, _ 24
X | = S+ S Heq— 0 (2.18)
€78 ¥ K 4

As deduced in the frozen-phonon approach, this coupling
constant varies as r3 near the half-filled limit. This be-
havior represents the dramatic screening of the electron-
phonon interactions by Coulomb correlations (since
ro—0 as x —0), which we have found in our earlier ap-
proach. However, well away from the metal-insulator
transition, the simple expression we have derived is not
valid. Higher-order correction terms such as O (r¢) must
be added since they are no longer negligible.

II1. IMPLICATION FOR TRANSPORT PROPERTIES

A. Formalism

The temperature-dependent resistivity p in the metallic
copper oxides has received considerable attention because

7o _ _ _ __
FP—) (€ X q —2Mh.q(Xicq T Xt ) bkaXia T 4T, qXeq ) | »
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The polarization bubble diagrams for each channel are
simplified by inserting Egs. (2.16) into Eq. (2.14c). The
rr-channel bubble diagram (up to a lowest order in r3) is

written as

(2.17a)

f

of its ubiquitous linear behavior.%!? Furthermore, on the
basis of anisotropy in the resistivity, Anderson has con-
jectured that the cuprates are sufficiently two dimensional
so that they cannot exist in a Fermi-liquid state. Recent-
ly, however, in YBa,Cu;0,_;5, a metalliclike resistivity
for both directions along and perpendicular to the
copper-oxygen plane has been claimed.’? At this stage,
however, the experimental situation is uncertain as is the
appropriateness of a Fermi-liquid approach. In this sec-
tion we address the resistivity and its two components,
the transport mass m*/n and the lifetime 7, using our
Fermi-liquid approach applied to the electron-phonon
system.

By solving the linearized transport equation we may
express the resistivity as

m* 1
= — (3.1)
P e r
The transport mass is easily evaluated
*
m ! (32

n o 3 v 8By, —Ep)
k

Here, vka=aEk /90k, is the a=x,y,z component of the

quasiparticle velocity. When a parabolic dispersion is
used in Eq. (3.2), the free-electron value is recovered.
However, for a tight-binding band structure such as ours,
m*/n is more complicated and contains enhancement
due to Coulomb effects. The magnitude of these enhance-
ments may be estimated as m*/n < 1/[vEN(Ep)]<e}.
Correlation effects, therefore, yield a diverging transport
mass as the metal-insulator transition is approached (i.e.,
m*/n— o as e;—0), which is expected from Mott lo-
calization.

Correlation effects on the transport lifetime, on the
other hand, are more difficult to calculate. In general,
the lifetime arises from a multiplicity of scattering
sources such as electron-electron, magnetic, and
electron-phonon interactions. If the copper oxides
resemble typical metals in any way, then the electron-
phonon scattering contribution should not be ignored.
Furthermore, characterizing this contribution will allow
us to determine the nature of other scattering mecha-
nisms which are present. We, therefore, discuss the
electron-phonon contribution to the transport lifetime us-
ing the results of Sec. II. By solving the Boltzmann
transport equation variationally, we write the lifetime
from electron-phonon interactions as



1 27

fdede’ dw a2 F(w,e,e")f (1—f,)

X[(n,+1)8(e—¢'—w)
+n,8(e—¢'tw)], (3.3)

> (v, 0, V1gq,v | *8(E—)S(E
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where f. and n, are the Fermi and Bose function, re-
spectively. Here, the energies € are measured with
respect to Er. In Eq. (3.3), the details of the electron-
phonon interaction and correlation effects are contained
in the transport spectral function

—e")¥(o—agy,)

a2 F(w,e,e')=N(Ep)<X

k,k’

where the phonon wave vector is q=k’—k. The contri-
bution from the quasiparticle velocity which vanishes as
the insulator is approached is partially canceled by corre-
lation effects from two competing sources: the density of
states N (Ep) which diverge as x —0, and the electron-
phonon matrix element g ,, which vanishes as shown in
Sec. II.

We evaluate Eq. (3.3) using some fairly standard ap-
proximations. We assume that a’F(w,e,¢’) is indepen-
dent of €. This approximation is valid when the band-
width is much larger than either k3 T and o, ,. When the
integration over € and ¢’ is performed, the scattering rate
is written as

® 2F(w)
;1__=4rrkBTf dcoa"Fa) Q(x),
ph
2 (3.5)
. x
Q= sinhx

where x =w/2kpT and o is a phonon frequency. Equa-
tion (3.5) varies as 1/7,, < T at high temperatures and be-
comes 1/7p, < T® at low temperatures. This crossover
temperature is of the order of 1 the characteristic phonon
frequency. In general, however, there is a range of pho-
non frequencies, which will lead to a more complicated T
dependence.

The entire electron-phonon picture breaks down if ei-
ther the thermal, k3T, or Debye energy, wp, becomes
comparable to the bandwidth. In our renormalized
band-structure picture, this occurs at low concentrations
close to the metal-insulator transition, since then the
bandwidth is significantly reduced by incipient localiza-
tion. To quantify this point, we plot, in Fig. 5 (where we
define B=t/V), the bandwidth as a function of doping
concentration and compare it with the phonon density of
states for La, 4sSr, ;5CuO,.>* For definiteness, we use the
parameters ¥ =1.6 eV with # =0.4 (circles) and 0.8 eV
(triangles). As shown in the figure, for x =0.05 the band-
width is only marginally larger than the Debye energy.
However, as the doping concentration grows larger, the
adiabatic approximation is more appropriate. Because
the intrinsic oxygen bandwidth increases with oxygen-
oxygen hopping, this approximation may be extended to
somewhat lower x with inclusion of oxygen-oxygen over-
lap integrals.

Evaluating Eq. (3.4) exactly is difficult because a’.F (o)

22’]]2(1 S(Ek )S(Ek')

’ (3.4)

involves the average over phonon wave vectors q as well
as the summation over electron wave vectors k. There-
fore, we need to make further (standard) approximations.
For the average over q, we sample only at few chosen
wave vectors to reproduce the spectral function reliably.
Because there is more phase space for large vectors, we
primarily sample wave vectors near the zone edge. In
simplifying the summation over k, we use the conserva-
tion relations to rewrite the § function in Eq. (3.4)
S(Ey—e)0(Ey —€" 0o~y ,)

—8(Ey —Ey —0q,)+8(Ey—Ey+o,,) . (3.6

Based on Eq. (3.6) and the assumption that the Fermi
surface does not change significantly within w,, we may
replace the complicated k summation with a Fermi sur-

face (fs) average,™ g7 .,
— «(ka_vk; )Zlgq,v|2>>FS
&= (3.7)

(( (ka _Uk: )2 >>FS

We evaluate Eq. (3.7) numerically using the expression

Critical Energy
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1 1 1 ! 1
2 1 0.00 0.04 0.08

Phonon DOS (102 meV~}) Doping Concentration

FIG. 5. The bandwidth of the antibonding band as a function
of doping concentration compared with the phonon density of
states (DOS) from Ref. 33. This shows the range of validity of
adiabatic approximation.
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for the transition matrix element g, , from Appendix B.
This leads to the quantity K (w)=a%F(0)/o,

«(ka_l)k: )Z»FS

2 Ulzx » FS

N(Ep)
Mq,va)?], vNcell

K(og,)~ g2, (3.8)

This function will, in general, be dominated by phonons
of low characteristic frequency. It is furthermore
enhanced by quasinesting effects arising from the strong
coupling of the zone edge phonon X(1,1,0). Simple
power counting arguments show that, as the insulator is
approached, K «<ej. This has, as an important implica-
tion, the fact that the resistivity p from electron-phonon
interactions is essentially independent of doping concen-
tration. This is a consequence of the divergence of the
transport mass and the vanishing of the inverse lifetime,
or alternatively, K (o).

B. Numerical results and comparison with experiment

In this section we discuss the results of our numerical
calculation of the transport properties and compare them
with a variety of experiments. We use the band-structure
model of Eq. (2.1) which includes both direct oxygen-
oxygen hopping processes as well as copper-oxygen hy-
bridization. For notational simplicity we define the two-
dimensionless parameters

a=V/(e,—€3)
and
B=t/V,

where V is the nearest-neighbor copper-oxygen hopping
integral and ¢ is the oxygen-oxygen overlap matrix ele-
ment. For definiteness, we use the parameters

€, —e3=4.0eV and ¥V =1.6 eV, as cited in the literature.
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FIG. 6. Concentration dependence of the transport mass for
B=0.50. The small kink reflects the van Hove singularity.
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Throughout this section we assume that the Coulomb
correlation on a copper site is infinite and take the two
values t =0.4 and 0.8 eV to illustrate the effect of varying
the oxygen-oxygen overlap integrals.

In Fig. 6, we plot the concentration dependence of the
transport mass as determined from Eq. (3.2). For
definiteness we choose $=0.5. As illustrated in the
figure, the transport mass changes dramatically with x
near the metal-insulator transition and m * /n varies qual-
itatively as 1/x with small x. Because the carrier density
is close to one, it is clear, within our formalism, that a
divergence of the transport mass is a consequence of
Brinkman-Rice or Mott localization (and not of a small
carrier number n). In the figure, the transport mass, at
x =0.3, is enhanced roughly by four times that of the
free-electron mass and it depends weakly on x. At
x =~0.06, the effective mass is almost 20 times the elec-
tron mass. In Fig. 6 there is also a small cusp arising
from a van Hove singularity. As shown in Ref. 9, when
oxygen-oxygen terms are introduced, the van Hove singu-
larity is shifted from its symmetrical position in the den-
sity of states N(E) so that it overlaps E; at around
x =0.15.

The calculated plasma frequency @p may be compared
with that measured in infrared experiments.>>3% We plot,
in Fig. 7, wp as a function of x. Although we choose
[=0.25 in this figure, other values of 3 lead to similar re-
sults, both in the magnitude and x dependence. Because
the inverse of the transport mass is related to the plasma
frequency by w3 =4me’n /m*, wp varies roughly as x /2
with x. It should be noted that this x dependence is con-
sistent with optical data summarized in Fig. 1(a) for both
La,_,Sr,CuO, and YBa,Cu;0,_5. As shown in Fig. 7,
our localization theory predicts w,~0.8 eV for x >0.25,
whereas the observed value is roughly 1.0 eV in
La,_,Sr,CuO, (Refs. 13 and 35) and it ranges from 0.8
to 3.0 eV in YBa,Cu;0,_;.3%3616
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{ ]
05 ./-/ -
o
{ )
/ i
1 1 1 1 |

0.0 0.1 0.2 0.3
Doping Concentration

FIG. 7. Concentration dependence of the plasma frequency
for =0.25. See Fig. 1(a) for a comparison with experiment.
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In Fig. 8, the electron-phonon transport spectral func-
tion is plotted for $=0.25 and x =0.15. In evaluating
Eq. (3.4), we use the frequencies estimated by Cohen
et al. from their lattice-dynamics calculation®® for the
zone edge modes and the matrix elements from the
frozen-phonon method of Sec. IT A. In the inset, we com-
pare the phonon density of states F(w) data on
La; gsSrg ;sCuO, with that obtained from the lattice-
dynamics calculation (shaded histogram). As illustrated
in the figure, the calculated F () qualitatively reproduces
the general features of the experimental results. The
differences in the characteristic frequencies presumably
are due to screening effects which are not fully accounted
for by LDA calculations. For the most part, the higher
(oxygen) frequencies are overestimated while the lower
(copper) frequencies are underestimated. A similar com-
parison can be inferred from reflectivity data.’®3" Al-
though incorporation of these differences would lead to
some changes in the calculated a’F, the qualitative
features remain unchanged. A rough fit to our spectral
function yields a double-peak structure with each peak
associated with a predominantly Cu-like or O-like modes.
Because the higher-frequency oxygen modes, which tend
to induce a static charge-density wave (CDW) have a
larger coupling constant than the copper modes, the am-
plitudes of the spectral function for v <70 meV are
smaller than those for @ > 70 meV. As we might expect,
the amplitude from transverse motion is almost negligi-
ble.

In Fig. 9, we plot the temperature-dependent resistivity

L 25 - . —
3 15t ]
=
— .
4] r - 1
= oo
= 0.5+ 1
s
\t::/ 0 40 80
o (meV)
3
53
=
3
0 40 80 120 160
wxy (meV)
FIG. 8. Electron-phonon transport spectral function for

£=0.25 and x =0.15. In the inset, the phonon density of states
from Ref. 33 is plotted to compare with the results obtained
from rescaling (see text) the lattice-dynamics calculation (shad-
ed region) of Ref. 26.
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p as calculated from Eq. (4.9). The solid curve is that ob-
tained using our microscopically derived aF () with the
frequency spectrum calculated by Cohen and co-
workers.?® Although this curve is close to linear and
linearity extends down to low temperatures, it is not pre-
cisely linear. A linear resistivity at low temperatures
derives from low-frequency phonons which, in the
present case, can be attributed to the low-lying copper
modes. (These modes should not be confused with ortho-
rhombic distortions which do not couple strongly to the
electrons.) A close examination of the solid curve reveals
that there is a slight change in slope of resistivity at 150
K. This is the consequence of the double-peak spectral
function shown in Fig. 8.

A similar calculation may be performed for a more
phenomenologically derived phonon spectrum where the
frequencies better match those measured in neutron and
infrared experiments. We indicate the results for the
resistivity by the dashed curve of Fig. 9. In this calcula-
tion, we associate the lowest-frequency copper mode with
12 meV (instead of 6 meV of Ref. 26), and the highest-
frequency oxygen mode with 90 meV (instead of 140 meV
of Ref. 26). Then we rescale all the frequencies between
the two extremes and put additional weight, as is indicat-
ed by F(w) data, on the copper modes. Even for this
modified spectrum, there are only small changes in the
resistivity curve.

To avoid uncertainties from impurities and lattice de-
fects, we plot the slope dp/dT of the resistivity as a func-
tion of x in Fig. 10. By way of summary, we show the
data on La,_,Sr CuO, at 300 K taken by several groups
in different symbols (squares,’’ triangles,*® crosses,>® and
circles!”). With the exception of the triangles, all of the

(arb. units)
T

p phonon(T)

1 1 1 1 |
0 100 200 300

T (K)

FIG. 9. Temperature-dependent resistivity at x =0.2 calcu-
lated from the microscopically (solid line) and phenomenologi-
cally (dashed line) derived phonon spectral function.
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data are obtained from polycrystalline samples. The data
from an epitaxially grown single-crystal film are denoted
by triangles. Although these data are widely dispersed,
there is a clear trend in x: the slope is almost indepen-
dent of x for x > 0.15, but increases as the insulator is ap-
proached. (This behavior is not as pronounced in
YBa,Cu;0,_5 samples, perhaps, as a consequence of the
copper-oxygen chains. Furthermore, the resistivity
slopes do not appear to be as large in this system.) To
summarize the data, we plot the dotted lines as an es-
timated average curve. To compare the theoretical result
for dp/dT with the data, the calculated electron-phonon
contribution is indicated by the solid curve. Here we
choose $=0.50. As shown in the figure, the x depen-
dence of the slope is very weak as a result of the vanish-
ing electron-phonon scattering rate and the diverging
transport mass as x —0. This is consistent with the data
in the metallic regime, but it is inconsistent near the insu-
lator. Therefore, electron-phonon interactions alone can-
not explain the data for dp/dT for x <0.15. This failure
strongly implies that there are other mechanisms such as
electron-electron or magnetic scattering which may be
more important than electron-phonon interactions near
the insulating limit.

We may obtain insight into these other scattering
mechanisms phenomenologically by fitting the dotted
line. We add to the electron-phonon lifetime an addition-
al scattering time which is assumed to correspond to a
concentration-independent matrix element. It follows
from a Golden Rule calculation that 1/75x<N(Ep)T.
The size of this phenomenologically derived correction,
1/79=3.5 meV for x >0.17, is smaller than 1/71,;,. How-
ever, as the insulator is approached, 1/7, becomes pro-
gressively more important because of the increasingly
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FIG. 10. Concentration dependence of the resistivity slope at
300 K. Theoretical results with (or without) a small phenome-
nologically added lifetime plotted by the dotted line (or solid
line). The data represented by triangles, circles, squares, and
crosses are from Refs. 38, 17, 37, and 39, respectively.
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large N(Eg) arising from the narrow band and the
suppression of the electron-phonon interaction.

In Fig. 11, we plot the concentration-dependent life-
time, 7, derived from electron-phonon interactions for
=0.25. We also compare the results from the phenom-
enological calculation in which the net 7 is derived by
fitting dp/dT. According to Mattiessen’s rule,** which
states that the scattering rate from various sources is ad-
ditive, the lifetime will be readily dominated by the pres-
ence of other scattering mechanisms for small x. As illus-
trated in the figure, when 1/7; is added to 1/7,, the net
7 becomes almost concentration independent. It is im-
portant to stress that this is consistent with the data plot-
ted in Fig. 1(b).

The mean free path, / =vp7, of a quasiparticle is plot-
ted in Fig. 12. Here we show the calculated result as a
function of concentration at 300 K for 8=0.25 (circles)
and 0.5 (triangles) in units of the copper-oxygen bond
length, R, o. As noted before, the kinks in this figure
reflect the van Hove singularities. We also plot (dotted
line) the phenomenological result derived from adding
1/71 to the electron-phonon background for f=0.5 in
the dotted line. The Mott-Ioffe-Regel (MIR) condition'®
is shown by the dashed line. The calculated mean free
path [, from electron-phonon interactions, in Fig. 12,
shows that it is surprisingly close to the MIR limit, but it
is still on the metallic side. We find /;, ranges from three
to eight times the bond length. This small value of [, is
consistent with the data in both La, , Sr,CuO, and
YBa,Cu;0,_;s.'2 It should be stressed that the mean free
path in the copper oxides is significantly shorter than in
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FIG. 11. Concentration dependence of the transport lifetime
at 100 K and 8=0.25 with (or without) a small phenomenologi-
cally added lifetime as shown by the dotted (or solid) line. See
Fig. 1(b) for a comparison with experiment.
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FIG. 12. Concentration dependence of the mean free path at
300 K from electron-phonon interactions for $=0.25 (circles)
and 0.50 (triangles). The dotted line is obtained from adding a
small phenomenological lifetime to the case $=0.50 as in Fig.
11. The dashed line represents the Mott-Ioffe-Regel condition.
The dotted and MIR lines intersect at the metal-insulator tran-
sition.

copper metal where / is almost 200 times the lattice con-
stant.!?

The MIR line separates the metallic conductivity from
insulating behavior. If the mean free path is below this
value, the Boltzmann transport formalism breaks down.
In this way, the metal-insulator transition in the copper
oxides can be understood. The phenomenologically de-
rived mean free path shown by the dotted line becomes
shorter and shorter as the insulator is approached. Final-
ly, it becomes comparable to the copper-oxygen bond
length at x =0.05. At the critical concentration, the sys-
tem becomes insulating.

IV. CONCLUSIONS

The main contribution of the present paper has been to
study the effect of very strong Coulomb correlations on
electron-phonon interactions and the implications for
transport properties. We have used a Fermi-liquid ap-
proach in which both a semirealistic band-structure and
Brinkman-Rice or Mott localization at the half-filled lim-
it are included. (While we have considered the “electron
picture” here, our results apply to the “hole picture” for
those parameters which lead to an insulating half-filled
limit3!). Although there have been previous attempts to
study electron-phonon interactions in the copper oxides
by using weak Coulomb correlation approaches, these
schemes fail to include both of these effects simultaneous-
ly. Based on our analysis of the electron-phonon cou-
pling, using both a frozen-phonon scheme and auxiliary
boson formalism, we argued that Coulomb correlations
tend to suppress charge fluctuations within the copper-
oxygen plane, thereby reducing the electron-phonon cou-
pling constant as the metal-insulator transition is ap-
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proached. As a result, we are able to reconcile the calcu-
lated electron-phonon contribution to dp/dT with the
necessarily larger measured slope. We stress that, as the
quality of data improves, dp/dT appears to decrease so
that this poses an even more severe upper bound on the
electron-phonon coupling.

As a consequence of Mott localization, we have shown
that the transport mass m* /n diverges as the insulator is
approached. This is consistent with the concen-
tration-dependent plasma frequency, w3 < x as found in
both La,_,Sr,CuO, and YBa,Cu;0,_ 5 It should be
stressed that we cannot distinguish the appropriateness of
either m* «<1/x or n <x approaches from these plasma
data. In the electron-phonon contribution to the resis-
tivity p < (m*/n)(1/7,,), because electron-phonon cou-
pling becomes weak as x —0, two competing correlation
effects are canceled. Therefore, the electron-phonon con-
tribution to the resistivity becomes almost concentration
independent. A temperature-dependent analysis of this
component of the resistivity shows that, due to the pres-
ence of a high density of low-frequency copperlike modes,
this p is quasilinear down to roughly 50 K.

In this paper, we have not addressed other scattering
mechanisms such as electron-electron or magnetic in-
teractions, but the present theory has demonstrated they
become more important as the insulator is approached.
While the electron-phonon contribution to the resistivity
slope accounts for most of the observed value in the me-
tallic regime (x >0.15), it becomes progressively less im-
portant as the metal-insulator transition is approached
(x <0.15). This suggests that other scattering mecha-
nisms would be more important than phonons at small
hole doping. In order to fit the data, we have added a
phenomenological lifetime of the form 1/7y< N (E;)T to
the phonon background. As a result, we found that the
overall scattering rate becomes almost concentration in-
dependent, and this is consistent with the x independent
lifetime inferred from the Drude conductivity. The mi-
croscopic basis for 1/7, cannot be ascertained because a
linear T dependence is a general consequence of scatter-
ing from bosons with low characteristic frequencies,
when the temperature is higher than | of the characteris-
tic boson energy.*!

Based on mean-free-path calculations, we have argued
that the doped copper oxides are poor metals, in contrast
to transition or noble metals such as Cu, because they are
on the verge of satisfying the Mott-Ioffe-Regel criterion.
For concentrations less than x =0.05-0.07, we would
predict a transition to insulating behavior as is observed
experimentally.

Finally, we note that the upper bound on A imposed by
the resistivity data above (in conjunction with ac conduc-
tivity Drude fits) makes it difficult to understand how a
purely phonon-driven superconducting mechanism could
lead to high transition temperatures. More elaborate
scenarios may be proposed which yield strong coupling in
the superconducting “channel” and weak phonon scatter-
ing in the transport “channel.” One contribution of the
present work is to underline the importance of consider-
ing the constraints imposed on the electron-phonon cou-
pling which arise from ac and dc conductivity measure-
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ments. Clearly, in future proposals for superconducting
mechanisms these constraints must be considered.
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APPENDIX A:
1D ELECTRON-PHONON TRANSITION
MATRIX ELEMENTS

In this section, we focus on a simplified one-
dimensional (copper-oxygen chain) model for the purpose
of obtaining insight into the electron-phonon interaction
in the copper oxides. Even with this simple model, solv-
ing the self-consistent equations as described in Ref. 9 for
an arbitrary phonon wave vector is difficult. We, there-
fore, simplify the calculation further by considering only
phonon modes that are most relevant to transport prop-
erties. For instance, the zone edge (q=X) phonon
modes, identical to the Periels distortion, interact strong-
ly with electrons by way of doubling the unit cell, (i.e., by
Brillouin zone folding). Therefore, phonon modes with
this wave vector are important for transport. The zone
center (q=I) modes, on the other hand, are more
relevant for Raman scattering and less important for
transport measurements. There are six X modes in one
dimension, two of which are longitudinal (the oxygen and
copper breathing modes), the remaining four are
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twofold-degenerate transverse modes. For simplicity, we
classify them into three types by considering the oxygen
and copper breathing modes as distinct since they involve
rather different electronic responses.

To calculate the renormalized band-structure and the
quasiparticle states in the infinite U, limit, we may apply
a slave boson formalism to a distorted (X mode) lattice.
Within this approach, we extend the Anderson lattice
Hamiltonian, discussed in Ref. 9,

Hll‘!f’ = 2 zeg,ndill;odino'_'_zsp,m Clj;nacima
n m

i,o

+ 2 Vn,m(ditlaeincima+CiLaeIndina) ’

{nm)

(A1)

where the indices n and m =1,2 denote two positions for
the copper and oxygen orbitals, respectively, and {nm )
denotes the pairs of nearest-neighbor copper-oxygen or-
bitals. The operators eI,, and diTa create Cu®" and Cu?™
states, respectively, whereas C;, creates an electron at
the mth oxygen site. Here, each phonon mode is charac-
terized by the relative displacements of copper and oxy-
gen ions. Equation (2.6) is imposed on each copper site.
Except for the states near k,; =+ /2a, the renormalized
band structure obtained from a solution of the mean-field
equations for H1% is similar to that obtained by folding
the BZ of the undistorted lattice. We may express this
band structure in terms of the 6, function defined by Eq.
(2.4a), but with y,=2cos(ka/2) instead of Eq. (2.4b).
The quasiparticle operator ®, , of the Hamiltonian is
easily expressed as a linear combination of copper and
oxygen orbitals at different sites. We may write this in
terms of a unitary matrix U

Lo sinf, sinb; 4 ¢ icosby 1o cosO;, dy ko
A+ 0.0 1 sinf, —sinf; o —icosfy, o cosOy dr o

Q0= Bro | V2 |cosb i cosOy 4o sinf ;o —sin@; | |Cy g, |’ (A2)
Bk +Q,0 Cosek —i Cosek +Q —sin9k +Q ’"Sinek C2,k,0

where Q = /a denotes the wave vector for a frozen-phonon mode. Here, a and 3 destroy quasiparticles in the anti-

bonding and bonding bands, respectively.

Although the states at kg, are degenerate as a consequence of BZ folding, this degeneracy is lifted by ionic displace-
ments because a distortion changes the renormalized parameters €; and r,. The electron-phonon Hamiltonian, there-

fore, is given by Eq. (2.8) with the distortion matrix M,

M,=UM, U (A3)
and
€41~ €4 0 (rleik-SR_rO)e—ﬂZ (rle—ik~8R_r0)ei1Z
0 €42~ €4 (rzeik-ﬁk_ro)eiE (r,e —ik'BR_ro)e—iI?
My= (e RBR_p Yok (p,eKOR_p yo—ik Ep1—E, 0 )
(rleik~8R_r0)e—iE (rzeik-SR_ro)eiE 0 €p2— €,
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where 6R is the displacement vector (for either copper or
oxygen ions) and kK =ka /2. The renormalized copper
level and effective hybridization are ¢, , :Eg,,, +A, and
r,=e,V(R*x8R). There are two contributions to the
matrix M, which ultimately lead to electron-phonon
scattering processes: one is the shift in Bloch waves by a
lattice distortion and other is the change in electronic po-
tential brought about by band renormalizations. The
latter contribution is simplified as follows. We assume
that the bare energy levels for copper sites are identical.
(The results do not change significantly even when this
restriction is relaxed. As a consequence of screening, the
energy-level difference, 52,1 —52,2, between the copper
sites is mostly canceled by the quantity A;—A, because
Coulomb renormalizations tend to minimize the effects of
an external perturbation by acting as a restoring force.)
Similarly, we extend this approximation to the oxygen
sites (i.e., €5 ;=€J,=¢€3 and &, ; =€, ,=¢€,).

In order to evaluate Eq. (2.10b), we need to account for
the variational response functions in Eq. (2.12). We dis-
tinguish these functions by their origin. For instance, the
hybridization screening response is brought about by ei-
ther copper or oxygen motion which changes the
copper-oxygen overlap integral. As shown in Ref. 29, the
variational response of copper, Sc, =V(dey/6R)¢, is
small compared to that of oxygen, S,="V(8ey/8R ).
Although the x dependence of the response functions S,
and S, is different for x >0.12 (e, > 0. 1), both functions
are proportional to ey for x <0.12 (i.e., S, ey and
So <eg). On the other hand, the energy-level screening
response, S, =(8Ay/8R), is a direct consequence of
charge transfer on the copper sites, usually mediated by
an oxygen mode. S, varies as powers of e3 for x <0.12.

The oxygen breathing mode generates charge transfer
between copper atoms. When two oxygen atoms are dis-
placed 180° out of phase with one another, different local
environments are created for copper site. These ine-
quivalent copper environments lead to slight accumula-
tion of charge on one site and depletion on the other. As
a result, a static copper charge-density wave with wave
vector X is formed, but the amplitude of this wave
changes as a function of doping concentration. Because
the charge fluctuation is strongly suppressed as half-
filling is approached, the amplitude is larger in the metal-
lic regime than near the insulating regime. The electron-
phonon transition matrix element for this mode, there-
fore, depends strongly on concentration. The oxygen
breathing mode corresponds to the following parametriz-
ation:

Vin= V1,27& Vy,1=Vao s

# ’
€1 €y (A4)

and

MFR, .

We write the matrix element for the oxygen breathing
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mode near half-filling (r,—0) as

870 (7p —50) A5
e, —g o7 R0l (A3)

d 4

gx,0~735t

The concentration dependence of the matrix element in
Eq. (AS5) comes from band renormalizations (7, and A,) as
well as from variational responses (Sy and S;). There-
fore, we can easily deduce, based on counting powers of
ey, that Eq. (A5) varies as e} near the metal-insulator
transition.

In the copper breathing mode, two copper ions are dis-
placed in opposite directions. As a result, this motion
leads to a formation of static oxygen CDW. The copper
breathing mode corresponds to the parametrization

Via=Vo #Vi2=V,,

e, =e, , (A6)
and

A=A, .

Because only the oxygen environment is changed, the
variational parameters associated with copper sites are
identical. Although this copper mode is identical to that
of an oxygen mode in many ways, it is translated by a
copper-oxygen bond length. This translation leads to the
following phase changes in Bloch waves:

M3 =M} =(rie™®R—p e’

—(rye KRy e ik (A7a)
My=Mj =(rye _ikhaR_"o)e ik
—>(r1e“"5R—rO)e—”Z . (A7b)

With these changes, the electron-phonon matrix element
near the metal-insulator transition is expressed as

4r% _ _ _
'8—:“‘(2/( cos2k —7sin2k) .

d Sp

8x,cu™ (A8)

Although the matrix element for copper does not have
contributions from the variational responses, its concen-
tration dependence is similar to that of the oxygen
breathing mode due to band renormalization effects. [It
should be stressed that the absence of the variational
response contribution to Eq. (A8) is accidental, due to
simplicity of the model.] We shall see later that, when a
more realistic model is considered, there are no perfect
cancellations. However, as we might expect, the varia-
tional response from a static charge-density wave on
those sites that are not subject to a strong repulsive po-
tential is generally weak.

Because the copper-oxygen overlap integral is almost
unchanged when ions are displaced perpendicularly, the
transverse motion of either copper or oxygen ions have
smaller matrix elements than for the copper breathing
mode. To lowest order, the variation in hybridization de-
pends quadratically on the displacement. In linear
response theory, both of these motions lead to almost
equivalent electronic responses. This corresponds to
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= ~ ‘/~ -
Vl,l V1,2 V21 V2,2 vV ’ V(py’dXZ_yZ)_ 23m(12—“‘2)V
e;=e,, (A9) L
+m(I+1*=m >V, - (B2c)
and
_ Here, the relative orientation of two overlapping orbitals
A=A, are denoted by [/, 7, and 77 where d=IX+m§+nZ. As

The matrix element for these modes near the metal-
insulator transition is

4
4r0

(A10)

gx. 1= v k,sindk .

(8,1 —€ P
Here, the z axis is the direction perpendicular to the
chain. As might be expected, there are no contributions
from the variational responses, here. The concentration
dependence of the transition matrix element, therefore, is
entirely from renormalized band structure. Furthermore,
we can easily see that the x dependence of the matrix ele-
ment is negligible because of the lack of a distortion-
induced electronic response.

APPENDIX B:
2D ELECTRON-PHONON TRANSITION
MATRIX ELEMENTS

As in one dimension, we consider the scattering pro-
cesses between states a , and @y ;o ,, and express these
quasiparticle states explicitly in terms of a linear com-
bination of 3dey2, 2p,, and 2p, orbitals

=AT(Dy 4o+ Dypo) B Cy kot B *Co ko
+B,"Cy 1otB,*Cy ko (Bla)
and
100~ A (Do Doyo)t By Cx kot By *Cx ko
+B, Cy kot Bs *Cx o - (B1b)

Here, the coherence factors A* and B ﬁ measure the
copper and oxygen contribution to a quasiparticle state.
An asterisk (%) denotes the complex conjugate, and the
superscripts (+ and —) are used to indicate the elements
of the first and second row in the unitary matrix.

In order to derive Egs. (2.11), we determine the overlap
integrals ¥ and ¢ as a function of the separation distance
and orientation by using the results of Slater and Kost-
er.?! Because d and p orbitals are highly directional, the
overlap integrals depend strongly on the relative orienta-
tion of these orbitals. This is nicely illustrated in the
orientation dependence of oxygen-oxygen overlap in-
tegral

t(px,py)——l mV o= lmVppv (B2a)
and the copper-oxygen hybridization
V3o
V(Px,dxz_yz)le (12— Z)Vpda
T —T*4+m )W,y (B2b)

we might expect, the overlap integral between orbitals

dx2~y2 and p,,, and between p, and p, also depends

strongly on the separation distance

3/2
1 7a

m d7/2 ’

_ 1 1
Vppa(ﬂ’)_éppa(ﬂ);? ’

Viodoim=S8pdotm—
(B2d)

where ¢ is a constant which is determined by the types of
bonds between the two orbitals. Although the hybridiza-
tion integrals (¥ and ?) have both 7 and o bond contribu-
tions, these details are not necessary for the purpose of
our calculation. When the distortion is small, we can
reexpress the changes (in hybridization) in terms of the
undistorted values ¥ and z. We calculate the changes in
the copper-oxygen as well as the oxygen-oxygen overlap
to lowest order in displacement by expanding Egs. (B2).

Expressing the antibonding state in terms of coherence
factors 4F and B*, which depend on dopant concentra-
tion, we examine the x dependence of the matrix element
for each X phonon shown in Fig. 2 by evaluating Eq.
(2.10b). When the antibonding band is half full, the states
near Ep are copperlike with no oxygen mixture (i.e.,
A*=1and B*=0). When holes are added to this band,
however, the copperlike states near E become somewhat
oxygenlike. This implies B* increases while A* de-
creases by the same amount. Smce A* and BT are ele-
ments of a unitary matrix, we can easily calculate their
dependence on the Bose amplitude e,. To lowest order in
e, B* varies linearly with e, while 47 is almost a con-
stant. Therefore, we can easily see the concentration
dependence of the matrix elements by counting the num-
ber of B ﬁ’s.

A planar copper mode is shown in Fig. 2(a). The fre-
quencies of these modes, calculated by the LDA ap-
proach, range from 6 to 60 meV and the phonon density
is a maximum at roughly 20 meV. However, the actual
measured value differs somewhat from this because
screening effects are not fully accounted for in LDA cal-
culations. The copper mode shown in Fig. 2(a) is
equivalent to that of a one-dimensional breathing mode
which creates a different local environment for oxygen
sites (for 2p, and 2p, orbital sites) while maintaining
identical copper sites. Therefore, this mode generates a
static oxygen CDW by transferring charge from one oxy-
gen site to another. We write the matrix element for this
mode as
8x,M,
-7t

\/ESCUI n tirg sz on

=43

n

kil — (B3)

We express the various orbital contributions to the ma-
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trix element in terms of coherence factors 4+ and B+

I, =A B} cosk,+ A" B "sink, , (B4a)
I, =A B sink, + 4" B, cosk, , (B4b)
IS, =A B} cosk,+ A"B 'sink, , (B4c)
Ij,=A B['sink,+A"B_"cosk, . (B4d)

Although the A4%’s are real, the B%’s are complex.
Hence, we separate BT in terms of real and imaginary
components Bﬁ =B f +iB % We use the notation

’ i 1 o 7
v kyZT/‘-E(k LTk
to simplify the expression. A single prime on k, denotes
the momentum in the reduced BZ corresponding to a dis-
torted lattice having a frozen X phonon. By counting the
powers of e,, we see that the x dependence of this matrix
element varies as e as half-filling is approached.

In Fig. 2(b), we show the oxygen quadrupolar mode.
Although this mode appears to transfer charge between
copper sites, all copper sites remain identical. Further-
more, all oxygen sites remain equivalent, as well. The
frequency for this mode is 100 meV, and the density of
states is low. The matrix element for this mode is given
by

8x,M, =4 Z(SoIaJ,rn
n

—rO(ExIc,_x

) (BS)

—Trolyh)

k1)

+V2t(E7k \;cosk ,—E"k jcosk },) | , (B6)
where E*=A_ +A, . and A,z=Bl'B; +B.'Bj".
Because the oxygen motion leads to the variational
response S, the concentration dependence (based on
power counting arguments for e;) of the matrix element
is similar to that of the M; mode, but the amplitude is ex-
pected to be smaller since there is no CDW on either
copper or oxygen sites.

]
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The copper and oxygen transverse modes are shown in
Figs. 2(c) and 2(d), respectively. When either of these
ions is displaced in the perpendicular direction to the
plane, all sites (both copper and oxygen) remain
equivalent because these distortions do not change the
overlap integrals. The electronic responses, therefore, are
similar for both of these modes. The normal mode fre-
quencies for the copper motion range from 20 to 80 meV.
The transition matrix element for this mode is written as

gX,M3:i4rOkzIZIaT1] . (B7)
U

The oxygen, on the other hand, has a frequency range
(10-75 meV) similar to copper, and the matrix element is
given by

8x.m, = 4k, [ro 31, +2tE cosk | | . (B8)
n

The vertical component of a wave vector k, in Egs. (B7)
and (B8) is obtained by assuming periodicity of the
copper-oxide layers in the z direction. We set k, to a
constant of order unity in our later calculations. As we
might have expected, there are no contributions from the
variational responses (S¢,, Sg, and S;) in Egs. (B7) and
(B8). As a result, these modes couple weakly (if they cou-
ple at all) to electrons by way of Bloch wave shifts. The
power counting argument, again, shows that these modes
behave as e3.

In Figs. 2(e) and 2(f), we show two oxygen modes
which transfer charge between copper sites. Similar to
our earlier discussion on the oxygen breathing mode in
one dimension, the charge-transfer effect in these modes
generates a stronger response than the other four modes
we have discussed above. Because of Coulomb correla-
tions on copper sites, the formation of a static copper
CDW is energetically unfavorable. When charges are
transferred onto a copper site, the energy level must be
renormalized to avoid the infinite Coulomb repulsion. As
a result, the energy-level renormalization becomes the
dominant source of scattering. There are 2 such modes
(out of 21) with frequencies 74 and 88 meV. The matrix
element is given by

Ex.m, =Sa AT AT HAZ(Tro— S0, I,h, +argk Iy +ky 0 ,)

n

+4t [407sink [, &, + (kAT T +k, AT )Isink, —(k,A”F +k AT T)[Jcosk, |, (B9)
n n

n

where ky =k, £, —k,§,, k,=k,§, —k,&,. Here &, denotes the normalized components of the oxygen displacement.
We define @ =A""2A" " and A%? =B,?'Bf"+B)?'Bf". The two-dimensional oxygen breathing mode shown in Fig.
2(f) has?® the frequency 140 meV (this is large compared to the measured value of 90 meV). This mode leads to a similar
renormalization response to that of the M mode. We write the matrix element as

Exm, =Sa AT AT+ [(Trg—So)L}, +rok, 15, ]
n
+8:3[A, ,cosk,(2sink, —k,cosk, )+ A, sink,(2 cosk, +k,sink, )] .
7

These transition matrix elements in Eqgs. (B9) and (B10) appear rather complicated because, when oxygen ions in two di-
mensions are displaced, the copper-oxygen hybridizations as well as the oxygen-oxygen hopping integrals are usually
changed together. Because the oxygen motion in these modes is similar, both matrix elements in Egs. (B9) and (B10) in-
volve the variational responses S; and S, which reflect the screening effect of the renormalization of the bare copper
level and hybridization integral.

(B10)
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