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Magnetization and perpendicular anisotropy in Tb/Fe multilayer films
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A single-ion model approximated by point-charge interactions is proposed to account for the perpen-
dicular anisotropy K„ in Tb/Fe multilayer films with variant modulation periods. In multilayers, E„de-
pends not only on the crystal field, but also on the orientation of the magnetic moments along the z
direction in the period. A quasi-self-consistent method of determining the crystal-field coefFicient D and
the average orientation of the moments in the interface was developed during the fitting process of K„.
The crystal-field coefficient D =2.4X10 ' erg is determined. The best-fit values of K„and I, are in

good agreement with experiment.

I. INTRODUCTION

Recently, the properties of the rare-earth —transition-
metal (RE-TM) multilayer films have widely been investi-
gated. The interest was mainly focused on the origin of
the perpendicular anisotropy, the possibility of the
enhancement of the Kerr rotation, and the effect of the
interface. '

The origin of the perpendicular anisotropy is, unfor-
tunately, not yet completely clear, although several au-
thors ' attempted to explain it. In this paper, we pro-
pose a single-ion model approximated by point-charge in-
teractions. It is responsible for the perpendicular an-
isotropy of the Tb/Fe multilayer films with a variant
modulation period L =d F, +dTb, where d F, and dTb are
the thicknesses of the single Fe and Tb layers, respective-
ly. The effect of stress on the anisotropy exerted by the
substrate onto the multilayer is probably negligible, since
the perpendicular anisotropy constant K„of samples on
glass or Kapton substrates are very similar. Additional
effects due to interlayer stress might well play a role, but
are not considered here. Single-ion anisotropy resulting
from crystal or electrostatic fields is generally most im-
portant for the 4f rare-earth atoms because of their large
orbital moment. By the action of spin-orbit coupling, the
magnetic moment of the atom is therefore confined to a
certain easy direction. The single-ion model is reasonable
to explain the anisotropy K„ for RE compounds or amor-
phous RE-TM alloys. When using this model in the case
of multilayer films, K„ is dependent not only on the crys-
tal field but also on the orientation of the magnetic mo-
ments with respect to the vertical direction. Further-
more, the orientation is not homogeneous along the verti-
cal direction over the modulation period, especially for
periods which are large compared with the atomic dis-
tances. In order to treat this problem, a quasi-self-
consistent method is developed in this paper.

We consider the simultaneous action of both the crys-
tal field, characterized by a random distribution around
the z direction, and the mean field on the magnetic mo-
ment, similar to the method used by Harris, Plischke, and
Zuckerman and Callen, Liu, and Cullen' in their suc-

cessful treatment of the magnetism and the remanence of
amorphous systems. Then, within the framework of a
self-consistent numerical calculation of the perpendicular
anisotropy to be fitted to the experimental data, the
crystal-field coefficient and a parameter representing the
variable orientation of the magnetic moments along the
direction of the modulation wave vector are determined.

In the process of calculating K„, the distribution of the
concentration of both Fe and Tb along the perpendicular
direction in the period are calculated for multilayer films
with different periods L. The fits to the measured satura-
tion magnetizations are achieved by using the known
dependence of the saturation magnetization on the com-
position of amorphous Tb-Fe films. The calculation is
based on the model that a period of the multilayer film is
subdivided into a series of thin sublayers with different
atomic concentrations due to the diffusion during sample
preparation. Then, by the help of the mean field model
we can deduce the quantity of the magnetic moment and
the molecular field for each individual sublayer. This will
be, in turn, utilized to determine the crystal-field
coeIIIicient and the orientation of the magnetic moment in
the period. We discuss this point in more detail in Sec.
II B.

II. MODEL

A. The expression of the perpendicular anisotropy

By applying the point-charge model, the anisotropy
energy with respect to the z direction for the 4f electrons
of a Tb atom at site i is expressed as

W, (i)=—'~e ~(r )az(J —J/2)[cos OM(i) —
—,
' ]

Xg ql(3 cos 8,"—1)/R,
J

where e is the electronic charge, (r ) the size of the 4f
orbit, and o,'J the Stevens factor. " OM is the polar angle
of the direction of the atomic magnetic moment p; (Fig.
l). R," and 0," are the polar coordinates of the nearest-
neighbor ion j with the charge q- and the sum is taken
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Equation (5) can eventually be written in the following
concise form:

K„=DR(G (z) )(J —J/2)[(cos 8M(z) ) —
—,
' ] . (6)

It should be noticed that the last bracket in Eq. (6) simul-
taneously denotes a thermal average. It vanishes at large
Tb concentration, when considering Tb/Fe alloys, which
are paramagnetic at x )0.37 (Fig. 2).

B. The orientation of the magnetic moment

over the nearest-neighbor ions j. J is the quantum num-
ber of the total angular momentum of the 4f electrons
and we let J =1 in the following numerical calculation as
done by Harris et al.

If we assume

g q, /R, ', =Z~e~a',
J

(2)

FICx. 1. Relative orientation of the atomic magnetic moment

p; and the local easy axis n; at the ith site. z is the direction of
the magnetic field; H' is the in-plane field.

Now we describe how to determine the angle OM of the
magnetic moment with the z direction. As illustrated in
Fig. 1, for an amorphous system, there is an anisotropic
exchange energy, a Zeeman energy, and a single-ion an-
isotropy energy. For multilayers, the energy induced by
an in-plane field should be considered, if in-plane anisot-
ropy exists within the period. Then the total energies for
ith moment p, at the coordinate z is expressed as

E, (z) = p, (H +—AM)cos8 Dcos (—5—8)—p,.H' is8n,

where H is the applied field. A, is the mean-Geld
coefficient, ' and M is equal to p;nm, with n the number
of moments per unit volume and

m = (cos8( =8M) ),
we obtain

W', (i)=(3/4a )Ze (r )aJ(J —J/2)[cos28M(i) —
—,']

X g(3 cos 8;.—I )

J

=D(J —J/2)[cos 8M(i) —
—,'], (3)

which accounts for the deviation of the local moment p;
from the z direction. 0' is the field in the x-y plane and
we anticipate that it has to be accounted for owing to the
existence of the in-plane magnetic vector in the pure Fe
layers. 6 is the polar angle of the easy direction n of the
local single-ion field (Fig. I).

Classically the equilibrium position 0 of the moment is
given by

D=(3/4a )Ze (r )aJ g (3cos 8; —I) .
J

(4) BE;(z) /B8 =p, (H +AM )sin8 —D sin[2(5 —8) ]
—p, H'cos0=0 .

Here, a is the average distance between the nearest
atoms, Z is a constant varying between 2 and 2.5, and D
is referred to as the crystal-field coefficient.

Usually, atomic di6'usion between neighboring layers in
multilayer films occurs. For this reason, as will be shown
below, the direction of the atomic magnetic moment
p;, OM varies with the z coordinate along the period I..
Hence, when applying the expression (3) to the case of
the multilayers, both the local concentration of the Tb
atoms G(z) and cos 8M(z) have to be averaged over the
period I.. This is done in the following expression for the
total anisotropy energy:

Then we obtain
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K„=g W, (i) =D (J —J/2)

Icos 8M(z) dz

fdz
(5)
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where X is the number of Tb atoms per unit volume.
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FICx. 2. Saturation magnetization M, vs x in amorphous
Tb Fe& films.
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[p;(H+AM)/D]sin8 —(p, H'/D)cos8=sin[2(6 —9)] GTb(z)=(1 —ko)+kzsin[2ir(z+dF, )/l»],
with GF, (z)=1—G»(z) and d„,(z(L; (15)

assuming 0~5(ir/2. We obtain the following expres-
sions under the approximation of small and larger angle
0.

m = 1 —
( —,', + 3h'/2)d, for small 8,

m =0.5+(1—h')/6d, for larger 8 .

(12)

From Eqs. (12) and (13) we can see that there is a corre-
sponding value of (cos9) for each value of d. Then, us-

ing Eq. (6) in connection with Eq. (12) or (13) we can
determine the value of D if the exchange coupling energy
E,„adnh' are known in advance. Clearly, Eqs. (12) and
(13) do not apply to Tb-rich paramagnetic parts of the
multilayer, x )0.37, where (cos 8M ) =

—,
' (Sec. II A).

After deducing the approximate expression of (cos9)
for small and large angles 0 we should explain the
difference of the definition for 8M in Eqs. (6) and (8). In
Eq. (6), 9M is the angle between the magnetic moment of
a Tb atom and the z direction. Now we consider the
Tb/Fe system. Therefore, the moment p, , in Eq. (7)
should be replaced by an effective moment, which is equal
to the moment difference of the two sublattices with ferri-
magnetic exchange interaction. Accordingly, 8 in Eq. (8)
is the angle between the effective moment and the z direc-
tion.

C. The magnetization

As mentioned previously, the multilayers consist of
many sublayers with different composition within the
period L. The total saturation magnetization is, hence,
an average value taken over these sublayers. In the fol-
lowing we assume that the distribution of the concentra-
tion of Fe and Tb is described by sinusoidal curves along
the z axis within their individual periods lF, =2d„, and
lTb=2dTb. Then we can write the distribution of the
concentration of Fe and Tb atoms along the z axis in real
Tb/Fe multilayers within one period of length L as fol-
lows:

GF, (z) =ko+kisin(2~z/IF, ),
with G»(z)=1 —G„,(z) and 0(z (dF, ; (14)

[(h +m)/d]sin8 —(h '/d )cos8= sin[2(5 —8) ] . (10)

d=D/nkp, is th. e ratio of the energy of the single-ion
anisotropy to the exchange energy E„=n A,p;, and
h'=p, H'/n A,p, is the ratio of the in-plane Zeeman ener-

gy to the exchange energy. We let h'=0. 1 in the fitting
procedure, because the in-plane field is much smaller
than the exchange coupling and it appears reasonable
from the fitting process. h =p;

H/nkvd;

is a reduced ap-
plied field. Following the treatment of Ref. 10, where the
reduced magnetization is taken as the spherical average,

f cos9sin6d5
m =(cos9) = (1 1)

sin5 d6

M(z)=g nmp, .
1

In order to determine the distributions given by Eqs. (14)
and (15) we refer to M, in Eq. (16) as the experimental re-
sult obtained on Tb/Fe multilayers with period L. The
values M (z) are assumed to correspond to the
concentration-dependent saturation magnetization as ob-
tained on amorphous Tb-Fe films (Fig. 2), M (z)
=M(G„,(z), GTb(z)). Then, by inserting ko and sys-
tematically varying k& and k2 the the concentration dis-
tributions of Tb and Fe atoms in the period can be deter-
mined.

(17)

III. EXPERIMENTAL

We have prepared the multilayer Tb/Fe films by dc
magnetron sputtering using separate Tb and Fe targets.
The diameter of the targets was about 12 cm. The glass
substrates with thickness 0.17 mm were rotated and
cooled by water during the sample preparation. The
choice of the modulation periods comprised
(1.25 A Fe)/(1. 75 A Tb), (2.5 A Fe)/(3. 5 A Tb), (5 A
Fe)/(7 A Tb), (7.5 A Fe)/(10. 5 A Tb), (10 A Fe)/(14 A
Tb), (12.5 A Fe)/(17. 5 A Tb), and (15 A Fe)/(21 A Tb),
respectively. It was limited by both the speed of the ro-
tating substrate and the power supply. Both small- and
large-angle x-ray diffraction were used to check the struc-
ture. All samples show the character of multilayers ex-
cept the sample (1.25 A Fe)/(1.75 A Tb), which lacks any
peaks in the small-angle x-ray diffraction pattern. The
saturation magnetization M, was measured by a vibrating
sample magnetometer, and the perpendicular anisotropy
constant K„was determined by a very sensitive torque
meter.

IV. RESULTS AND DISCUSSION

Figure 3 shows the saturation magnetization M, as a
function of L for various Tb/Fe multilayer films (rectan-
gle symbols). As indicated above, best-fit distribution
function of Eqs. (14) and (15) were chosen such as to
reproduce M, by virtue of Eq. (16) in connection with the
well-known curve M, versus x of amorphous Tb Fe,
films (Fig. 2). The resulting best-fit curve M, versus L
(solid line in Fig. 3) agrees well with the experimental
data. The best-fit distribution functions GTb (z) and

GF, (z) are shown in Fig. 4 for (2.5 A Fe)/(3. 5 A Tb), (5 A

and 0(GF GTb (1. kp is the concentration of Fe in an
ideal interface layer, which includes a monolayer of Fe
atoms and a monolayer of Tb atoms in neighboring posi-
tion. In other words, no diffusion between the neighbor
layers is taken into account for the ideal interface layer.
k

&
and k2 are fitting parameters ~ The total saturation

magnetization M, is equal to

M, = J M(z)dz/L, (16)
0

with
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FIG. 3. Saturation magnetization M, vs L for Tb/Fe multi-

layer films obtained by both experiment (open square) and by
fitting (solid line).

(a)

Fe)/(7 A Tb), (10 A Fe)/(14 A Tb), (12.5 A Fe)/(17. 5 A
Tb), and (15 A Fe)/(21 A Tb). It is seen that these curves
have truncated sinusoidal shapes, the slopes of which
characterize the interface alloying. In the case of (15 A
Fe)/(21 A Tb) the interface width equals about the sum of
the diameters of one Fe and one Tb atom. Pure Fe and
Tb layers, where G„,=1 and G~b =1, respectively, be-
corne increasingly important as L increases. The sub-
layers with G~=1 are referred to as dead layers, since
bulk Tb is paramagnetic at room temperature. In other
words, within our model calculation the Tb atom that
possesses indirect exchange interaction with Fe as the

nearest neighbors of Tb atom, has a contribution to mag-
netization. Consequently, G~b=1 is approximated to be
the situation that the Tb's surrounding atoms are the
same kind of atoms.

The distribution functions of the Tb and Fe atoms thus
obtained are the starting point of calculating the perpen-
dicular anisotropy constant K„. According to Eq. (6) we
additionally need the single-ion anisotropy constant D
and the orientational average (cos OM ). In the fitting
process of K„we first consider the multilayer system with
the smallest period, L =d„,+d~b =6 A, and assume that
its exchange energy E„=n A,u; at the coordinate z in the
period is substituted by that obtained from amorphous al-
loy with the same composition. Within the framework of
mean-field theory we calculated the molecular field con-
stant k from its Curie point T, and the magnetic moment

p; for each individual sublayer with the known concen-
tration. Eventually, the total exchange energy is obtained
by taking into account the average mixing ratio. We then
obtain K„as a function of d by inserting D =dE, and
(cos 0~(z)) =m (d) according to Eq. (12) into Eq. (6).
This is solved numerically for d by using the experimen-
tal value of K„. We eventually obtain the total average
value, D=2. 1X10 ' erg and (cos0)=0.95 in the case
of period I =6 A. In order to fit the anisotropy data of
the other systems with L )6 A (Fig. 5), we assume that D
remains constant, but E, varies because of the increasing
inhomogeneity of the layered structures (Fig. 4). Again,
the experimental values of K„are fitted to Eq. (6), but
this time by solving numerically for A, , which is implicitly
contained in (cos OM ). The resulting curve K„versus L
is shown to fit well with the experimental data in Fig. 5,
including negative K„value at L )41 A. It should be no-
ticed that this curve has been obtained by subsequently

optimizing the initial value of K„ in order to minimize
the mean-square deviation of all data points. The final
best-fit parameter, D =2.4X10 ' erg, is believed to ac-
count for slight deviations from complete homogeneity of
the L =6 A multilayer. By means of Eqs. (12) and (13)
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FIG. 4. Distribution of Fe and Tb concentrations along the z
direction in multilayer films with A: (2.5 A Fe)/(3. 5 A Tb), B:
(5 A Fe)/(7 A Tb), C: (10 A Fe)/(14 A Tb), D: (12.5 A
Fe)/(17. 5 A Tb), and E: (15 A Fe)/(21 A Tb).

FIG. 5. Perpendicular anisotropy constant K„vs L for
Tb/Fe multilayer films obtained experimentally (open square)
and by fitting (solid line).
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FIG. 6. (cos8) vs L in Tb/Fe multilayer films obtained by
fitting of experimental data (Figs. 3 and 5). Inset: (coso) vs d
according to Eqs. (12) and (13).

we are now able to determine the spin texture, (cosO).
As shown in the insert of Fig. 6 we assume the crossover
between the small- and larger-angle approximation to
take place at d =1. The curve (cos8) versus L thus ob-
tained and plotted in Fig. 6 describes the remanence as a
function of L. We remark that these results fit reason-

ably well with experimental data obtained previously' '
on the same set of Tb/Fe multilayers. It should be no-
ticed that the statistical model' starts from the assump-
tion that the magnetic moments are distributed on the
upper hemisphere only. This is con6rmed by our calcula-
tion revealing ( cos0 ) & 0.55 (Fig. 6). The excellent
agreement between the experimental data of M, (Fig. 3)
and K„versus L (Fig. 5) with the numerical calculation
seems to confirm the relevance of the underlying model.
The perpendicular anisotropy of Tb/Fe multilayer films
is, hence, very probably due to the randomly distributed
single-ion anisotropy, which is successfully described
within a point-charge crystal-field model. In our model
calculation the entire value of E„ is assumed to be due
to the "e6'ective" parts of the interfaces, where
0&GTb &0.37. The volume fraction contributing to E„
becomes smaller as L increases for multilayers with large
period lengths.
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