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Row generalization of the fully frustrated triangular XYmodel

Wei-min Zhang and W. M. Saslow
Center for Theoretical Physics, Department ofPhysics, Texas Ad'cM University, College Station, Texas 77843-4242

M. Gabay
Laboratoire de Physique des Solides, Uniuersite de Paris —Sud, 91405 Orsay, France

(Received 21 February 1991)

We have considered the phase diagram, in mean-field theory, of a generalization of the fully frustrated
triangular lattice (FFTR) of XY spins. This may be relevant to otherwise isotropic spin systems subject
to unidirectional strain along one of the lattice directions. There are two exchange constants, —J and
—gJ, where the latter apply only to bonds in the horizontal direction; for g=1 this row model reduces
to the usual FFTR model. We find two ordered phases at low temperatures. For g (0.5 the system goes
into an antiferromagnetic state with ferromagnetic rows whose direction alternates as one moves verti-
cally. For g) 0.5, the system goes into a spiral state. The line g=0. 5 marks a second-order phase tran-
sition.

I. INTRODUCTION

In analogy to the generalization by Berge et al. ' of
Villain's fully frustrated model of XF spins on a square
lattice, we have recently generalized the fully frustrated
model of XF spins on a triangular lattice (FFTR). Every
third horizontal bond is given a bond strength of —gJ in-
stead of —J, as in the pure AF case. Thus one-third of
the sites have six —J bonds, and two-thirds of the sites
have one —gJ and five —J bonds. This leads to a unit
cell with three spins and the system is separated into
three sublattices, A, B, and C.

In this paper we consider a generalization of the FFTR
that does not change the size of the unit cell. Rather
than change only one-third of the horizontal bonds, we
change all of them, to the value —qJ. See Fig. 1. This is
the situation that would occur for a FFTR system sub-
jected to uniaxial stress along the horizontal direction.
For uniaxial stress along an arbitrary direction, one
would have to include three, rather than two, values for
the bonds along the three nearest-neighbor directions.

We will study this "modified row" version of the
FFTR model in the framework of mean-field theory. So
long as rl&1, we expect this to give a reasonable repre-

sentation of th.e physics. For g=1, due to the special
symmetry of the problem, Monte Carlo calculations ' in
an external field H give an additional, collinear, phase
that does not occur in mean-Geld theory. ' We consider
only the case H =0. The resultant phase diagram, given
in Fig. 2, lies in the g —T plane. We briefly summarize it.

At low temperatures, there are two ordered phases, ac-
cording to the value of g. For g&0. 5, the system goes
into a spiral phase (Sp), which for ri= 1 (the usual FFTR
model) is commensurate with the periodicity of the lat-
tice. For g&0. 5 the system goes into an antiferromag-
netic state with ferromagnetic rows whose direction alter-
nates as one moves vertically. At high temperatures,
both ordered phases give way to the paramagnetic phase.
The line q=O. S separates the two ordered phases at all
temperatures, and marks a second-order phase transition.

SPIRAL

FIG. 1. Bond configuration for the row generalization of the
fully frustrated triangular lattice. The single lines represent
bonds of strength —J; the double lines (along the horizontal)
represent bonds of strength —qJ.

k T J
FIG. 2. Mean-field phase diagram in the g —J plane.
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We give the ground state solution in the next section
and obtain the mean-Geld phase diagram in g-T space in
Sec. III. Section IV provides a brief summary.

II. GRQUND STATE

The Hamiltonian is given by

&= —g JJS; Sj .
(ij )

(2.1)

The brackets in the subscript indicate a sum over nearest
neighbors only, with no double counting. The lattice
constant is taken to be unity. We take spin i to have an
orientation angle

O, =b, , (x r, )+52(y r, ), (2.2)

where x, y are the unit vectors in the x and y directions
and 6„62are quantities to be determined by minimizing
the energy. For simplicity we write b for (+3/2)b2.

It is sufficient to look at the energy per spin, given by

0 0.5 1.5

E=2gJ cos(b. , )+4J cos(b, , /2)cos(b») . (2.3)

Minimizing this with respect to 6& and 6 gives the
conditions

FIG. 3. Mean-field calculation of 6& vs g. The dot at g= 1

represents the fully frustrated triangular lattice solution, and
the dot at g=0. 5 represents the limit where the spiral state goes
into the AF state.

0=sin(b. &/2)[2g cos(A&/2)+cos(h»)],

0=cos(b, , /2)sin(b, » ) .

(2.4)

(2.5)
The energy per spin for this solution is

E=2J(rl+2rs) . (2.11)

sin(b, ) =0,
2g cos(b, , /2)+cos (6 ) =0 .

(2.6)

There are three solutions to these equations: a spiral
solution (SP), a solution with ferromagnetic rows that are
aligned antiferromagnetically relative to one another
(AF), and one with antiferromagnetic rows that are total-
ly decoupled from one another. This last solution is nev-
er favored.

The spiral solution is determined by the conditions
E~F=2J(q —2) . (2.12)

The third solution of Eqs. (2.4) and (2.5) is given by

cos(h, /2)=0, cos(h )=0 . (2.13)

This is minimized for rs = —1. Both r =1, s = —1 and
r = —1, s =1 lead to an antiferromagnetic state with fer-
romagnetic rows that alternate direction as one moves
vertically. The energy per spin for the AF state is

This leads to the conditions

cos(b. ) =—s =+1, 2g cos(h, /2) = —s, (2.7)

This corresponds to antiferromagnetic rows. Because the
mean field due to interrow coupling is zero, the rows are
completely decoupled from one another. The energy per
spin for this state is

which can only be satisfied for g~ )0.5 The energy per
spin for this state is (for s taking either sign) ~AF rows 2J9 (2.14)

1
cs = —2J g+Sp 2'

(2.8)

In Fig. 3 we plot 5, versus g. In Fig. 4 we display the
spin configuration for g=2. For later comparison note
that for s =1 (so that b, =0), if g~ —,

' then b, &/2~w. As
a consequence, 6&/2+6 —+m. , so that each row is fer-
romagnetically aligned (b.&+2m =0), and the rows align
with alternating directions as one moves vertically
(b, &/2+ 6» ~m. ). The same conclusion holds for s = —1.

The AF state is determined by the conditions

sin(b, &/2)=0, sin(b, )=0 .

This leads to the conditions

cos(b, , /2): r=+1, cos(b» ) =s =+1 —.

(2.9)

(2.10)

FIG. 4. Spiral spin configuration for g=2. Note that in the
spiral phase the vertical repeat distance is two units, so that the
system remains commensurate in the vertical direction.
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Comparison of the energies of these three states shows
that the spiral state is lowest in energy for g)0.5,
whereas the AF state is lowest in energy for g &0.5. Be-
cause, by the discussion following (2.8), the Sp phase ap-
proaches the AF phase as g —+O. S, the transition at
g=0. 5 is continuous, so the AF-Sp line is second order.

III. MEAN-FIELD EQUATION
FOR FINITE TEMPERATURE

Because there is only one spin per unit cell, the analysis
hardly changes at finite temperatures. Assuming that the
solutions at T =0 are modified only by a factor represent-
ing the effect of thermal fluctuations, the energies of the
spiral and AF states can then be obtained by setting the
magnetization equal to

R (PH;), R (u)=I, (u) /I o(u), (3.1)

where p=(kiiT) ', H; is the loca. l field, and I„(u)is the
modified Bessel function of order n,. We henceforth set
the Boltzmann constant kz to unity.

In the case of the spiral phase, from the energy at
T=0, Eq. (2.8), it is straightforward to obtain the local
field

H;=2J r)+ R(PH, ) .1
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(3.2)

This has a solution so long as T & Tsp where Ts is
determined by solving for T in (3.2) in the small magneti-
zation limit, where R (u) =0.5u. Thus, one obtains

For the AF phase, from the energy at T =0 Eq. (2.11),
it is straightforward to obtain the local field

H; =2J(2—il)R (PH;) . (3.4)

This has a solution so long as T & TAP, where TAF is
determined by solving for T in (3.4) in the small magneti-
zation limit, where R (u) =0.5u. Thus, one obtains

T~„/J=2—tl (ri(0. 5) . (3.5)

The phase diagram in Fig. 2 is constructed on the basis of
Eqs. (3.3) and (3.5).

IV. SUMMARY

From the mean-field equations, we have found two or-
dered phases, a spiral phase, and an AF phase. The tran-
sition between Sp and AF is second order, and the transi-
tions to the J' state are second order. This model may be
relevant to FFTR systems that are subject to strain along
the horizontal direction. For small strains, the system
would go from a commensurate spiral to an incommensu-
rate spiral. (Note, however, that the system would
remain commensurate along the vertical direction. ) Only
for extraordinarily large strains (enough to weaken the
horizontal bonds by more than a factor of 2) would one
expect to see the AF phase.

Note added in proof. We have recently learned of work
by H. Kawamura (Prog. Theor. Phys. Suppl. to be pub-
lishe), which discusses a three-dimensional version of the
model considered here.

Ts /J=ri+ (ii)0.5) .
1
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