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While as elemental solids, Al, Ni, Cu, Rh, Pd, Pt, and Au crystallize in the face-centered-cubic (fcc)
structure, at low temperatures, their 50%-50% compounds exhibit a range of structural symmetries:
CuAu has the fcc-based L1o structure, CuPt has the rhombohedral L1& structure, and CuPd and A1Ni
have the body-centered-cubic B2 structure, while CuRh does not exist (it phase separates into Cu and
Rh). Phenomenological approaches attempt to rationalize this type of structural selectivity in terms of
classical constructs such as atomic sizes, electronegativities, and electron/atom ratios. More recently,

attempts have been made at explaining this type of selectivity in terms of the (quantum-mechanical) elec-
tronic structure, e.g. , by contrasting the self-consistently calculated total electron+ion energy of various
ordered structures. Such calculations, however, normally select but a small, O(10) subset of "intuitive
structures" out of the 2 possible configurations of two types of atoms on a fixed lattice with X sites,
searching for the lowest energy. We use instead first-principles calculations of the total energies of
O(10) structures to define a multispin Ising Hamiltonian, whose ground-state structures can be sys-
tematically searched by using methods of lattice theories. Extending our previous work on semiconduc-
tor alloys [S.-H. Wei, L. G. Ferreira, and A. Zunger, Phys. Rev. B 41, 8240 (1990)], this is illustrated
here for the intermetallic compounds A1Ni, CuRh, CuPd, CuPt, and CuAu, for which the correct
ground states are identified out of -65000 configurations, through the combined use of the density-
functional formalism (to extract Ising-type interaction energies) with a simple configurational-search
strategy (to find ground states). This establishes a direct and systematic link between the electronic
structure and phase stability.

I. INTRODUCTION

Numerous binary 2
&

B alloys of elemental constitu-
ents A and 8 form at higher temperatures hornogeneous-
ly disordered solid solutions. As the temperature is
lowered, the existence of finite interactions between
atoms 3 and 8 on the lattice leads either to phase separa-

tion or to the formation of various types of long-range or-
dered compounds. For example, while as elemental
solids, Al, Ni, Cu, Rh, Pd, Pt, and Au appear in the
face-centered-cubic (fcc) structure, ' and form at high
temperature binary alloys with the same underlying fcc
symmetry, when these 50%-50% alloys are cooled
down, they exhibit distinctly diferent structural sym-

TABLE I. This table collects some empirical and calculated data on the binary compounds studied here, such as lattice mismatch
b,a /a =2~a„—a~ ~ /(a„+as ), formation enthalpies hH, the difference between the calculated (Hartree-Fock) s and d orbital energies
of the A and B atoms, and the difference y~ —

y& in their Pauling electronegativities. Such scales have been previously used to assess
qualitative trends in structural preferences.

Binary

A1Ni
CuRh
CuPt
Cupd
CuAu

Low temp.
structure'

x= —'
2

B2
Separated

Lli
B2
L10

Aa /a'
(%)

13.9
5.1

8.2
7.3

12.0

~~expt
(me V/atom)

—741'
)0d

—174.3
—142.3
—90.7

e, (A ) —e, (B)
Hartree-Pock'

(eV)

—3.19
—0.89
—0.78
—0.71
—0.63

e„(A) —e„(B)
Hartree-Fock'

(eV)

—3.51
—3.38
—2.25
—2.16

XA XB
Pauling

—0.3
—0.3
—0.3
—0.3
—0.5

'References 3—7.
Reference 1.

'Reference 7(b).

Reference 5 at x =0.4.
'Reference 14.

Reference 8.
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metrics: CuAu orders in the fcc L 10 structure, CuPd and
AlNi order in the body-centered-cubic (bcc) B2 structure,
CuPt crystallizes in the rhombohedral L 1& structure,
while CuRh phase separates (Fig. l). Such structural
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FIG. 1. Experimental (Refs, 3—7) phase diagrams of (a)
Cu& Au, (b) Cu& Pd„, (c) Cu& „Pt, and (d) CuI Rh„.
Despite the fact that the pure constituents have the fcc struc-
ture and that the solid solutions too have this Bravais lattice, at
low temperature these materials show a variety of symmetries
for ordered compounds.

preferences in AB compounds have traditionally been
discussed in terms of metallurgical and chemical con-
structs such as the A-B electronegativity difference, size
mismatch, " electron per atom ratios, or differences in
A-B orbital radii. ' Table I summarizes some of these
quantities, ' ' highlighting the fact that (i) this group of
compounds exhibits a significant spread in some of these
properties, yet, (ii) it is not obvious that the structural
preferences are encoded in such simple physical quanti-
ties. For example, CuRh and CuPt have similar elec-
tronegativity differences as well as s-orbital and d-orbital
energy differences, yet they have fundamentally different
structural preferences; similar comments pertain to the
CuPd and CuAu pair. Also, despite the smaller size
mismatch and greater electronegativity difFerence (both
supposed to enhance stability" ) in Cu-Au relative to Al-
Ni, the latter is far stabler than the former (compare their
formation enthalpies in Table I).

Understanding of the microscopic origins of this type
of structural selectivity has been at the core of structural
chemistry, metallurgy, and condensed matter physics for
a long time. ' While Landau's celebrated theory' of
continuous phase transitions has successfully classified
the phenomenology of symmetry breaking in the homo-
geneous random alloy upon ordering, actual predictions
of phase stabilities were more often based on intuitive
chemical and metallurgical constructs such as electrone-
gativities, electron concentrations, atomic sizes, ' "and
orbital radii. ' Of particular interest to us here are the
approaches that attempt to demystify structural selectivi-
ty directly in terms of the electronic structure. In this
respect, recent advances in first-principles self-consistent
formulations of the total electron and ion energies of
solids' have produced a wealth of information on the
ground-state properties of ordered intermetallic and semi-
conducting compounds. Given the crystal structure type
of an ordered compound, one can calculate its equilibri-
um lattice parameters, elastic constants, phonon frequen-
cies, and cohesive energy, often within a few percent of
the measured values. ' To find the stable crystal
configuration, one then repeats the total energy calcula-
tion for a few other assumed crystal structures that by
analogy with related compounds are expected to be likely
competitors for the stable ground state. Comparison of
total-energy —versus —volume curves for such a set of "in-
tuitive structures" permits the identification of the sta-
blest structure in this set and possible phase interconver-
sions among them. While generally successful, the
predictive value of this approach does depend on one' s
ability to guess correctly a canonical set of structures
which includes the "winning" (minimum-energy)
configuration. One wonders, however, whether a
different, hitherto unexpected structure could have yet
lower energy, or whether linear combination of two other
structures with compositions x and x& (and
x (x (x&) could have a lower energy than o (hence, o
will disproportionate into a plus P). Addressing this
problem, even for binary A, B& „compounds requires,
in principle, calculation of the total energies of the 2
atomic configurations for each type of lattice (fcc,
bcc, . . . ) with N lattice sites per cell. Even limiting N to
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O(10)—O(10 ), this is a formidable task for first-
principles electronic structure methods, where the eft'ort
involved in obtaining the total energy of a single
configuration scales as (M%), where M is the number of
orbitals/atom used to expand the single-particle wave
functions. While lattice theories of statistical mechan-
ics' provide an effective means of searching for the
ground-state configuration within model (e.g. , Ising-type)
Hamiltonians, this approach has often evolved around
the limited task of identifying the Hamiltonian parame-
ters that produce given phase phenomena, rather than ex-
plaining them in terms of a microscopic theory of elec-
tronic structure.

In this paper we demonstrate how one can eAectively
identify the ground-state structures among many
[O(2 )] atomic configurations directly from a micro-
scopic electronic structure theory, using the (quantum-
mechanical) calculated total energies of only —10 crystal
structures. The method is illustrated for the four in-
termetallic alloys of Fig. 1 and Al, Ni„. This estab-
lishes a direct link between the ab initio electronic struc-
ture theory and structural preferences in solids.

Equation (2.2) shows that 2 H&(cr ) is the inverse matrix
of H&(o ); multiplying the matrices in reverse order one
obtains the second orthogonality condition between the
two configurations u and o':

QH~(o )III(o.')=2 5
f

(2.3)

One can hence expand any property P(o ) of the lattice
configuration cr in the orthonormal set of [ H&(o ) J as

P(cr )= g III(o )p&
f

(2.4)

p~=2 g HJ(cr)P(o) . (2.5)

The series (2.4) may be reduced using symmetry. Denot-
ing by R one of the Nl operations of the space group of
the lattice (not the space group of a particular
configuration o ) we have

where the configuration-independent contribution pf of
figure f to the property P is given from Eqs. (2.2) —(2.4)
by

2N

II. CLUSTER EXPANSION OF PROPERTIES
OF BINARY LATTICES P(Ro )=P(o). (2.6)

H~(o ) =S, S2 . Sl, (2.1)

for each of the 2 figures in configuration cr. The set
[H&(o) I is orthonormal, [including the "empty figure"
f =0 for which HD(o ) = 1] in that for two figures f and
f ' we have

g H&(cr)H& (o )=2 of f (2.2)

The physical properties of various lattice
configurations are often depicted by "cluster expansions"
described by Sanchez et al. These are formulated as
follows. A binary lattice with N sites can exist in 2
diA'erent configurations o., corresponding to the various
occupations of the N sites by the atoms 3 and B. Each
configuration can be labeled by a set [S, ] of fictitious
spin variables S;: + 1 if site i is occupied by 8, —1 if it is
occupied by A. We will be interested in describing vari-
ous physical properties P (o ) of given configurations, e.g. ,
its total (electron plus ion) energy E(o ), equilibrium mo-
lar volume V(o ), composition X(o ), etc. While for
periodic crystals with a reasonable small number of
atoms per unit cell P (o ) could be readily calculated (e.g. ,
from band theory), the multitude of configurational and
structural degrees of freedom characterizing either disor-
dered or imperfectly ordered configurations renders the
direct calculation of P(o ) intractable. Whereas one
could calculate P(cr) directly for certain limited classes
of configurations, the basis of lattice model' is to ex-
pand it instead in a series of contributions pf of "figures"
f and focus on the calculation of these elemental contri-
butions pf. A figure is defined as a cluster of atoms with
k& vertices (i.e., a selection of k& out of X sites). The ex-
pansion is defined with respect to an orthonormal set of
coefficients, as follows. One defines the spin product

H~I(Ro) =HJ(o ),
hence, Eq. (2.5) gives

PRf Pf

(2.7)

(2.8)

so all NDF symmetry-related figures contribute equally to
P(o). This fact . can be used to reduce the sum in Eq.
(2.4) to just the symmetry-inequivalent figures F

P (o ) =Xg IIF(o )DFpF,
F

(2.9)

where the "lattice-averaged spin product' (denoted by an
overbar) of the prototype figure F in configuration o is

L

HF(o. ) = QHpF(o. ),
Nl

(2.10)

1HF(o)= - g H&(o),
-yDF fEF

one finds that

2N
QDF IIF(o )IIF(o') =
F

(2.11)

(2.12)

which is the orthogonality condition between symmetry-
unique configurations, analogous to Eq. (2.3).

The cluster expansion of Eq. (2.4) defines a multisite Is-

and NL is the number of operations R in the lattice space
group (e.g. , Xl =48% for fcc lattices). The set of
[HF(o)] char~cterizes unequivocally the structure of
configuration 0.. Indeed, using the alternative definition
to Eq. (2.10), and summing over the figures f that are
symmetry related to I':
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ing Hamiltonian' which includes "interactions"
pz=pk between k pseudospins separated by up to the
mth neighbor distance (the choice k=2, m =1 corre-
sponds to the classic, ' ' nearest-neighbor pair interac-
tion case). Since the configurational property P(cr) can
depend in general on the external volume V (or pressure)
of the lattice, so will the cluster contributions Ipf ].

It is useful to expand the configurational property
P(o) with respect to some reference configuration On. e
possibility is to expand it relative to the property P of
equivalent amounts of pure A and pure B lattices. The
cluster expansions for o = 3 and o. =B are

and

P(A, V)= g g ( —1)"Di, pi, (V)
m k

P(B, V)= g g (+1)"Di, pi, (V),
m k

(2.13)

(2.14)

The cluster expansion for AP is then

(2. 16)

where i)=1 for k=even and i)=(2x —1) for k=odd.
Choosing alternatively the perfectly random (R) A i B
alloy as a reference system, the ensemble average over the
2 configurations (denoted by angular brackets) is

(IIi, )~ =(Zx —1) (2.17)

The excess energy of the perfectly random alloy is then

&»&i~= X X I:(2x —1)" n]Di, mp'i, m(V—»
m&Ok&i

(2.18)

so the cluster expansion can be written with respect to(»), as

bP(CT, V)=(»)
+ g g [IIi, (o ) —(2x —1)"]D„p

m)ok) 1

(2.19)

While the complete cluster expansions of Eqs (2.4),
(2.16), or (2.19) are formally exact, they merely replace a
direct calculation of 2 values of P(o ) by an equivalent
number of calculations of the elementary contributions
pf. The utility of these expansions rests, however, in the
possibility of identifying a hierarchy of a small (((2 )

number of figures whose contributions pk to the physi-

since for pure A and pure B spin products of Eq. (2.1) are
+1 for all k=even figures, while for k=odd they are —1

for o. =A and +1 for o=B (see Tables III and IV
below). Extracting from Eqs. (2.13) and (2.14) the value
of pi, for the "empty figure" (k, m) =(0, 1) and for the
site-only (1,1) figure, and substituting them into Eq. (2.9)
gives the excess property hP for the 3 i B system with
respect to equivalent amounts of 3 and B

bP(cr, V) =P(a, V) —[(1—x)P( A, V)+xP(B, V)] .

(2.15)

cal property P dominates those of the remaining figures.
To the extent that this is possible, the full informational
content of 2 values of P(o ) can be reduced to a smaller
set of [pz] elementary interactions. These can then be
used to predict P(o ) for other structures, to search
among all 2 configurations for the T =0 "ground-
state structure" (that has the lowest P=total energy), or
to predict the finite-temperature thermodynamic proper-
ties of A I B through solution of the Ising problem' '

of Eq. (2.4).
There are qualitative indications that the cluster ex-

pansion might be reasonably rapidly convergent for a
number of physical properties P(o ). Note first that such
expansions need to capture only the difference b P(o ) be-
tween the property P(o ) of soine structure A, ,B and
the average property taken over equivalent amounts of its
constituents 3 and B. Indeed, such di6'erences are often
much smaller than P(cr) itself, e.g. : (i) for P=molar
volume or lattice constant, Zen's and Vegard's rules'
state, respectively, that b,P=O; (ii) for P=total energy,
the formation enthalpy AP is many orders of magnitude
smaller ' ' "than the total electron and ion energy of
3 i „B;and for (iii) P= optical band gap of semiconduc-
tors, the "optical bowing parameter" AP is usually less
than "' '10% of P. Similarly, comparing bP(o ) for
some ordered configuration cr to its values (»)ii in the
random alloy at the same composition [Eq. (2.19)] shows
comparable trends, e.g. , for (i) b,P= formation enthalpy
b.P(o) —(b,P)z is o.ften ~1 Kcal/mole for many in-
termetallics; (ii) the changes in molar volume, ' ' and
(iii) optical band gaps upon ordering of a random semi-
conductor alloy are often —1%. Second, note that the
notion of the dominance of interactions between neigh-
boring atomic sites over interactions between more dis-
tant sites underlines much of the phenomenological
structural chemistry of intermetallic phases.
Theories of atom packing in lattices retaining but
the first few pair interactions have been eminently suc-
cessful for many types of solids.

Many previous applications of the Ising-type Hamil-
tonian of Eq. (2.4) have not formulated pi, through a
microscopic theory. Instead, it was often postulated'
that a given set of interactions describe some generic
physical systems; nearest-neighbor pair interaction mod-
els are some of the popular idealizations of Eq. (2.4).
Often, those interactions are adjusted to fit an observed
phase diagram. The general expansion (2.4) can,
however, be made useful for predicting structural ener-
gies of solids to the extent that a reasonably rapidly con-
vergent series of interaction Ipi, ] can be calculated a
priori. We next review the way in which these interac-
tions were obtained previously.

III. THEORIES OF INTERACTION ENERGIES Ipi,

The expansion of the configurational energy of a mole-
cule or solid in terms of pair and multiatom interactions
has a long history in organic ' ' and inorganic ' chem-
istry, metallurgy, ' physics of semiconductors and
ionic solids. "' The interaction potentials are generally
obtained there without reference to lattice models: they
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are extracted, for example, through fits of the observed
dissociation energies, molecular conformations, and
vibrations, ' ' "or fits of calculated ' ' (e.g. , by
the Hartree-Fock or density functional ' ' Born-
Oppenheimer energy surfaces), or through pseudopoten-
tial perturbation expansions. In many cases, pk is
identified with interatomic interaction potentia/, not with
averages over the total energies [Eq. (2.5)]. A classic ex-
ample that serves to emphasize this distinction is the
Madelung (M) energy of a lattice configuration o.

(3.1)

where the prime excludes the i =j term and the pair in-
teraction potential

(3.2)

is the Coulomb interaction between point charges Q; and

Qz on lattice site R; and R . As is well known, this
series converges both slowly and conditionally due to the
slow decay of p, (unless one is summing over carefully
selected neutral clusters of sites). In contrast, the cluster
expansion considered in this paper [Eqs. (2.4) and (2.5)]
identifies the cluster parameters pk with interaction en-
ergies that renormalize a set of (possibly long-ranged) po-
tentials. In the context of the Madelung problem, the
efFective interaction energies of Eq. (2.4) take the form
(2.5)

2N

5 z =2 g II2 (o )EM(o ), (3.3)

representing an average over configurations of converged
lattice sum EM(o ). Hence, the (renormalized) effective
interaction energies [Pk ] can be of considerably shorter
range than conventional interaction potential [Pk
This is illustrated in Sec. IV E below.

The empirical approach of extracting [pk ] from ex-
perimental data has also been used extensively in the con-
text of lattice models of phase diagrams. There, one first
truncates the cluster expansion to a given range, and ad-
justs tpi, ] in the solution of the corresponding Ising
model of Eq. (2.4) to reproduce certain features (e.g. ,
transition temperatures) of the experimental phase dia-
grams. Examples include the fit of Kikuchi et al. of
Cu-Ag-Au phase diagrams to a nearest-neighbor Ising
model (m =1, k ~4) solved through the cluster-variation
method (CVM), the fit of Sigli and Sanchez of Al, Ni,
phase diagram through a nearest-neighbor pair model,
and a similar fit by Sanchez et al. using the nearest-
neighbor Lennard-Jones form for pk ]. While good fits
can be obtained within nearest-neighbor models, ' the
extent to which these ernpincal interactions renormalize
longer-range terms remains unknown, as is their physical
interpretation. These interaction energies can also be es-
timated directly from x-ray- or neutron-diffuse-scattering
measurements, as done, for example, by Cenedese et al.
for' Al& Ni and Fe& Ni

In contrast with the classical empirical interaction po-

b,E(o)=(EE(x)).scp~+ —,
' g V,', '(x; —x)(x, —x)

lJ

+ —,
' $ V~i&'(x; —x)(x —x)(xk —x)+ .

ij k
(3.4)

Here, the energy of the random alloy is calculated in-
dependently from an electronic Hamiltonian that is ex-
plicitly configurationally averaged, using the site
coherent potential approximation (SCPA), while V'"'
are effective k-body potentials and x, is the concentration
of atom B on site i. In the "concentration wave" ap-
proach, " ' V ' is obtained from the derivative of the
inhomogeneous CPA energy

(2i ~ (E[ i] x~cpAy(2)—
Bx;Bxj

(3.5)

whereas in the "generalized perturbation method"
the effective energies are obtained from a spectral integral
of transfer matrices and Green's functions. The SCPA
energy (E)scp~ common to both approaches was formu-
lated either within the tight-binding or the mum. n-
tin Korringa-Kohn-Rostoker (KKR) formalism. ' In
the former case, the total energy includes but the sum of

tentials discussed above which circumvent altogether the
consideration of the (quantum-mechanical) electronic de-
grees of freedom, the embedded-atom model ' (EAM)
describes configurational energies in terms of electron-
density-mediated interatomic energies. There, E(o ) is
expanded in terms of a sum over single-site (k = 1, m =0)
terms, each representing the energy of embedding atom i
in an electron bath of density p;, and a set of pair-
interaction terms. The site charge density p, includes the
configuration-dependent effect of the charge densities of
the surrounding atoms; embedding energies are described
within the density functional model, e.g. , through the
quasiatom approach of Stott and Zaremba or the
efFective medium approach of Ndrskov and Lang. In
many practical applications ' the parameters of the
electron densities, two-body potentials, and the embed-
ding functions are adjusted to fit experimental data (e.g. ,
equilibrium lattice constants, cohesive energies, vacancy
formation enthalpies, bulk and shear moduli).

A direct quantum-mechanical approach to calculating
interaction energies within the lattice model is provided
by the definition of Eq. (2.5). In practical calculations,
the number of configurations included in the sum are re-
stricted to 0 (10)—0 (10 ), and P (o ) =E(cr ) is evaluated
within simple non-self-consistent tight-binding models.
Applications of this "direct configurational average"
(DCA) method showed that (within the limitations of
an inherently short-ranged electronic Hamiltonian), the
pair interactions (p2 ] describing model binary transi-
tion metal alloys converge rapidly with the cluster size m.

Current quantum-mechanical approaches to calculat-
ing effective interaction energies —the "concentration
wave" (CW) method ' and the "generalized perturba-
tion method" (GPM) —are based on expanding
b,P(o. , V) relative to the random alloy average (b,P)i,
[Eq. (2.19)] without expanding the latter quantity in a
cluster from [Eq. (2.18)]:
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single-particle energies (the "band-structure" term), while
in the latter case "double counting" (electron-electron
Coulomb and exchange-correlation) terms could ' be in-
cluded.

The self-consistent KKR-CPA total energy (b,E)cpz
of the random alloy (including both band structure and
double-counting terms) has been calculated for fcc
Cu, Zn„alloys, ' yielding the composition-dependent
equilibrium lattice constant a (x), in good agreement with
experiment. The effective interactions, obtained for
Pdi Rh„(Ref. 49) and Cui Pd„(Ref. 48) were calcu-
lated, however, from the one-electron band-structure
terms, neglecting charge transfer, atomic relaxation, vari-
ation of the total energy with respect to volume, and non-
spherical terms in the atomic potentials. Despite this, the
calculated Pdi Rh phase diagram (using ideal mix-
ing entropy) and the short-range order diffuse scattering
map are in qualitatively good agreement with experi-
ment.

The CPA-GPM approach has been applied within
the non-self-consistent tight-binding d band model to a
large number of transition metal binary alloys, yielding (i)
predictions for fcc and bcc ground-state structures and
phase diagrams in terms of tight-binding constructs
such as d electron count per atom and d band widths, (ii)
formation enthalpies of ordered and disordered alloys,
(iii) predictions of relative stabilities of different ordered
structures at the same composition (e.g., 1.12 and
DO2z), and (iv) predictions of effective cluster interac-
tions, exhibiting a rather fast convergence as a func-
tion of the cluster size. Extensions in which the tight-
binding Hamiltonian is replaced by a KKR form within
the CPA-GPM were also reported.

Methods that are based on Eq. (3.4), e.g. , the CPA-
GPM or CPA-CW rely fundamentally on the adequacy of
the SCPA approach to the description of the total energy
of the randoln system and perturbations thereof. A11
such applications to date are based on the im-
plernentation of the CPA within the site-only approxima-
tion. This approach amounts to assuming that at a
fixed composition the properties of an atomic site in the
alloy (e.g. , electronic charge, local density of states, self-
consistent potential) do not depend explicitly on the
configuration of the surrounding atoms, including its first
nearest neighbors. The simulations of the electronic
structure of random configurations by Alben et al. ,
Davis et al. , and Gonis et al. demonstrated, however,
significant local environment effect on the density of
states. In actuality, this electronic inequivalence between
chemically identical species in the alloy (i.e., the different
A sites in a random configuration) would create nonvan-
ishing forces about the atoms, driving positional relaxa-
tions. The existence of a distribution of local charges
would also set-up a finite Madelung energy for the ran-
dom alloy. In short, the electronic "glue" creates about
each site a "sphere of inAuence, " whereby the structural
and chemical information associated with the atoms in
this sphere affect the local properties of the central atom.
The SCPA replaces this "sphere of inhuence" by a point.
The local density of states and total energy of such a
configuration is evaluated by replacing the distribution of

IV. CALCULATION OF EFFECTIVE
CLUSTER PARAMETERS pk ~ FROM P(o. )

A. Formalism

To the extent that the basic cluster expansion of Eq.
(2.9) converges regularly and rapidly with respect to the
figures [F] (a point examined below), one can use any
sufficiently large set of [P(o )] in Eq. (2.9) to evaluate the
effective cluster properties [pF]. Conversely, nonunique
values of [pF ] obtained from two different sets of
configurations [o ] and [cr'] of comparable sizes testify
to the importance of interactions beyond the truncation
limit used. This suggests that one can (i) establish a trial
maximum figure I',„ to be retained in the cluster expan-
sion of Eq. (2.9), (ii) select a computationally convenient
set of configuration [cr] (e.g. , periodic structures) from
which pF for F F,„can be obtained, and (iii) examine
convergence by using [pF ] to predict the property P(cr')
for other structures [cr']W[o.]; if this fails, F,„ is in-
creased until transferability is established.

Following Connolly and Williams ' we specialize the
expansion of Eq. (2.9) to a set of X, periodic structures
[o ]

= [s] for which (i) P(o ) can be readily calculated
(e.g., from band theory) and (ii) [ IIF(s)] are known trivi-
ally. This reads

max

P(s, V)=% g HF(s)DFp~ . (4.1)

One then obtains the efFective cluster properties [pF j ei-
ther through matrix inversion (if X, equal the number Nz
of figures used), as suggested by Connolly and Williams '

many inequivalent local environments by a uniform medi-
um, having the high symmetry of the empty lattice and
vanishing Madelung energy. There are but two distinct
average potential functions in the problem (one for
one for 8); all 3 atoms (and separately, all 8 atoms) are
taken to be electronically equal. Hence, in averaging
over all local environments to produce an effective medi-
um, the SCPA removes all geometrical aspects of the
problem (e.g. , the particular way in which an atom is
coordinated to a certain number of neighbors), retaining
but the topology (i.e., the correct coordination symmetry
underlying the Bravais lattice of the pure constituents).
The present authors find this approximation to be physi-
cally implausible for systems with significantly different
A versus B bonding properties {e.g. , sizes, ionicities, or
scattering strengths). We will further demonstrate this
point in Sec. IV E. We find there [Eq. (4.24)] that setting
the random Madelung energy to zero, as assumed by the
SCPA makes a 100% error in the electrostatic contribu-
tion to the ordering energy. In what follows, we will
hence cluster expand the energy of the random alloy [Eq.
(2.18)] and that of ordered structures [Eq. (2.16)] in a
precisely equivalent manner, avoiding single-site effective
medium averaging. We next demonstrate how the cluster
properties pk can be obtained from the configurational
properties [P{cr )] of a subset of distinct configurations.
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N,

y[ll (s)] 'P(s),pF ~D F

or (if X~ (N, ) by minimizing the weighted variance'
2NF

g co, P(s) —g ?IF(s)D~pF =minimum,
F

with the weights

co, =48Xc(s)/Xo(s) .

(4.3)

(4.4)

X (s) and XG(s) are the number of atoms per umt
cell and number of point group opera ions

1 . An immediate consequence of Eqs.
clusters with(4.2) is that if the contributions of clu

n u ration o. can be represented as a superposi-
tion of the properties tP(s)) o a se o
tures, i.e.,

P (o ) = g g, (o. )P (s), (4.5)

where the weights are

Fmax

y [II (s)] 'II
F

s } of E s. (4.3) or (4.5) could be calculated

dom" configurations) as long a
1 (e, without the site-only decoupling. naccurate y &~e.g. , wi

establish a sufficiently smallractice, one would seek to esta is a suprac
fi urations (see below), and judgeset of representative con gura

~ ~

b the extent to which the interaction pa-its adequacy y e ex
descrirameters extracte romt d f om it are transferable to the 'p-

tion of other configurations.
This met o oh d of "superposition of perio ic structures

s. (4.5) and (4.6)] has been used by a number
thors, restricting, however, m» o
fi ures. Within this approximation (to be examme

re onl five nonequivalent values of
m i.e., I =1 and k=O, 1, 2, , an

2 B tetrahedron withfigu re F is t e „4 „e
st-nei hbor model to0 & n & 4. Applications of this nearest-neig

of bulk alloys include the work of Con-
l " d Takizawanolloy and Williams,s ' Terakura et a . an

that of San-k ' ' on transition metal alloys, t a oand Terakura on
1 " and Carlsson on A Nichez and Carlsson, a

64I "on LiAl, of Srivastava et athat of Sluiter et a . on
e et aI ' "and Ferreira et al. on semiconduc-

tor alloys, and the work o Wei et a . on
ial allo s were reporte yloys. Applications to epitaxial y

66(b ) All ofet al "and by Wood and Zunger. Al o
th applications evaluated ~ s

s. A licationsrinci les electronic structure techniques. pp
o = 1 d the work of Bernard andto P =band gaps inc u e e

Zun er ' on II-VI semiconductor alloys, Wei an
69(b) d Miller on III-V semiconduc-Zun er and Ling ang

to P= spin-orbi t splittings weretors alloys. Application o
carried out by Chadi ' and by Wei and Zunger. ina y,

P =bond lengths in semiconductor alloys

69(b)and Zunger.
~ ~

resExtension o t e superr r
" r osition of periodic structu

er eda roach" of Eqs. (4.1) and (4.2) to include a conuerge
u to fourth neighbors in fcc systems)

was presented by Ferreira et al. "and by Wei et a .
for diferent II- an-VI and III-V semiconductor alloys, and y

h lar er,Lu et al " on transition metal alloys. Suc arger,
ster ex ansion areconverged representations of the c us p

considered next.

B. Selection of structures and figures

(b) bcc

FIG. 2. Real-space depiction of the figuresures Table II) used in
(a) fcc and (b) bcc. Here,the cluster expansion.

J2=—J K2=—J2 2, L2—:J2 3, M2:—J2 4, N2=—J25~ = 31~2, 1~

K3 =J3,2 J4—=Ja, 1 and K4=—J4,2.

h t there are two distinct convergence issues
in this a roach: (i) the truncation of the sum o(F and (ii) the truncation of
th umber of structures in q. 4.2) or (4.3) aftere nu

method, 46, 47e that the concentration wave mterms. ote a
thod encountedand the generalized perturbation metho

onl the first of these two convergence problems.
d' howed that one must start firstOur previous studies s owe

numberI r e set of figures and reduce their num erwith a rather arge se o
on the basis of convergence tests. In addition to e n

fi ure (k, m)=(0, 1) and the single-site figure
(k, m) =(1,1), we will use a hierarchical se o pa= 2 1), (2,2), (2,3), (2,4) for first, second, third,

cc as well asfourth fcc neighbors, respectively (fifth for bcc),
(k m)=(3, 1) and four-body (4, 1) terms.

1 II F 2dThese XF= 8 figures are defined in Ta e; ig.
them raphically. is isTh' the most extensive set of clus-
er

' '
d date in first-principles calcula-ter interactions use to a e

tions of metal alloys.
s thed' th et of X periodic structures IsI, t e

, hence, reproduceteraction parameters tpz, an pF, ,
P(o)of an arbitra. ry structure with equivalent precision.
Note that, depending on the properties
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cluster expansion permits (but does not require) that pF
depend on composition: the situation here is analogous
to the ex ansion of a wave function P (o)b.y a finite set of
(obviously nonunique) basis orbitals pF that cou, u
o e expa

need not depend on an energy parameter. We have previ-
ously shown how an optimal set of structures can be
selected so as to avoid any near-linear dependence (i.e.,
obtain a numerically stable inverse matrix iiF '). In the

SB Name:
(other)

Formula:

A1, (fcc) L12

A3B; AB3 A38; AB3

(P1 P2)

A28; AB

Crystal

Structure

A

~ B

Example

Bravais
Lattice

Unit

Cell

Vectors
Soace Group:

Int. Tables:

Shoenf lies:

Number:

Pearson Symbol:

Equivalent
Superlattice

Cu

Face-centered Cubic

( 0,1/2, 1/2)

(1/2, 0, 1/2)

(1/2, 1/2, 0)

Fm3m
5

225

cF4

None

Cu3 Au

Simple Cubic

(1, 0, 0)

(0, 1, 0)

(P, P, 1)

Pm3m
1

221

None

TiAI3

Body-centered
Tetragonal

( 1, 0, 0)

( 0, 1, 0)

(1/2, 1/2, 1)

l4/mmm
17

o4h

139

A38 along [201]

Body-centered
Tetragonal

(1/2, 1/2, p)

(1/2, -1/2, 0)

(1/2, P, 3/2)

l4/mmm
17

04h

t16

A2B1 along [001]

SB Name:
(other)

Formula:

L10

AB

L11

AB

(CH, "40")

A282

(Z2)

A2B2

Crystal

Structure

A

~ B

Example

Bravais
Lattice

Unit

Cell

Vectors

Space Group:

Int. Tables:

Shoenf lies:

Number:

Pearson Symbol:

Equivalent
Superlattice

CuAu-I

Simple Tetragonal

( 1/2, 1/2, 0)

(-1/2, 0,1/2)

( 0, 0,, 1)

P4/mmm
1

o4h

123

tp4

A&B& along [001]

CuPt

Rhombohedral
(Triagonal)

( 1/2, 1/2, 1 )

( 1,1/2, 1/2)

( 1/2, 1, 1/2)

R3m
5

03d

166

hR32

A&8& along [111]

Nbp

Body-centered
Tetragonal

( 1, 00)
( 0, 1, 0)

(1/2, 1/2, 1)

l4&/amd

19
o4h

141

ti8

A2B2 along [201]

Simple Tetragonal

( 1/2, 1/2, 0)

(-1/2, 1/2, 0)

( 0, 0, 2)

P4/nmm
7

129

tps

A282 along [001]

fcc corn ounds used in the cluster expansion. Table III gives the lattice-averagedFIG. 3. Crystal structure information for the cc compoun s use in e c . a ice avera e

spin products Vik or ese sVi f th tructures. In cases where a structurbereicht (SB) symbol is unavai a e, we ave

top).
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present study we ave useh sed 12 fcc and 12 bcc structures
that satisfy the above conditions. They are shown in
Fi s. 3 and 4 that also give the unit cell vectors, Bravais
lattices, space groups, and structu - yp y

Figs. 3 an a as
re-t e s mbols. In

where a structure-type symbol is unavai a le in thecases w ere a s

the lattice-averaged spin products HkII s) and degenera-
cies Dk, m [E . (2.12)] (D is set, for convenience, to uni-0, 1

SB Name:
(other)

Formula:

A2, (bcc)

A;B

003

A3B; AB3

L6p

A3B; AB3

C11b

A2B; AB2

Crystal

Structure

QA
B

0

Example W Bi F3, Cs3Sb Cu Ti3 MoSi2

Bravais
Lattice

Unit

Cell

Vectors
Space Group:

{-1/2, 1/2, 1/2)

( 1/2, -1/2, 1/2)

( 1/2, 1/2, -1/2)

(0, 1, 1)

(1, 0, 1)

{1, 1, 0)

(1, 0, 0)

(0, 1, 1)

(0, -1, 1)

Body Centered Cubic Face Centered Cubic Simple Tetragonal Body - Centered
Tetragonal

(1, 0, 0)
( 0, 1, 0)
(1/2, 1/2, ) 3/2)

Int. Tables

Shoe nf lies:

Number:

Pearson Symbol:

Equivalent
Superi attice

Im3m

o'
h

229

cI2

None

Fm3m

p5

225

cF16

A3B1 along [11 1]

P4/mmm

tP4

None

l4/mmm

17
04h

139

tI6

A2B1 along [001]

SB Name:
(other)

Formula:

B2

AB AB

B32

A282

B11

A282

Crystal

Structure

Qa

Example

Bravais
Lattice

Unit

Cell

Vectors

Space Group:

Int. Tables:

Shoenf lies:

Number:

Pearson Symbol:

CsCl

Simple Cubic

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Pm3m
1

221

cP2

~IrV

Centered
Orthorombic
(1/2, 1/2, 1/2)

{1/2,-1 t2, 1/2 )

( 1, 0, 1)

Cmmm
19

oC8

NaTI gTiCu

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 2)

Fd3m
7

227

cF16

P4/nmm

7
D4h

129

tp4

Face-centered Cubic Simple Tetragonal

Equivalent
Superlattice A1B1 along [001] A1 B1 along [101] 2B2 along [111] A2B2 along [001]

FIG. 4. Crystal structure information for tr the bcc compoun s consi erep d 'd d in the cluster expansion. Table IV gives the lattice-
'cht (SB) s mbol is unavailable, we have made one upfor these structures. In cases where a structurbereic t sym o 'averaged spin products IIk or t ese s ruc ure .

(given on top).
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TABLE II. Definition of the basic figures in the fcc and the bcc lattices and their degeneracies DF. We use the lattice parameter
a =2. See Fig. 2 for a real-space representation of these figures.

Figure
symbol

(0,1)
(1,1)
(2,1)
(3,1)
(3,2)
(4, 1)
(4,2)
(2,2)
(2,3)
(2,4)

(2,5)

DF

3
12
6

fcc
Site positions

(in units of a =2)

Empty
(0,0,0)
(0,0,0),(1,1,0)
(0,0,0),(1,1,0),(1,0, 1)

(0,0,0),(1,1,0),(1,0, 1),(0,1,1)

(0,0,0),(2,0,0)
(0,0,0),(2,1,1)
(0,0,0),(2,2,0)

DF

12

bcc
Site positions

(in units of a=2)

Empty
(0,0,0)
(0,0,0),(1,1,1)

(0,0,0),(1,1,1),(1,1,—1)

(0,0,0),(1,1,1),(1,1,—1),(2,0,0)
(0,0,0),(2,0,0)
(0,0,0),(2,2,0)

(0,0,0),(2,2,2)

ty) for these structures. Since we wish to use the same
canonical set of structures and figure for all alloys studied
here, we examine next how these sets predict, via the
cluster expansion, simple configurational properties P(o )

such as moments of composition, molar volumes, and
Madelung energies. To the extent that a single set of
structures and figures can be used to describe such a
range of properties, the approach would be deemed both
practical and physically appealing.

C. Cluster expansion of the moments of the composition

Equation (2.18) shows that the excess energy of a ran-
dom alloy can be written as a power series of composi-
tion, where the coefficients of X, X, and X, for exam-
ple, are determined primarily by pair, three-body, and
four-body interactions, respectively. It is hence impor-
tant that the general cluster expansion correctly capture
the various powers X of the composition, in particular
the dominant A, =2 (pair interaction) term. Using our set
of N, =12 structures (Figs. 3 and 4) and Nf =8 figures,
we specialize Eq. (4.1) to P (s) =X, , i.e.,

X, =N g IIF(s)DFx~( A, ) .
F

(4.7)

Here, X, is the A,th power of the composition of
X=m l(n +m) of the B atom in some structure A„B
We determine the N~ expansion coefficients p~=x~(A, )

from N, values of P(s) =X, of the ordered structures Is I

by minimizing the variance of Eq. (4.3) (the cluster ex-
pansion reproduces identically the A, =0, 1 moments).
Table V compares for 12 fcc and 12 bcc structures the ex-
act composition square X, with that recalculated by the
cluster expansion, using the coefficients obtained from
Eq. (4.7). We see that using this set of structures and
figures reproduces X, rather accurately: the standard de-
viations y are 0.009 and 0.008 for fcc and bcc lattices, re-
spectively. The errors are larger for X, (X=0.021 and
0.014 for fcc and bcc, respectively), but this would not
affect seriously the calculated energies, as X multiplies a
rather small three-body term (Sec. V C below).

D. Cluster expansion of molar volumes

Another lattice property P (o ) whose cluster expansion
is physically relevant is the equilibrium molar volume
V(o) of configuration o. Using the linear-muffin-tin-
orbital (LMTO) method (described in Sec. V) we have
minimized the total energies AE(s, V) of 12 fcc and 12
bcc ordered structures Isj of A1Ni compounds, finding
for each (without any cluster expansion) the equilibrium
volume

d b,E(s, V)
dV

=0.
v= v")(s)

eq

(4.8)

These directly calculated equilibrium volumes are denot-
ed V,"'(s). We then cluster expand, for P(s) = V(s)

V(s) =N y II,(s)D,v, , (4.9)
F

dJF( V)=N g IIF(s)D~ (4.10)
F

where pF =JF are the expansion coefficient for the ener-
gy. This gives the equilibrium volume denoted V,'q'(s).
Table VI compares these three equilibrium volumes,
showing good agreement between them, and rapid con-
vergence of the volume cluster expansion (4.9).

Equations (2.15) and (2.16) show that the normaliza-
tion term po &

and the site-only term p& &
give the linear

part [second term on the right-hand side of Eq. (2.15)] of
the property P(o), whereas the many-body terms pk
with k ) 1 and m )0 describe deviations from linearity
["bowing" of P(o )]. Table VII gives the expansion
coefficients vz of the volume series of Eq. (4.9) for the
A1Ni compounds, showing only small "bowing" of V(x)

=0,

obtaining the coefficients pF =vF by minimizing the cor-
responding variance in Eq. (4.3). Inserting these expan-
sion coefficients into Eq. (4.9) gives the recalculated
volumes, denoted V,' '(s). Finally, we calculate the
volumes in a third way, by minimizing the cluster expan-
sion for the energies
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TABLE V. Comparison of the exact expectation values of the composition squared X with the values obtained from the cluster
expansion of Eq. (4.7) (using NF =8 and N =12). The weights are given by Eq. (4.4). The crystal structures are shown in Figs. 3
(fcc) and 4 (bcc); Fig. 2 gives the figures (k, m ) used. The last line gives the standard deviation.

Comp.

A

A3B
A3B
A,B
AB
AB
A2B2
AqB2
AB2
AB3
AB3
B

Deviation:

Exact
X

0.0000
0.0625
0.0625
0.1111
0.2500
0.2500
0.2500
0.2500
0.4444
0.5625
0.5625
1.0000

Struct.

fcc
L lq

DO2q
Pl
L lp
Lli
cc40)%

Z2
P2

DO22
L l~
fcc

fcc

Weight

1

4
12
9
6
8

12
12
9

12
4
1

Clust.
X

0.0000
0.0664
0.0612
0.0968
0.2617
0.2500
0.2513
0.2643
0.4301
0.5612
0.5664
1.0000

0.0089

Struct.

bcc
DO3
L6p
Cl lb
B2
A)

B32
B 1 1

Cl lb
L6p
DO3
bcc

bcc

Weight

1

4
12
9
2

12
4.

12
9

12

1

Clust.
X

0.0000
0.0601
0.0649
0.1001
0.2783
0.2476
0.2524
0.2610
0.4334
0.5649
0.5601
1.0000

0.0082

TABLE VI. Comparison of the equilibrium molar volume (in cm /g-at. ) of A1& Ni intermetallic
compounds as obtained by three different methods. V"'(s) is obtained by minimizing the LMTO ener-

gy of structure s (no cluster expansion), V' '(s ) is obtained by cluster-expanding molar volumes using
the 12 structures (Figs. 3 and 4) and 8 interactions (Fig. 2), and V"'(s ) is found by minimizing the cor-
responding energy cluster expansion with respect to volume. Note the good agreement between the
cluster-expanded values V' ' and V' ' and the "exact" result V" '. Here, y denotes staridard deviation.

Structure

fcc (A =Al)
L12 ( A3B)
DO22 (A3B)
pl (A2B)
Ll, (AB)

"40" (A282)
Z2 (A2B2)
p2 ( AB2)
DO22 ( AB3 )

L12 ( AB3)
fcc (B=Ni)
x

V[ )( )

[Eq. (4.8)]

9.595
8.258
8.285
7.891
7.191
7.337
7.173
7.479
6.861
6.675
6.630
6.343
0

fcc

bcc

V(2)(s )

[Eq. (4.9)]

9.595
8.276
8.279
7.919
7.174
7.337
7.181
7.478
6.835
6.665
6.661
6.343
0.016

V"'(s)
[Eq. (4.10)]

9.595
8.298
8.272
7.963
7.155
7.337
7.173
7.456
6.744
6.670
6.647
6.343
0.046

bcc (A =Al)
DO3 ( A3B)
L6p ( A3B)
Cll, (A,B)
B2 (AB)
A) (AB
B32 ( A2B2)
B11 ( A2B2)
C»b (AB, )

L6p ( AB3 )

DO3 (AB3)
bcc (B=Ni)
x

9.738
8.307
8.269
7.811
7.079
7.310
7.270
7.395
6.810
6.667
6.678
6.397
0

9.738
8.275
8.269
7.836
7.102
7.310
7.271
7.403
6.769
6.668
6.709
6.397
0.019

9.738
8.329
8.223
7.872
6.917
7.289
7.292
7.377
6.837
6.672
6.696
6.397
0.040
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TABLE VII. The interactions DFU+ for the volume cluster
expansion (in cm /g-at. ) of Eq. (4.9) for Al& Ni compounds.
V' '(s) of Table VI are the equilibrium volumes obtained with

these expansion coefFicients.

Figure

(o, 1)
(1,1)
(2, 1)
{3,1)
(3,2)
(4, 1)
(4,2)
(2,2)
(2,3)
(2,4)
(2,5)

fcc
V{s) series
[Eq. (4.9)]

7.355
—1.620

0.521
—0.006

—0.048

0.066
0.076

—0.001

bcc
V(s ) series
[Eq. (4.9)]

7.374
—1.618

0.121

—0.004

—0.005
0.051
0.014

0.001

(i.e., deviations from Vegard s rule), with Uz i being the
leading nonlinear term. Among pair interactions, we see
that the first neighbor term dominates, i.e.,

D2, 1U2, 1 D2, 2U2, 2& 2, 3U2, 3& 2, 4 2, 4 (4. 1 1)

Regarding the many-body terms, we see that pair interac-
tions dominate over the three- and four-body terms:

D2, 1~2, 1 + D3, 1U3, 1~ D4, 1U4, 1 (4.12)

Since the bowing in V(x) is rather small, we will assume
for the CuX compounds (X=Au, Pd, Pt, and Rh) the
linear approximation. This is discussed further in Sec.
VA.

E. Cluster expansion of electrostatic lattice energies

Since this paper focuses primarily on the cluster expan-
sion of P(o)=total lattice. energy, it is of interest to find
a closely related quantity for which exact analytical re-
sults are available, so the convergence of the expansion
can be examined. Such a case is offered by the total elec-
trostatic energy of a lattice of point charges [Eqs. (3.1)
and (3.2)], i.e., the classic Madelung problem.

Evaluation of the Madelung energy requires (i) mod-
eling the distribution of point charges on the various lat-
tice sites i occupied by (generally, crystallographically
inequivalent) A and B atoms and (ii) summation of the
electrostatic energies in Eq. (3.1) for a given model of
point charge distribution. The choice of a model for a
point charge distribution is generally nonunique; only in
simple ordered binary AB compounds (e.g. , CsC1) where
there are just two inequivalent sublattices, one can make
a unique choice Q' '= —Q' "' for all sites.

Consider first problem (i). As discussed in Sec. III,
methods that are based on the SCPA approach (i.e.,
CPA-GPM or CPA-CW ' use a single-site decou-
pling of the configuration average in which only a single
scatterer is treated exactly, while the rest are incorporat-
ed into an effective medium whose atoms are taken to be
equal to one another. One is hence assuming there that

in an arbitrary random configuration the net charge Q;
on site i does not depend on the environment of this site;
all A atoms are assumed to have the same net charge
(and so do all B atoms). It then follows ' ' that the
configuration average (Q;QJ )t, in Eq. (3.1) (appropriate
to the random alloy) factors into the product
(Q; )ti ( QJ )z which is zero [on account of global charge
neutrality (Q, )ti =0], hence, (E~(o.)) —=0. Consider,
however, a random distribution of many A and 8 atoms
on a fixed lattice. This will generally create various crys-
tallographically inequivalent A sites (and separately, B
sites) that are distinguished by difFerent local atomic ar-
rangements around them. It then seems reasonable to as-
sume that an atom surrounded locally by atoms of the
same chemical type would have a smaller net charge
transfer than an atom surrounded, e.g. , only by atoms of
the opposite type. Hence, a random occupation of sites
need not lead to a random distribution of the physical
properties of sites, e.g., charges. We hence model the net
charge Q; to be proportional to the number of atoms of
opposite type in the first coordination shell (containing Zi
atoms):

Z ]

Q, =x y [s, —s'„'+"],
k=1

(4.13)

~ ~ M + ~

where S; is the spin on site i, 5 k
+" is the spin on one of

the Z, atoms that are nearest-neighbors to site i, and A, is
a scaling constant determining the maximum charge
transfer (2Z, A, ). This is not an arbitrary model: self-
consistent calculations of Q; for many ordered structures
of Cu-Pd, Ag-Au, and Ag-Pd show a striking linear
dependence of Q, on the occupations of the nearest
neighbors, in clear conAict with the SCPA. The charge
distribution of Eq. (4.13) has the following properties: (i)
the charges on A's and B's have opposite signs: different
A sites (and different B sites) can have different charges
refiecting variations in the local atomic arrangements; (ii)
electroneutrality g, Q; =0 is naturally satisfies; (iii) EM of
Eq. (3.1) is symmetrical with respect to the A~B re-
placement; and (iv) it reduces to the standard
definition "for prototype AB ordered lattices.

The Madelung energy per atom of Eq. (3.1) can be
written for fcc-based structures s as

—aM(s)(16K, )
EM(s) = (4.14)

where aM(s) is the Madelung constant, R =a/2/2, is
the nearest-neighbor bond length and a is the cubic lat-
tice constant in the fcc structure. Our model reduces to
the standard definitions for simple ordered compounds
such as the I. lo when q =16k,. We will next carry out a
cluster expansion for aM(s), evaluating from the electro-
static energy of the random alloy (al )z. This will then
be compared with the analytic results for (aM )~.

I. Cluster expansion of (a~ )R

Using Ewald's method "we have calculated the "ex-
act" Madelung constant a~(s) for our 12 canonical fcc
ordered structures of Fig. 3, within the charge model of
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Eqs. (4.13). The upper part of Table VIII (denoted
"structures belonging to basis") gives the point charges
obtained by this model and the "exact" Madelung con-
stant aM(s) obtained by applying Ewald's method to
these structures. We then cluster-expand these aM(s) us-
ing a set of pair-interactions Ipz ) with I =1, 2, 3, 4,
and 5 (Since the Madelung energy represents pair interac-
tions, all k&2 interaction energies pk vanish. This in-
creases the linear dependence of structures. In this case,
out of the 12 canonical structures, only six of them are
linearly independent. ) Minimizing the variance of Eq.
(4.3) yields

pz~& =0.73675 p2 ]
= 0.32393,

p2 2 =0.08345, p2 3 0 06093

p24 =0.03478, pq 5
=0.001 39 . (4.15)

Note that this cluster expansion converges rapidly with
the interatomic separation m, unlike the interaction po-
tentials p2 of Eq. (3.2). These elfective cluster energies
of Eq. (4.15) can then be used to calculate the Madelung
constants using the cluster expansion (CE) of Eq. (4.1).
The upper part of the Table VIII gives the recalculated
Madelung constant aM (s).

To test the convergence of the cluster expansion for the
Madelung energies, we now use Eqs. (4.5) and (4.6) along

with the set of interaction energies (4.15) and predict
aM(s') for additional structures ts'] = Is J. The accuracy
of these predictions can then be examined by comparing
them to the Madelung constant aM(s') calculated for
these additional structures directly by Ewald's method.
The additional structures Is'I that we select can be de-
scribed as superlattices whose layers are oriented in a
given direction Cs. We select a rather general set, corre-
sponding to a range of ordering vectors Cx..

Y2= AzBz with G=(1, 1,0),
V2= AzB~ with G=(1, 1, 1),
IV2= A2B2 with G=(1,1,3),
Zl, Z3= A3B and AB3 with G=(0,0, 1),
Y'I, I'3= A3B and AB3 with G=(1, 1,0), (4.16)

Vl, V3= A3B and AB3 with G=(1, 1, 1),
IVI, W3 = A 3B and AB3 with G = ( I, I, 3),
al, a2= AzB and ABz with G=(1, 1, 1),
y„yz= A2B and AB2 with G=(1,1,0) .

The bottom half of Table VIII compares the Madelung
constant aM(s') of these additional "structure not in

TABLE VIII. This table gives, for various structures s, the point charges Q("(s) on atom t ( = A or
8) at site i according to the model of Eq. (4.13) and their Madelung constant aM(s) [Eq. (4.14)]. The
top part of this table gives results for the 12 canonical fcc structures (Fig. 3) used in the cluster expan-
sion of the Madelung energies. aM(s) is the "exact" (E) Madelung constant calculated from Ewald's
methods and a~ (s) are the constants recalculated according to the cluster expansion (CE) using the
coeScients extracted from these 12 structures. The bottom part of the table gives predictions of addi-
tional structures outside the set of 12, defined in Eq. (4.16). Note that these predictions compare very
well with those obtained directly by Ewald s method for these additional structures. Structures A„B
and A B„with the same symmetry have the same Madelung energy, hence we list only the A-rich
member for each pair.

Structure
Q( 3) lg ) Q( A)(~ ) Q(B) (s )

&M(s)
(Ewald)

(cluster
expansion)

A1 (A)
L12 (A3B)
DOq2 ( A3B)
Pl (A~B)
L1. (A'B)
L1, (AB)
"40" (A~B2)
Z2 (A,B, )

0
—8A,
—8A,
—8A,

—16K,
—12k,
—16k,
—8X

Structures belonging to basis
0

24k
—8k 24K,

16K,

16K,

12K,

16k,
8k

0
1.195 77
1.216 91
0.448 63
1.594 36
0.695 09
1.636 64

—0.135 37

0
1.1958
1.2169
0.4486
1.5944
0.6951
1.6366

—0.1354

Y2 ( A2B2)
V2 {A2B2)
8'2 (A2B2)
Z1 (A B)
Y1 ( A3B)
V1 ( A3B)
8'1 ( A3B)
a1 {A2B)
y1 (A2B)

—12K,
—6A,

—14K
—8A,
—8A.
—6A,
—6A,
—6A,

—10K.

Structures not in basis
12K,

6A.

14K,

0 16K
—4k 20K,

0 12K
—8X 20K,

12K,

20k,

0.588 82
—0.240 53

1.067 25
0.330 91
0.693 00
0.053 51
0.707 40
0.072 07
1.204 58

0.5837
—0.2434

1.0635
0.3309
0.6905
0.0521
0.7055
0.0694
1.2029
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basis" (calculated directly by Ewald's methods) with
those predicted by the cluster expansion, using the
coefficients of Eq. (4.15). The agreement is seen to be
very good. We hence judge this expansion to be con-
verged to within the error limit reAected in Table VIII.

Having established the convergence and transferability
of the cluster expansion coefficients for Madelung con-
stants, we can use Eq. (2.18) and predict the Madelung
energy for the perfectly random (R) alloy. This gives,
within the charge model of Eq. (4.13)

aM(R, x)=4x(1 —x) X0.7368 (for X, =12) (4.17a)

using the 12 canonical structures and Ave effective pair
interactions, or

aM(R, x) =4x (1—x) X0.7392 (for X, =27) (4.17b)

using in the basis all structures of Table VIII and six
effective pair interactions.

&noiyric results for & &M &R

3. Discussion of the Madelung energies

In the remainder of this paper we will apply the same
cluster expansion procedure used above for the Madelung
energies (Sec. IV E 1) to calculate the total electron plus
ion energies. In the latter case, analytic results are not
available for comparison. However, the agreement found
here between the truncated cluster expansion and the an-
alytic results for the Madelung lattice, lend credence to
this general procedure. Observe, in particular, that
despite the long range of the bare Coulomb interactions

p;i of Eq. (3.2), the renormalized interactions used
throughout this paper [e.g. , Eq. (3.3) and (4.15)] are of
considerably shorter range, leading to a rapid conver-
gence of the cluster expansion.

Our results E~(R )%0 [Eqs. (4.14) and (4.22)] should be
contrasted with EM(R):—0 assumed by all models that
are based on the homogeneous SCPA. The contribution
of the Madelung energy to the "ordering energies"

(4.23)

where
F, (x)= —4x(1 —x)(2Z, ICi), —

(4.20)I' »( )=x4x(1 —x)K
and K is the number of nearest-neighbor atoms shared
by sites i and i +m. In an fcc lattice Z is 12, 6, 24, 12,
24, and 8 while K is 4, 4, 2, 1, 0, and 0 for shells m =1,
2, 3, 4, 5, and 6, respectively. Note that E»=0, hence
F»=0. From Eqs. (4.19) and (4.20) we have

A,
2

&EM(o ) &=4x (1—x)

(4.21)
Equating this to the definition of Eq. (4.14) then gives the
analytical result

uM(R, x) =4x (1—x) XO. 739 5182. . . . (4.22)

This analytic result should be compared to that of the
truncated cluster expansion [Eq. (4.17)]: the agreement is
seen to be excellent; using more than six interactions im-
proves this rapidly.

We next evaluate the Madelung energy analytically
without using the cluster expansion, so that the precision
of the latter can be evaluated. The configurational aver-
age of the Madelung energy, appropriate to a random al-
loy is

Q;Q, ~

ij ij

1 " &;;+.&~
(4.18)

m m

where Q;+ is the charge on an atom in the mth shell
(containing Z atoms) about the origin at i and R is the
distance to the origin. Substituting our model (4. 13) for
the distribution of point charges into Eq. (4.18) gives

oo Z«&,=, y F.(), (4.19)
m=1 m

are given in Eq. (4.24) in units of (16K, ) /2R; we give in
parentheses the values corresponding to the SCPA:

L 10..—0.8549 ( —1.5944),

L 1,:+0.0444 ( —0.6951),
"40" —0. 8970 ( —1.6366),

Z2:+0.8749 (+0.1354),

L 12:—0.6411 ( + 1.1958),
DO:—0.6623 (

—1.2169) .

(4.24)

V. CLUSTER EXPANSION OF EXCESS
TOTAL ENERGIES

A. Electronic Hamiltonian and its solution

The excess total energy of Eq. (2.15), taken with
respect to equivalent amounts of the solid binary consti-
tutes in Aj „B

bE(s, V)=E(s, V) —(1—x, )E(A, V~)

x,E(B,V~)— (5.1)

We see at x =
—,
' the structure "40*' has the lowest

Madelung ordering energy in this group, whereas at x =
—,
'

or x =
—,', the D022 structure has a lower Madelung order-

ing energy than the L lz structure. '"' It is important to
emphasize that for systems with significantly different 3
versus B bonding properties one can expect also
significant charge transfer (proportional to A.), and that in
such cases the SCPA introduces large errors in the order-
ing energy as seen in Eq. (4.24). This could alter qualita-
tively ordering predictions by the SCPA.

Having established the adequacy of our canonical set
of figures (Fig. 2) and structures (Figs. 3 and 4) to cluster
expansion of "simple" lattice properties, we proceed to
apply this method to the total quantum mechanical ener-
gies.
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was calculated for 12 fcc and (for AINi and CuPd) 12 bcc
structures Is[ shown in Figs. 3 and 4, respectively. The
values of b,E(s, V) at the equilibrium volume V, (s) give
the formation enthalpies bH(s). Note that the scale of
b,E(s, V) is not that of the total energy of a given struc-
ture, or that of the cohesive energy, but rather the rela-
tiUe energy of A„B with respect to its constituents
(-10 eV). The large constant terms appearing in E(s)
(e.g. , sum of atomic energies) are largely canceled in the
construct of Eq. (5.1). We calculate EE(s, V) in the spin-
unpolarized local-density approximation (LDA). The
LDA equations are solved by the linearized augmented-
plane-wave (LAPW) method; ' in one case (A1Ni) we also
use the LMTO method. In the LAPW calculations we
use the Wigner form of c. , and V „whereas in the
LMTO calculation the form of von Barth and Hedin
has been used (with the parameters given by Moruzzi
et al. ' '). The charge density was determined self-
consistently and variationally from the semirelativistic
(i.e., retaining all relativistic terms but spin-orbit interac-
tions) local-density Hamiltonian.

Note that unlike some other calculations
(but not Ref. 51) of alloy energies our total energy expres-
sion includes the correct "double counting terms. " Note
further that all lattice sums over the potentially long-
range interactions are calculated to convergence. Hence,
the effective interaction energies pF obtained from a su-

perposition of such total energies [e.g., Eq. (4.2)] converge
faster with the range of the figure F than would be ex-
pected had pF been an interatomic interaction potential.

In the LAPW calculations of the total energies of the
Cu-based intermetallic systems, we use the mufFin-tin
(MT) radii RMT =2.4 a.u for Au, Pd, Pt, and Rh, while
for Cu we use RMT=2. 2 a.u. No shape approximation is
made for either the potential or the charge density. In-
side the MT spheres, the nonspherical charge density and
potential are expanded in terms of lattice harmonics of
angular momentum I +8. A basis set of about -90
LAPW's/atom are used (equivalent to kineic energy cut-
off of 16.7 Ry). The Brillouin-zone (Bz) integration is
performed using the special-k point methods, "with
60—400 special k points in an irreducible wedge of the BZ
(depending on the structure and the material). The con-
vergence error for total energy is estimated to be about
10 meV/atom.

The convergence of formation enthalpies with respect
to the k-points sampling deserves further comments. We
find that structures with 2 —3 atoms per cell and small
number of symmetry operations (e.g. , the Llo and L 1,
structures) tends to require a large number of k points for
obtaining converged results. For example, in the case of
the CuPt alloy, the formation enthalpies of the unrelaxed
L 1& structure are —90.4, —107.6, and —111.9
meV/atom, using 60, 110, and 408 k points, respectively.
Similarly for the unrelaxed L 1 i structure of the CuPd al-

loy, the enthalpies are —50.0 —55.8, —72.4 and —66. 8

meV/atom, using 60, 110, 280, and 408 k points, respec-
tively. On the other hand, the energies for other struc-
tures (e.g. , fcc, bcc, 82, L 12, and DO22) converge rather
rapidly with the number of k points. Using again the

bE(s, V) = A (s)+ C(s) V +D (s) V' (5.2)

where B' is the pressure derivative of the bulk modulus.

B. Results for elemental solids and ordered compounds

Table IX gives the calculated equilibrium parameters
for the elemental metals studied here. Our previous stud-
ies~7 [as well as the volume cluster expansion of Eq. (4.9)]

TABLE IX. Calculated [using a fit to Eq. (5.2)] and experi-
mental equilibrium lattice constants a, bulk moduli B, and their
pressure derivatives B' for solid Al, Ni, Cu, Rh, Pd, Pt, and Au.

Elemental
Metal

a (A)
Calc. Expt. '

B (aPa)
Calc. Expt.

B'
Calc.

Al(fcc)
Al(bcc)
Ni(fcc)
Ni(bcc)
Cu(fcc)
Cu(bcc)
Rh(fcc)
Pd(fcc)
Pd(bcc)
Pt(fcc)
Au(fcc)

3.994
3.186
3.480
2.770
3.562
2.836
3.795
3.882
3.089
3.935
4.094

4.050

3.524

3.615

3.803
3.890

3.923
4.078

87
88

248
224
183.3
179.2
292.9
211.1
207.2
287.0
182.5

72.2

186

137

270.4
180.8

278.3
173.2

5.42
5.67
4.85
5.28
5.33
5.28
5.60

'Reference 1.
Reference 13(b).

Cu, Pt as an example, in the case of the L 12 structure,
the enthalpies for Cu3Pt are —112.9 —116.4, and
—115.8 meV/atom, using 20, 56, and 120 k points, re-
spectively, while for CuPt3 the enthalpies are —100.4
—96.4, and —96.3 meV/atom, using 20, 56, and 120 k
points, respectively.

In the LMTO calculations we use the atomic-sphere
approximation (ASA) with the "combined correction"
(CC) (without the combined corrections, the integrals
entering the Hamiltonian and overlap matrices are ap-
proximated by integrals over the Wigner-Seitz spheres.
When the combined correction is included, a more realis-
tic potential is used to treat the interstitials and sphere
overlap region, and the integrals are evaluated over the
correct Wigner-Seitz cell). The basis set consists of 1 =0,
1, and 2 orbitals for both Ni and Al; the Wigner-Seitz
spheres have the same sizes for both elements. 120 k
points are used in the irreducible section of the Brillouin
zone for pure Ni and Al (fcc or bcc), whereas for the cu-
bic A„B„compounds we use 120/(n +m) k points. For
systems with lower symmetries the number of k points
was increased in order to keep the spacing of points in
the Brillouin zone nearly constant. The equilibrium lat-
tice constant a, (s) was found from a three-point para-
bolic fit to E(a; ) i =1, 2, 3; the energy was then recalcu-
lated at this interpolated a, (s). The internal precision, is
estimated at 10 meV/atom.

In both LMTO and LAPW calculations we have fit the
equation of state b,E(s, V) to a Murnaghan form
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V(s) =(1—x, ) V( A )+x,(B), (5.3)

suggested that little precision is lost for the Cu com-
pounds if we linearize the equilibrium volumes and bulk
moduli with respect to composition, i.e.,

V(CuPd) =88. 168 a. u.

B(CuPd)=1. 935 Mbar,

B '(CuPd) =5.60,
(5.5)

V(Cu) =76.882 a. u.

B(Cu)=1.798 Mbar B'(Cu)=5. 86,
V(Pd) =99.454 a.u.

B(Pd)=2.072 Mbar, B'(Pd)=5. 33 .

The 50%-50% linear averages of the above are

(5.4)

and similarly for B (s). For example, the LAPW calculat-
ed volumes, bulk moduli B, and their pressure derivatives
B' for the bcc elemental solids are V ( CuPd ) =87.744 a. u.

B (CuPd)=1. 952 Mbar,
B' (CuPd) = 5.62,

(5.6)

i.e., the averages are within better than 1% from the
directly calculated values. Results in the same range are
obtained for Cu3Pt and CuPt3 in the I. lz structure. We
hence use the linearized volumes and bulk moduli for the

whereas the directly calculated values for the CsC1 struc-
ture of (CuPd) are

TABLE X. Formation enthalpies hH (in meV/atom) of the unrelaxed (ur) and relaxed (r) fcc compounds considered here, and the
unit cell volumes (in cm /mole) at which the calculations were performed. The first line gives the unit cell volume, the second line
gives the unrelaxed KH„„and the third line gives the relaxed hH, . All Cu-based compounds are calculated using the LAPW method
with the Wigner exchange correlation, whereas the Al-Ni compounds were calculated using the LMTO method with the von Barth-
Hedin exchange correlation. The LMTO calculations were performed only for unrelaxed structure. Where available, we also give
the formation enthalpies obtained by previous calculations and experimental values.

A =Cu
B=Au

A =Cu
B=Pd

A =Cu
B=Pt

A =Cu
B=Rh

A =Al
B=Ni

L12
A3B

7.685
—35.1
—35.1
—37'

—74.2
—64.9'

7.304
—85.0
—85.0
—78

7.395
—115.8
—115.8
—117

7.159
68.5
68.5

8.258
—233
—220'

DO22
A3B

7.685
—30.8
—31.7

7.304
—75.5
—76.4

7.395
—96.7
—97.6

7.159
72.0
72.0

8.285
—237

Pl
A, B

7.979
59.9

—5.6

7.471
—36.4
—45.6

7.592
—40.8
—66.4

7.277
110.2
108.0

7.891
—234

L1O
AB

8.567
—33.4
—62.0

—91.1"
—69.7'

7.805
—75.9
—86.3
—68

7.988
—83 ~ 3
—98.9

—117.0

7.515
168.8
164.0

7.191
—580
—600'

L li
AB

8.567
68.1

28.6

7.805
—66.8
—82.0

7.988
—111.9
—128.9
—206.7'
—174.3

7.515
98.9
92.8

7.337
—355

c c409 0

A2B~

8.567
—15.2
—20.0

7.805
—76.4
—84.6

7.988
—63.8
—63.8

7.515
94.6
93.7

7.173
—594

Z2
A282

8.567
155.3

—16.9

7.805
—4.3

—72.0

7.988
34.7

—43.G

7.515
78.5
75.9

7.479
—110

P2
AB2

9.155
46.4

—49.9

8.139
—48.6
—72.0

8.383
—31.2
—79.0

7.753
100.8
100.8

6.861
—351

DO22
AB3

9.450
—9.1

—10.8

8.307
—46.4
—46.4

8.580
—65.9
—65.9

7.872
57.7
57.7

6.675
—476

—438

L12
AB3

9.450
—16.1
—16.1

—59.4
—34.0'

8.307
—53.4
—53.4
—49

8.580
—96.3
—96.3

—136

7.872
128.4
128.4

6.630
—504
—450'
—486
—425g

'Calculated results of Ref. 86 at the experimental lattice constant, using the linear augmented Slater-type-orbital method and the
Hedin-Lundqvist exchange-correlation.
"Experimental results of Ref. 5.
'Calculated results for the unrelaxed structures of Ref. 62(a) using the augmented spherical-spherical wave (ASW) method and the
von Barth-Hedin exchange correlation.
Calculated results for the unrelaxed structures of Ref. 62(b) using the ASW method and the von Barth-Hedin exchange correlation.

'Calculated results of Ref. 87 using the ASW method and the von Barth-Hedin exchange correlation.
Calculated results of Ref. 88 using the LMTO method and the Hedin-Lundqvist exxhange correlation

gExperimental result of Ref. 7(b).
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Cu compounds [this constitutes a significant computa-
tional economy as we only need to calculate b E(s, V) at a
single volume]. Since the variations are somewhat larger
for AINi [in particular, V, (x) of two structures of the
same composition are slightly different], we do not linear-
ize V and B for these compounds. Since the pressure
derivative B' contains a significant numerical uncertainty
(being a third derivative), we have not attempted to cal-
culate it for each structure; instead, we use it as an ad-
justable parameter in the fit of Eq. (4.3). This gives for
the fcc structures.

8' (CuAu)=1. 5, B'(AINi)=5. 1 . (5.7)

For all other compounds we used the harmonic value
B'= —1, which is very close to the minimum of the vari-
ance [Eq. (4.3)]; the latter is found to be rather insensitive
to the value of B' near —1. Tables X and XI list our cal-
culated formation enthalpies for all intermetallic com-
pounds studied here. Where available we also give exper-
imental values ' and values from other calculations.

In the relaxed LAPW calculations we have allowed the
c/a ratio and the position of the atoms inside the unit
cell (that are not fixed by symmetry) to vary so as to mini-
mize EE(s, V) at V given by Eq. (5.3). When such
structural degrees of freedom are unavailable (e.g. , in

L12), relaxation does not exist; otherwise, it lowers the
energy. This lowering is enormous in structures possess-

I

N

C. Extracting effective cluster interaction energies

The cluster expansion of the excess total energy
bE(s, V) of Eq. (2.16) reads

b,E(s, V)= g g [IIk (s) il]Di, JI,—( V),
m &0 k&1

(5.8)

where I Jk ( V)I are the volume-dependent effective in-
teraction energies and ii= 1 for k=even and (2x, —1) for
k =odd. We have extracted NF=8 functions I Jk (V)I
from the X, = 12 excess total energy functions I b E(s, V) ]
and the lattice-averaged spin products [IIk (s)] (Tables
III and IV) by minimizing the variance

ing a number of such structural degrees of freedom (e.g. ,
Pl, P2, Z2), but is smaller in other structures (e.g. , DO@2,
c c4pt \

)

Tables X and XI show that the augmented-spherical
wave (ASW) method used in Refs. 62 and 87 produces
significantly more negative unrelaxed formation enthal-
pies (relative to the more accurate LAPW method used
here) for the fcc CuAu and CuPt, and bcc CuPd com-
pounds, whereas the results for fcc CuPd are comparable
to ours. The LMTO results of Ref. 88 for AlNi are simi-
lar to the present LMTO result, as are the ASW results
for this system.

g co, b,E(s, V) —g g [IIk (s) —i)]Dk Jk ( V) =minimum,
m&Ok&1

(5.9)

with the weights co, given by Eq. (4.4) and Table V.
Tables XII and XIII compare the directly calculated
(LAPW or LMTO) bE(s, V) for fcc and bcc structures,
respectively, with those obtained from the cluster expan-

sion (5.8), using the coefficients Jk ( V) determined from
Eq. (5.9) [the comparison is given at the equilibrium
volume obtained from Eq. (4.9)]. The cluster expansion
was carried out separately for the "unrelaxed"

TABLE XI. Formation enthalpies AH (in meV/atom) of the unrelaxed (ur) and relaxed (r) bcc compounds considered here, and

the unit cell volumes (in cm /mole) at which the calculation was performed. The first line gives the unit cell volume, the second line

gives the unrelaxed AH„„and the third line gives the relaxed AH, . All Cu-based compounds are calculated using the LAPW method
with the Wigner exchange-correlation, whereas the Al-Ni compounds were calculated using the LMTO method with the von Barth-
Hedin exchange correlation. The LMTO calculations were performed only for unrelaxed structure. Where available, we also give
the formation enthalpies obtained by previous calculations and experimental values.

A =Cu
B=Pd

A =Al
B=Ni

DO3
A3B

7.364
—37.7
—37.7

8.307
—166

L60
A3B

7.364
—29.9

8.269
—175

C11b
AqB

7.537
—50.8

7.811
—353

B2
AB

7.868
—97.6
—97.6

—223'
—142.3

7.079
—787
—741'

7.868
9.1

—7.4

7.310
—383

B32
A2B2

7.868
13.9
13.9

7.270
—449

B11
A2B2

7.868
40.3
30.8

7.395
—207

C11b
AB2

8.206
17.4

6.810
—504

L60
AB3

8.372
18.7

6.667
—449

DO3
AB3

8.372
30.8
30.8

6.678
—490

'Calculated results of the unrelaxed structures of Ref. 62(b) using ASW method and the von Barth-Hedin exchange correlation.
Experimental result of Ref. 5 at x = 2.

'Experimental result of Ref. 7(b).
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TABLE XII. Comparison of the directly calculated (LAPW or LMTQ) and the cluster-expanded [Eq. (5.8) using N~=8 and

N, =12] unrelaxed excess total energies (in meV/atom) for the fcc-based intermetallic structures. The 12 structures are shown in Fig.
3; the interaction energies are depicted in Table I and Fig. 2(a). The last two lines show the standard deviation y of the fit for both
unrelaxed and relaxed structures. B'= —1, except for CuAu, for which B'= 1.5, and AlNi, for which B'=5. 1

fcc
structure

CuI Au„
LAP W Fit

Cu& Pd,
LAP W Fit

Cui Pt„
LAP W Fit

Cu& „Rh„
LAP W Fit

Ali Ni,
LMTO Fit

A

L12 ( A3B)
DO22 ( A3B)
pl (328)
L 10 ( AB)
Ll, (AB)
"40- (A,B, )

Z2 ( A2,B2)
p2 ( AB2)
DO22 ( AB3 )

I 12 ( AB3)
B

0.0
—35.1
—30.8

59.9
—33.4

68.1
—15.2
155.3
46.4

—9.1
—16.1

0.0

0.0
—37.9
—29.9

57.1
—32.8

68.1
—15.9

154.6
50.8

—8.7
—17.4

0.0

0.0
—85.0
—75.5
—36.4
—75.9
—66.8
—76.4
—4.3

—48.6
—46.4
—53.4

0.0

0.0
—79.3
—77.4
—40.8
—78.4
—66.8
—74.8
—3.6

—46.0
—47.7
—49.4

0.0

0.0
—115.8
—96.7
—40.8
—83.3

—111.9
—63.8

34.7
—31.2
—65.9
—96.3

0.0

0.0
—112.5
—97.9
—37.8
—91.2

—111.9
—61 ~ 3

31.7
—27.2
—69.7
—85.0

0.0

0.0
68.5
72.0

110.2
168.8
98.9
94.6
78.5

100.8
57.7

128.4
0.0

0.0
99.3
61.7
98.5

170.2
98.9
95.5
81.9

106.1
66.1

103.2
0.0

0
—233
—237
—234
—580
—355
—594
—110
—351
—476
—504

0

0
—236
—236
—257
—588
—355
—590
—109
—355
—483
—484

0

Deviation
~„„„, (meV) 1.9

16.3
2.5

11.9
4.1

7.0
10.6
10.6

9.0

geometries, i.e., when the total energies are varied with
respect to the unit cell volumes but the 3 and B atoms
are assumed to reside on their cubic fcc or bcc sites, and
for the "relaxed" geometries, when the total energy is op-
timized with respect to all structural degrees of freedom
consistent with the respective space group symmetry.

Table XII and XIII show that the cluster expansion
(5.8) describes the excess energies of the unrelaxed or-
dered structure to within —3 meV/atom for the fcc
structures of CuAu, CuPd, and CuPt, while the error is
—10 meV/atom for fcc CuRh and A1Ni and for the two

bcc structures. On the other hand we see from Table XII
that when the ordered structures are allowed to relax, the
truncated cluster expansion result in significantly larger
errors (compare the standard deviations, y„„„&and y„,|,„,d
in these tables). We next briefly discuss the role of relaxa-
tion.

D. Role of relaxation

The molar volumes and atomic positions in disordered
alloys and ordered intermetallic compounds generally de-

TABLE XIII. Comparison of the directly calculated (LAPW or LMTO) and the cluster-expanded
[Eq. (5.8), using NF =8 and N, =12] unrelaxed excess energies (in meV/atom) for the bcc-based struc-
tures. The 12 structures are depicted in Fig. 4 and the eight interactions are shown in Fig. 2(b).
B'= —1.0 for both CuPd and AlNi. We also give the standard deviation g.

bcc
structure

A

DO3 (A3B)
L60 ( A3B)
Cl 1„(A B)
B2 (AB)
Ai (AB)
B32 ( AqB2)
B1 1 ( AqB2)
C»b (AB, )

L60 (AB3)
DO3 (AB3)
B

LAPW

41.2
—37.7
—29.9
—50.8
—97.6

9.1

13.9
40.3
17.4
18.7
30.8
58.6

Cui Pd„
Fit

41.2
—44.7
—34.3
—36.2
—93.8

9.3
13.7
41.5
0.5

22.5
38.5
58.6

LMTO

55
—166
—175
—353
—787
—383
—449
—207
—504
—449
—490

30

Ali „Ni„
Fit

55
—143
—201
—337
—773
—363
—469
—213
—511
—458
—470

30

Deviation
yu11rci (mev) 8 ~ 1 16.5
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viate from what simple rules might suggest (e.g. , Zen's
rule for molar volumes or ideal fcc positions for atomic
coordinates); we refer collectively to these deviations as
"relaxation. " We will distinguish "volume relaxation"
(when molar volumes are nonideal) from "sublattice re-
laxations" (when atoms do not reside on ideal fcc sites).
Carlsson "distinguished three levels of approximation
for "volume relaxation" in the context of the method of
"superposition of periodic structures" [Eqs. (4.1)—(4.6)].
These are distinguished by the form of the molar volume
used to evaluate the excess energy P(s, V) =BE(s, V) of
ordered structures in Eq. (4.1).

(i) Complete neglect of uolume relaxation Th. is corre-
sponds to the use of a single (composition-independent)
arbitrary volume Vo in the excess energy P(s) =b,E(s, V)
of Eq. (4.2) for all ordered structures s. This was deemed
unphysical.

(ii) "Global relaxation, " i.e. , when b,E(s, V) represents
an equation of state calculated continuously as a function
of V. In this case the interaction energies of Eq. (4.2) are
volume dependent. The equilbrium volume is calculated
variationally [Eq. (4.10)] or simplifed further [Eq. (5.9)].
Our cluster expansions shown in Tables XII and XIII
correspond to this model.

(iii) "Local relaxation, "i.e., when b,E(s, V) is calculat-
ed for each structure s at a single volume V, that mini-
mizes AE(s, V). In this case b,E(s, V, )—:bII, is the for-
mation enthalpy of compound s. We find that this pro-
cedure leads to a very slow convergence of the cluster ex-
pansion: e.g. , for CuAu the standard deviation increases
to 16.3 meV from 1.9 meV, while for fcc CuPd it is 11.9
meV rather than 2.5 meV. Hence, introduction of a con-
tinuous volume variable in Eq. (5.14) considerably im-
proves the convergence of the series. We will, hence, not
consider local relaxation in what follows.

Another form of volume relaxation was recently con-
sidered by Sluiter et al. ' ': the excess energy b.E(s, V)

of the unrelaxed (ur) lattice was decomposed into a
"chemical" and "elastic" pieces as

bE„,(s, V)=DE,h, (s, V)+DE„„,(x„V),
where the elastic energy is given by

(5.10)

~E,)„,(x, V)=Q(x)[V —(1—x)V„—xV~]' . (5.11)

Here AE„, refers to the excess energy calculated with
LAPW as a function of volume, assuming that the atoms
reside on ideal fcc sites, Vz and Vz are the equilibrium
volumes of pure A and B, respectively, and Q(x) is a
function of composition calculated from harmonic elasti-
city. The cluster expansion of Eq. (4.1) was performed
with

I

P(s, V)=b,E,h, (s, V)

=EE„,(s, V) E—E„„,(x„V) (5.12)

alone; the resulting chemical interaction energies [pz]
were then used to construct the chemical energy of arbi-
trary configurations, to which the elastic energy of Eq.
(5.11) was then added. Note, however, that for ordered
structures b,E,h, (s, V)+EE,~„,(x„V) of Eqs. (5.11) and
(5.12) produce the total energy AE„,(s, V) of a lattice in
which the atomic positions are unrelaxed; our Table X
shows that this misses considerable energies (compare the
second and third lines in this table, giving hE„, and
b,ER, respectively). Note further that to the extent that
equilibrium molar volume V(x) of the alloy is linear with
composition and the bulk moduli difference
b,B =Bz B~ is s—mall b,E,h, (s, V)=KE,h, [s, V(x, )]:—AH„hence, this model ' ' will give results similar to
that of the "local relaxation" model " and lead to a
slow convergence of the cluster expansion.

We conclude that "global volume relaxation" is a con-
sistent model for describing alloy-induced changes in V,
but that "sublattice relaxation" needs, in general, to be
added. The basic reason that "global volume relaxation"
plus "sublattice relaxation" (refiected in the relaxation
energies of Tables X and XI) lead to a slowly convergent
cluster expansion (Tables XII and XIII) can be appreciat-
ed as follows: when all atoms are assumed to reside on
ideal fcc sites, the figures (k, m) exhibit symmetry proper-
ties [Eqs. (2.6)—(2.8)] that lead to certain degeneracies
[expressed by the factor Dz in (2.11)]. In this case,
J~=Jf and the cluster expansion may be carried out only
on prototype (symmetry-unique) figures F. In the pres-
ence of sublattice relaxation, however, part of this degen-
eracy is removed, e.g. , the pair figure (2,1) along the [001]
relaxation direction of the AzB2 [001] superlattice (Z2)
is no longer syrnrnetry related to this figure in the perpen-
dicular direction. Hence, since relaxation can alter the
size of the symmetry-related figures (which have the same
size and associated energy in the unrelaxed lattice), trun-
cation of Eq. (2.5) for relaxed configurations could make
JF very different from Jf, leading to a slower convergence
of Eq. (2.9) for the same number of figures. To quantify
this, consider a simple numerical example. The "Z2"
structure, consisting of a Cu2Auz superlattice along the
[001] direction (Fig. 3) relaxes such that the tetragonal
q—:c/a ratio becomes 0.825 in the Cu segment and 1.175
in the Au segment. In the "ideal" structure, c/a =1 in
both segments. The relaxation energy given in Table X
then corresponds to

b E (Z2, gc„=0.825, gz„= 1.175 ) —BE(Z2, gc„=1, r)&„=1 ) = —139 meV/atom . (5.13)

To see what fraction of this relaxation energy results
from elastic effects, we will model it from the deforma-
tion energies of the constituent solids (i.e., charge transfer
is excluded). The sum of the deformation energies of the
constituents is

DER,i(s, x, ) = {E[Cu,r)=0.825]—E[Cu, q= 1]I

+ IE[Au, ri= l. 175] E[Au, ri= 1]I—
= —153 rneV/atom . (5.14)
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We see that the sublattice relaxation of the constituents
[Eq. (5.14)] accounts for most of the total sublattice relax-
ation energy [Eq. (5.13)]. Clearly, this type of relaxation
is missed by the models of Carlsson " or Sluiter
et al. '"' [Eqs. (5.10)—(5.12)].

This discussion suggests that sublattice relaxation is
likely to be less of a problem in describing disordered
phases, since there one uses a configuration auerage over
the energies JF, hence, much of the symmetry lowering
will be averaged out. Fortunately, this can be tested, as
follows.

E. Predicting structural energies from the cluster
expansion

To examine the transferability of the interaction ener-
gies I Jk ( V) j, we have recalculated them from Eq. (5.9)
for NF =8 figures, using, howeuer, a set of only N, = 10 out
of 12 structures. The resulting interaction energies are
then used in Eq. (5.8) to predict the excess energies of the
two remaining structures, not used in determining the J's.
Comparison of these predicted energies with those calcu-
lated directly by the LAPW or the LMTO gives this
"prediction error" shown in Table XIV for five pairs of
structures for each compound. We see that the standard
deviation g over these Ave predicted energy pairs is
within the underlying precision of the direct, LAPW or

LMTO calculations, except for Cu, „Pt (y=13.4 meV)
and Ali .„Ni„(g=22.1 meV) (in the latter case, the error
is still much smaller than b,H itself).

We have also calculated the excess enthalpy of the ran-
dom alloy using different sets of J's obtained from the
various combinations of 10 structures. Table XIV exhib-
its robust predictions of these excess enthalpies (given at
x =

—,') both for the relaxed and for the unrelaxed struc
tures We .conclude that the interaction energies I JF ] ex-
tracted from the relaxed equations of state hE~ (s, V) pro-
vide an adequately converged description of the disor-
dered phase. In what follows we will use this description.
However, for ordered phases we will use this unrelaxed
JF, we will comment on this below only to the extent that
the use of relaxed JF leads to qualitatively different con-
clusion (see Sec. VI B 3 below). Development of a
comprehensive treatment of volume and sublattice relax-
ation on equal footings is clearly lacking and needed.

F. Magnitude and range of the interaction energies Jk ( V)

The unrelaxed interaction energies Jk [V(x)] are de-
picted in Fig. 5 for fcc Cu

&
Au, Cu, Pt„, and

Cu, „Rh, while Figs 6 and 7 give the interaction ener-
gies for Cu& Pd„and Al, ,Ni, respectively, both for
the fcc and the bcc cases. Note the following features: (i)
In all cases but Cui Rh, the energy expansions con-

TABLE XIV. First-principles excess energies t b E(s, V) ] are available for the 12 fcc-based structures:
2, 8, L lo, "40", L 1&, Z2, 1.12, DO2z, and P shown in Fig. 3. Using 10 out of these 12 structures we cluster expand their energies
according to Eq. (S.8) thus determining the 8 interaction parameters of Fig. 2(a). Using these we then predict the formation enthal-
pies AH(s) for the two remaining structures not used in the fit. This table compares the predicted enthalpy with the "exact" value (in
parentheses) for five di6'erent pairs of structures not included in the fit; y gives the deviation in meV. We also give the predicted ener-
gies of the random alloy at x =

2
for both unrelaxed (ur) and relaxed (r) systems: (Unit: meV/atom. ) While the precision is lower

than that obtained using the 12 structures in fit (Tables X1I), the prediction error is still remarkably small on the scale of the LAPW
error ( —10 meV/atom).

Struct.
not in

fit

AH
first

struct.

Cui Aux
AH

second
struct.

hH hH
random random

ur

AH
first

struct.

Cui Pt
AH

second
struct.

AH hH
random random

ur r

Pl /32

L lq, L lp

L12,L12
DOp2 ~ DO22
DO22, pl

57.1(59.9)
—38.1( —35. 1)
—39.7( —35. 1)
—26.3( —30.8)
—26.4( —30.8)

52.1(46.4)—33.6( —32.8)—18.9( —16.1)—6.2( —9.1)
56.8( 59.9)

68.5
68.3
68.4
68.5
69.1

—6.0
—8.8

1.0
2.6

—1.9

—35.6( —40. 8 )—120.2( —115.8 )—108.0( —115.8)—104.6( —96.7)—102.3( —96.7)

—23.9( —31.2)
—112.9( —83.8)—78.0( —96.3 )—84.2( —65.9)—36.7( —40.8)

—45.6
—43.6
—47. 1
—50.4
—47.0

—78.3
—77.6
—76.4
—78.9
—77.8

3.7 0.3 4.3 13.4 2.2 0.8

Struct.
not in

fit

hH
first

struct.

Cui Pd„
AH

second
struct.

5H AH
random random

ur

AH
first

struct.

Ali —x Nix
AH

second
struct.

5H hH
random random

ur

/31, P2

L12,L12
DO22, DOp2
DO22, pl

—41.2( —36.4)—78.6( —85.0)—75.4( —85.0)—85.1( —7S.5)—83.6{—75.5)

—46.9( —48.6)—80.6( —75.9 )—45.9( —53.4)—53.9( —46.4)—41.9( —36.4)

—47.8
—47.2
—47.9
—50.1
—49.2

—78.S
—79.2
—73.5
—77.3
—77.4

—259( —234)
—250( —233)
—231( —233)
—239{—237)
—228( —237)

—351(—351)
—611(—S80)—472( —504)—507( —476)—265( —234)

—329
—326
—329
—335
—330

2.0 2. 8
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(f)

100-
3J2 2

0

-100—

6J2 4

2,3

-1000
0.2

Cu

-400 -200
0.2 0.4 Q.6 Q.8 0.2 0 4 Q 6 0 8Au Cu Pt Cu

' '
Rh

Composition x

FIG. 5. Fcc interaction energies Jq [V(x)] obtained from the cluster expansion for (a) and (b) Cu, „Au„, (c) and (d) Cu, „Pt„,
(e) and (f) Cu& Rh .

verge with respect to the figure sizes in the sense that
among pair interactions the nearest-neighbor terms
D 2 ~ J2 &

are considerably larger than the longer-range
pair interactions, and the three- and four-body terms are
rather small. This is illustrated in Fig. g for x= —,. (ii)
The magnitude of the pair interactions J2 ~(V) do not
decay monotonically with the interatomic separation m;

the fourth-neighbor pair interaction J24 is often larger
than the third-neighbor pair interaction J2 3. A similar
trend has been observed in tight-binding calculations for
transition metal alloys. (iii) The dominant nearest-
neighbor pair interaction J2 &

is "antiferromagnetic"
(J2, )0) in the compound-forming alloys Cu, Au,
Cu& Pt„, Cu& „Pd, and Al& „Ni, while for the

400
(a)

CU1-xPdx' fcc

200

(2J4 1)x10
0

1000
. (a)

500—

AI1-xNix fcc

BJ31

-400
CU
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-200—
L
4)
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E
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Ch.

O
O
ttt

200—

12J2 3

GJ2 1
4J2, ~

(6J2 3)x1 0~

F -500—
L

-1000

1000
C
'2

500—

3J2 2

Ni Al

4J2, 1

0—
. (6J24)x10

-200

(3J2 2)
(4J2 5)x10

0

-500—

)x10

(6J2 g}x10.

I

6J2 3 4J2 5

400
0.2 0.4 0.6 0,8 pd C 0.2 0.4 0.6 0.8

Composition x

-1 000
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Al Ni Al Ni

Composition x

FICx. 6. Interaction energies Jk [V(x)] obtained from the
cluster expansion, comparing fcc Cu& „Pd [parts (a) and (b)]
with bcc Cu& „Pd„[parts (c) and (d)].

FICi. 7. Interaction energies J„[V(x )] obtained from the
cluster expansion, comparing fcc Al, Ni„[parts (a) and (b)]
with bcc Al, Ni„[parts (c) and (d)].
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t

FICx. 8. Interaction energies Jk [V(x)] at x= —', showing

they decay with the order (k ) and size (m } of each figure.

dom alloy Jo, (x =
—,') could change sign as the Bravais

lattice is changed, e.g., it is negative (stable ) in fcc
Cuo 5Pdo 5, but positive (unstable) in bcc Cuo 5Pdo s.
Hence, despite the fact that Cuo 5Pdo 5 orders in a bcc
structure (see Fig. 1 and Fig. 9 below), when disordered,
it is stabler in the fcc structure, as observed experimental-
ly. (v) The second-neighbor pair interaction J22 is

uniquely negative ("ferromagnetic") for CuAu (Fig. 8)
while J2, is positive ("antiferromagnetic"), indicating
that this alloy is frustrated.

Numerous previous applications ' have restricted
energies I Jk ( V) I to just first fcc neighbors (m =1); the
five I Jk &( V)) values for k =0, 1, 2, 3, and 4 were deter-
mined by direct inversion of Eq. (4.2) using five values of
b,E(s, V). Table XV applies this Connolly-Williams '

procedure to the alloys studied here. The quality of the
fit is rather poor (compare with Table XII that uses a
converged set of interactions). Furthermore, this ap-
proach spuriously produces a degeneracy in the energies
of certain structure pair, e.g., I L lz, DO&2 I and

t L lo;"40"], and misses the fact that L 1, structure is the
lowest energy for CuPt at x =

—,'. Clearly, the cluster ex-
pansion needs to be extended (Tables XII and XIII)
above this nearest-neighbor model.

known phase-separating Cu& „Rh case, it is "fer-
romagnetic" (Jz, (0). Concomitantly, Jo, (x =

—,
'

)

[which, by Eq. (2.18) gives the excess enthalpy of the
ranom alloy at x= —,'] is negative for all compound-
forming systems, and positive for the phase-separating
Cu& „Rh„system. (iv) The excess enthalpy of the ran-

VI. GROUND STATES

A. Finding the ground-state line

As discussed in the Introduction, our aim, is to identify
among 2 possible lattice configurations, those that are
ground state, using a input first-principle total energy cal-
culation on only 0 (10) structures. The preceding section

TABLE XV. Comparison of the directly calculated (LAPW or LMTO) and the cluster-expanded [Eqs. (4.1) and (4.2), using the
1VF =X,=5 Connolly and Williams structures] unrelaxed excess total energies (in meV/atom) for the fcc-based intermetallic struc-

tures. The last line shows the standard deviation y of the fit for the unrelaxed. B'= —1, except for CuAu, for which B'=1.5, and

A1Ni, for which B =5.28. Note that the use of just first-neighbor interactions (Jp &, J», J2 &, J3 &, and J4 & ) leads to significant er-

rors, except for the five structures A, A 3B(L12) AB(L 1p) AB3(L 12), and B used in the fit. This approach also produces a spurious

degeneracy between [L 1z, DO&2 I and [L 1o, "40"].

fcc
structure

Cu& Au
LAP W Fit

Cui Pd
LAP W Fit

Cu& „Pt„
LAP W Fit

Cui „Rh
LAP W Fit

Al) „Ni„
LMTO Fit

L12 ( A3B)
DO22 ( A3B)
pl ( A2B)
L1, (AB)
I 1, (AB)
cc4099 ( A B )

Z2 (A,B,)

P2 (AB~)
DO22 ( AB3 )

L12 ( AB3)
B

0.0
—35.1
—30.8

59.9
—33.4

68.1
—15.2
155.3
46.4

—9.1
—16.1

0.0

0.0
—35.1
—35.1

61.2
—33.4

60.0
—33.4
156.0
48.5

—16.1
—16.1

0.0

0.0
—85.0
—75.5
—36.4
—75.9
—66.8
—76.4
—4.3

—48.6
—46.4
—53.4

0.0

0.0
—85.0
—85.0
—20.0
—75.9
—36.2
—75.9

28.4
—22.3
—53.4
—53.4

0.0

0.0
—115.8
—96.7
—40.8
—83.3

—111.9
—63.8

34.7
—31.2
—65.9
—96.3

0.0

0.0
—115.8
—115.8
—10.6
—83.3
—52.6
—83.3

64.3
—5.9

—96.3
—96.3

0.0

0.0
68.5
72.0

110.2
168.8
98.9
94.6
78.5

100.8
57.7

128.4
0.0

0.0
68.5
68.5

129.2
168.8
119.3
168.8
125.6
132.6
128.4
128.4

0.0

0
—233
—237
—234
—580
—355
—594
—110
—351
—476
—504

0

0
—233
—233
—283
—580
—296
—580
—146
—361
—504
—504

0

Deviation
y„„„)(meV) 7.7 18.5 28.4 43.3 29.4
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demonstrated that a converged Ising representation of
the quantum-mechanically calculated excess total energy
can indeed be obtained from such a limited information.
We now turn to the question of identification of ground-
state structures from such an Ising representation. To
define what is meant by a ground state, consider the three
configurations cr, a, and P with concentration of B atoms
x(cr), x(a), and x(P) in the order

x(a) ~x(o. ) ~x(P) . (6.1)

If the energy E(cr) is larger than the linear average of
E(a) and E(P), i.e. , if

)
x(o. ) —x(P)

)
x(o ) —x(a)

x(a) —x(P) x(P) —x(a) (6.2)

then configuration o. does not belong to the ground state
because a mixture of the phases a and P would have a
lower energy. On the other hand, if no pair of
configuration (a,P) satisfy Eqs. (6.1) and (6.2), then
o.does belong to the ground state. A plot of the ground-
state energy as a function of the concentration x consists
then of straight line pieces between "breaking points"
that correspond to the ground-state ordered (periodic)
configurations of atoms. Any configuration o. could be
represented in such a plot by a point tx(o), E(cr)}. This
point would be above the ground-state line (GSL) if Eqs.
(6.1) and (6.2) are satisfied for a certain pair a and P.

The ground state of a Hamiltonian of the type given in
Eq. (2.4) is a classical problem in magnetism and in
theory of the alloys. ' For fcc alloys, the most com-
plete search for the ground state was given by Kanamori
and Kakehashi' (KK) while for bcc it was given by Finel
and Ducastelle.

Kanamori and Kakehashi' studied the exact ground
state in fcc symmetry, assuming: (i) volume and concen
tration independent interactions (denoted here vk ),
(ii) null triangle (k, m)=(3, 1) and tetrahedron (k, m)
=(4, 1) interactions, i.e.,

(6.3)

lv2, 11»lv. . . Iv/3 yl~$, 41 . (6.4)

Under assumption (i) one can use Eqs. (2.13) and (2.14) to
obtain the sum rules

~o, l X XDk, m~k, m
k m

odd

~11 X XDkm~km
k m

(6.5)

The problem is then reduced to three parameters
vp 2 vp 3 and v2 4, or two ratios v2 2/v2 4 and v2 3/v2 4.
Kanamori and Kakehashi' mapped all fcc ground states
containing ~ 16 atoms/cell as a function of these two ra-
tios, using assumptions (i)—(iii).

Although illuminating, the Kanamori and Kakehashi'

and (iii) that the first-neighbor pair interaction is much
larger than the other interactions, i.e.,

assumptions are seldom met in practical cases. For in-
stance, we find that in most cases the interaction energies
depend on volume and composition (Figs. 5—7), hence as-
sumption (i) does not hold. Further, in the Cu-Au alloy
system, three-body terms (k =3) play an important role
in producing the observed asymmetry of the phase di-
agram about x =

—,
' so that assumption (ii) is false. Furth-

ermore, actual calculations (e.g., Fig. 8) show that,
though the first-neighbor pair interaction is stronger, it is
not much larger than the other interactions, so assump-
tion (iii) is often not met either. Finally, when dealing
with volume (or concentration) dependent interactions,
the sum rules of Eq. (6.5) do not hold. Hence, a practical
study of the ground state must deal with a larger number
of parameters than the two ratios considered by
Kanamori and Kakehashi. In addition, one is frequently
interested not just in ground-state structures but also in
configurations that have slightly higher energies and
could conceivably form metastable structures when kinet-
ic circumstances permit this.

Although restricted, the Kanamori-Kakehashi study is
very enlightening. For any ratios vz 2/vz 4 and v23/v24,
they found that only 40 fcc configurations can be ground
states. These periodic structure have different numbers
of atoms in the unit cell. They found that, in general,
ground-state structures have rather small unit cells: only
8 possible breaking points have unit cells with more than
12 atoms per cell (or 12 fcc sites). Moreover,
configurations with large unit cells, though theoretically
belonging to the GSL, might be very dificult to grow be-
cause they require a long-range correlation between
atomic positions. For these two reasons it is practical to
study the ground state restricting ourselves to those
configurations with unit cells of limited sizes. In adopt-
ing this view we might miss some breaking points in the
GSL, but hopefully not many.

Our calculation of the ground state then proceeds in
two steps.

(1) We construct a file of all fcc-based and bcc-based
configurations with unit cells smaller or equal to a certain
maximum size (M = 16 sites). For each configuration we
store the values of H~ for the figures of Table II. We
have described elsewhere a systematic procedure to
construct this file, without missing any configuration, and
without repetitions.

(2) Once the file is constructed, finding the ground state
for a given set of interactions IJF} is carried out
by computing EE(o, V) of Eq (5.8) a.nd comparing
IEE(cr, V);X(o.) } with the values for the configurations
a and P [using Eqs. (6.1) and (6.2)j that up to this point
were found to be the breaking points of the CxSL. If Eq.
(6.2) is not satisfied by the pair a, /3 that satisfy Eq. (5.8),
configuration o. is a new breaking point. In this case we
rescan the previously determined breaking points a and
P, examining whether any of them are now excluded from
the GSL due to the introduction of o. . Note, therefore,
that we combine a homogeneous ground-state search (i.e.,
finding the lowest energy configuration for a fixed compo-
sition) with a heterogeneous search (i.e., comparing
ground states of different compositions, identifying there-
by true "breaking points").
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B. Predicted ground-state structures

Figure 9 depicts the ground-state lines for the alloy
systems studied here. The symmetries established clearly
from experiment are also found theoretically, even
though we have purposely omitted from the basis set used
to extract Jz some of the structures which are known to
be ground states. Note that while high-temperature-

ordered phases are relatively easy to detect experimental-
ly, some of the potentially low temperature "ground-state
structures" discussed in this section might be more
difficult to observe (due to the slow atomic diff'usion rates
at low temperatures). In what follows we summarize the
pertinent low temperature experimental data.

1. Cu g „Pt„

0JL

-10

-20

-30

-50—

-60
Cu
Q.i

-20

-40

-60
E

-80

-100—
E
~ -120
m Cu
0
UJ -20
~
O

-40
6$
E -600

-80

-100

L12

B2

I
I

Cu,

Au

Experimentally, 3 7 Cu, „Pt„[Fig. 1(c)] shows at low
temperatures the fcc L 12 structure of Cu3Pt near
x =0.20, and the rhombohedral L1, structure at x =0.5.
At higher temperatures the L1& structure undergoes a
first-order transition into the disordered fcc alloy at
812 C. This transition is particularly interesting in that
the number of unlike nearest neighbors is unchanged
through the transition. At Pt concentrations above
x =0.5 and low temperatures one finds a set of continu-
ous transition into other ordered structures: the cubic
L12 (CuPt3), as well as the CuPt7 and Cu3Pt~ structures.
The crystal structures of the latter two phases are un-
known, although both correspond to fcc modifications.

Our calculation is in substantial agreement with experi-
ment. We find for CuPt the established Cu3Pt (L lz) and
CuPt (Ll, ) phases, i.e., we correctly describe the com-
petition between rhombohedral (L 1 i ) and tetragonal
(L lo) symmetries. Two additional ground-state fcc com-
pounds Cu7Pt ("Dl") and CuPt7 ("D7"), having twice
the primitive fcc lattice vectors are also identified; these
were not included in the "basis set" as they were un-
suspected by the normal method of guessing to be ground
states (the D 1 A ~B and D7 AB~ structures are identical;
they are depicted in Fig. 10). We tested our prediction by
calculating the energy of Cu7Pt (D 1) directly from
LAPW (finding bH = —65. 5 meV/atom), confirming the
cluster expansion prediction (AH= —61.5 meV/atom).
Indeed an early investigation did propose the existence
of the CuPt7 ("D7") structure on the basis of electric
measurements (however, this was not directly confirmed
by x-ray studies).

-120—
-140—

Cu
0 JL

L12 L1i

Pt

-200

-400

-600

-800
B2

-1000
Al

0.2 0.4 0.6 0.8
Composition x

Ni

FIG. 9. Ground-state line for (a) Cu& „Au, (b) Cu& Pd,
{c)Cu& Pt„, (d) Cu& „Rh, and {e) Al& Ni„. Energies shown
are for the unrelaxed cluster expansion [Eq. (5.8)].

2. Cu g „Pd„

Experimentally, Cu, „Pd„[Fig. 1(b)] shows at low
temperatures the bcc-type CsC1 (B2) structure near
x =

—,
' and the fcc-type Llz structure around x =0.19.

For 0.22~x ~0.25 one finds a tetragonally deformed
(c /a -0.986) L lz-like structure, best described as an an-
tiphase boundary (APB) between adjacent L 1z unit
cells. ' The ordered low temperature L 12 phase under-
goes a transition to this long-period superlattice structure
(LPS) consisting of APB's at 470'C for x =0.18, and at
350'C at x =0.21. These long-period superlattice disor-
der above —500'C and may not exist at low tempera-
tures.

Our calculated results [Fig. 9(b)] for CuPd show the
observed fcc-type Cu3Pd (L 12) and bcc-type CuPd (B2)
structures, indicating that our theory correctly repro-
duces the delicate balance between fcc and bcc interac-
tions. The cluster expansion also predicts that
CuPd3 (L 1z ) and CuPd7 (D 7 ) are only —3 meV/atom
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SB Name: (Nb Nis) (D1,D7)

Formula: ASB* ABS A7B;AB7

Crystal

Structure
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~ B
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e 0 0 ~0 e

,~a ~a
0 0 00 0

0
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0
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SB Name:

Formula:

(03,05)

A583, ASB5

(04)

A4B4

Crystal

Structure
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3
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Space group:

Pearson Symbol:

Super lattice:
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Face - centered Cubic
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FIG. 11. Crystal structures, see caption 'g.ion to Fi . 10.
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FIG. 12. Crystal structures, see caption to 'g.' ntoFi . 10.
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D. The I. 1& and "D4"structures: an interesting observation

Figure 11 depicts the "D4" structure with composition
A4B4.. it has the fcc Bravais lattice and the I'd3m space
group. Inspection of its "lattice averaged spin products"
IIk (s) show that they are identical to those of the L 1,
structure of composition AB (having a trigonal Bravais
lattice and space group 83m; see Fig. 3) except for J4 i

for which D4 i II4 i(L 1 i ) = —2 (Table III), while
D4 iII4, (D4)=+2 (this observation is due to F. Du-
castelle, private communication, for which we ate grate-
ful). Hence, all physical properties of these two struc-
tures which are not related to the four-body terms, should
be identical. This suggests a simple method for calculat-
ing J4 &

from

b E(D4) b,E(L 1,—) =4J4, , (6.6)

(1, 13):Ni Nbs
(2, 12): D1 (D7)
(3, 11):D1a
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FIG. 14. The solid lines connecting diamond-shape symbols
give the predicted ground-state structures; crosses gives the pre-
dicted (unrelaxed) energies of commonly occurring intermetallic
compounds (Figs. 10—13) that are not stable for the alloys con-
sidered here. The symbols in the inset to part (a) refer to the
structure types described in Figs. 10—13. (a) CuAu, (b) CuPd,
and (c) CuPt.

independent of the cluster expansion. Unfortunately, J4 &

is rather small for these systems (see Fig. 8), hence the
uncertainty in these values is not negligible. Using, nev-
ertheless Eq. (6.6), we find at x =

—,
' that J4, (CuPd) =0.3

and J4, (CuPt) =1.3 meV compare with the values from
the cluster expansion (Fig. 8) J4 i (CuPd) = 1.5 and

J~, (CuPt)=7. 0 meV, i.e., they are of the correct order
of magnitude.

VII. FINITE- TEMPERATURE
THERMODYNAMIC PROPERTIES

We have so far addressed the issue of T=O "ground-
state structures, " finding some phases that are highly
stable and well-documented experimentally (e.g., L lo in
CuAu, Ll, in CuPt, and B2 in CuPd), along with some
phases whose energy is barely below the CxSL (e.g., the
D5 A13Ni~ structure and the D7 A1N7 structure); these
correspond to structures that can disorder at low temper-
atures, hence might escape experimental detection. Al-
though it is not our intention to discuss in this paper in
detail the finite temperat-ure properties of these alloys,
we will touch upon the issue of finite temperature stabili-
ty for some of these structures, providing estimates for
ordering temperatures. For example, in the case of Al-
Ni, our calculated ground state presents the yet unreport-
ed phase D7. Although the ground-state calculation may
be made following different procedures (different ways of
handling the molar volume, e.g., by minimizing of the en-
ergy, or by expansion in a series of figures, see Sec. IV D)
we always found that the D7 structure was present in the
calculated ground-state line of Al-Ni. Another interest-
ing feature of our Al-Ni results is that it clearly places
the Ga3Pt5 like phase D 5 also in the ground-state line.
Earlier experimental determinations of the phase dia-
gram excluded this low temperature phase. Since the
formation enthalpies of the Al-Ni ordered compounds are
sufficiently large (Table XI) to make the LDA or cluster-
truncation errors relatively unimportant, we were special-
ly interested in using our first-principle interaction ener-
gies (Fig. 7) to calculate the resulting phase diagram by
means of the cluster variation method (CVM). It is well
known that a phase diagram represents a delicate com-
petition between phases of nearly equal energies. Hence
even the topology of the phase diagram is highly sensitive
to small errors in the energy parameters and constitutes a
sensitive test of the LDA. It is not our intention to de-
scribe the details of the CVM; we just note that we have
used the tetrahedron approximation for calculations of
entropies, while ail I Ji, I interactions are included in the
description of the internal energies. We used a correla-
tion function program, and the Newton-Raphson method
to find the solution of the nonlinear equations (not a den-
sity matrix program and the natural iterations ). The
correlation functions for the pairs not contained in the
tetrahedron, such as the figures (k, m ) =(2,2), (2,3), (2,4)
for fcc, and (2,3), (2,5) for bcc, were expressed as products
of the point correlation functions of their vertices. This
decoupling was very successful in the case of the calcula-
tion of the phases diagram of semiconductor alloys.
Vibrational entropies and liquid-state effect were neglect-
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tures out of a limited set of only O(10) possibilities. The
most stable experimentally observed ground-state struc-
tures of Cu& „Au~, Cu& „Pdx, Cu& „Pt~, Cu& x Rhx,
and Al, Ni„are correctly identified and a few addition-
al low-temperature candidate structures are offered as
predictions. The same method for extracting renormal-
ized interactions works for simpler lattice properties,
such as molar volumes and electrostatic energies. A
unified description of general atomic relaxations is, how-
ever, lacking. In addition to this shortcoming, the main
approximations in our treatment are the following.

(i) Use of Vegard's rule for determining the equilibrium
volumes. Section VB examined this approximation and
found it to introduce negligible errors in all cases but
Al& Ni for which this approximation was not used.

(ii) Neglect of vibrational entropies. This can contrib-
ute significantly when one contrasts different Bravais 1at-
tices (e.g., fcc versus bcc) at finite temperatures, a com-
parison avoided here.

(iii) Renormalization of the contribution of large
figures to the entropy. This approximation was tested
quantitatively against Monte Carlo simulations [Ref.
27(b) Fig. 15] and was found to introduce negligible er-
rors in the enthalpy and phase diagrams.

(iv) Truncation of the cluster expansion and use of a
finite number of structures to extract interaction energies.
This is a rather controllable approximation whose conse-
quences are checked quantitatively in our transferability
tests (Tables XII—XVI).
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