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While as elemental solids, Al, Ni, Cu, Rh, Pd, Pt, and Au crystallize in the face-centered-cubic (fcc)
structure, at low temperatures, their 50%-50% compounds exhibit a range of structural symmetries:
CuAu has the fcc-based L1, structure, CuPt has the rhombohedral L1, structure, and CuPd and AINi
have the body-centered-cubic B2 structure, while CuRh does not exist (it phase separates into Cu and
Rh). Phenomenological approaches attempt to rationalize this type of structural selectivity in terms of
classical constructs such as atomic sizes, electronegativities, and electron/atom ratios. More recently,
attempts have been made at explaining this type of selectivity in terms of the (quantum-mechanical) elec-
tronic structure, e.g., by contrasting the self-consistently calculated total electron+ion energy of various
ordered structures. Such calculations, however, normally select but a small, O (10) subset of “intuitive
structures” out of the 2V possible configurations of two types of atoms on a fixed lattice with N sites,
searching for the lowest energy. We use instead first-principles calculations of the total energies of
O (10) structures to define a multispin Ising Hamiltonian, whose ground-state structures can be sys-
tematically searched by using methods of lattice theories. Extending our previous work on semiconduc-
tor alloys [S.-H. Wei, L. G. Ferreira, and A. Zunger, Phys. Rev. B 41, 8240 (1990)], this is illustrated
here for the intermetallic compounds AINi, CuRh, CuPd, CuPt, and CuAu, for which the correct
ground states are identified out of ~ 65000 configurations, through the combined use of the density-
functional formalism (to extract Ising-type interaction energies) with a simple configurational-search
strategy (to find ground states). This establishes a direct and systematic link between the electronic
structure and phase stability.
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I. INTRODUCTION

Numerous binary 4,_,B, alloys of elemental constitu-
ents 4 and B form at higher temperatures homogeneous-
ly disordered solid solutions. As the temperature is
lowered, the existence of finite interactions between
atoms 4 and B on the lattice leads either to phase separa-

tion or to the formation of various types of long-range or-
dered compounds. For example, while as elemental
solids, Al, Ni, Cu, Rh, Pd, Pt, and Au appear in the
face-centered-cubic (fcc) structure,! and form at high
temperature binary alloys with the same underlying fcc
symmetry,””’ when these 50%-50% alloys are cooled
down, they exhibit>~7 distinctly different structural sym-

TABLE 1. This table collects some empirical and calculated data on the binary compounds studied here, such as lattice mismatch
Aa/a=2la,—apl|/(a,+ap), formation enthalpies AH, the difference between the calculated (Hartree-Fock) s and d orbital energies
of the 4 and B atoms, and the difference ¥ , —x; in their Pauling electronegativities. Such scales have been previously used to assess

qualitative trends in structural preferences.

Low temp. €(A)—¢€,(B) €;(A)—€4(B)

structure® Aa /a® AH oy, Hartree-Fock® Hartree-Fock® Xa4—Xs
Binary x=1 (%) (meV/atom) (eV) (eV) Pauling
AINi B2 13.9 —741¢ —3.19 —0.3
CuRh Separated 5.1 > 04 —0.89 —-3.51 —-0.3
CuPt L1, 8.2 —174.3¢ —0.78 —3.38 —0.3
CuPd B2 7.3 —142.34 —0.71 —2.25 —0.3
CuAu L1, - 120 —90.7¢ —0.63 —2.16 —0.5
?References 3-7.
"Reference 1.
‘Reference 7(b).
dReference 5 at x =0.4.
°Reference 14.
fReference 8.
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metries: CuAu orders in the fcc L 1 structure, CuPd and
AINi order in the body-centered-cubic (bcc) B2 structure,
CuPt crystallizes in the rhombohedral L1, structure,
while CuRh phase separates (Fig. 1). Such structural
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FIG. 1. Experimental (Refs, 3-7) phase diagrams of (a)
Cu,_,Au,, (b) Cu,_,Pd,, (c) Cu,_,Pt,, and (d) Cu,_,Rh,.
Despite the fact that the pure constituents have the fcc struc-
ture and that the solid solutions too have this Bravais lattice, at
low temperature these materials show a variety of symmetries
for ordered compounds.

preferences in 4B compounds have traditionally been
discussed in terms of metallurgical and chemical con-
structs such as the A-B electronegativity difference,® size
mismatch,’ 1! electron per atom ratios,’ or differences in
A-B orbital radii.!?> Table I summarizes some of these
quantities,'>~ !> highlighting the fact that (i) this group of
compounds exhibits a significant spread in some of these
properties, yet, (ii) it is not obvious that the structural
preferences are encoded in such simple physical quanti-
ties. For example, CuRh and CuPt have similar elec-
tronegativity differences as well as s-orbital and d-orbital
energy differences, yet they have fundamentally different
structural preferences; similar comments pertain to the
CuPd and CuAu pair. Also, despite the smaller size
mismatch and greater electronegativity difference (both
supposed to enhance stability!!) in Cu-Au relative to Al-
Ni, the latter is far stabler than the former (compare their
formation enthalpies in Table I).

Understanding of the microscopic origins of this type
of structural selectivity has been at the core of structural
chemistry, metallurgy, and condensed matter physics for
a long time.®”!2 While Landau’s celebrated theory!® of
continuous phase transitions has successfully classified
the phenomenology of symmetry breaking in the homo-
geneous random alloy upon ordering, actual predictions
of phase stabilities were more often based on intuitive
chemical and metallurgical constructs such as electrone-
gativities,8 electron concentrations,’ atomic sizes,!>!! and
orbital radii.!?> Of particular interest to us here are the
approaches that attempt to demystify structural selectivi-
ty directly in terms of the electronic structure. In this
respect, recent advances in first-principles self-consistent
formulations of the total electron and ion energies of
solids'® have produced a wealth of information on the
ground-state properties of ordered intermetallic and semi-
conducting compounds. Given the crystal structure type
of an ordered compound, one can calculate its equilibri-
um lattice parameters, elastic constants, phonon frequen-
cies, and cohesive energy, often within a few percent of
the measured values.'® To find the stable crystal
configuration, one then repeats the total energy calcula-
tion for a few other assumed crystal structures that by
analogy with related compounds are expected to be likely
competitors for the stable ground state. Comparison of
total-energy —versus—volume curves for such a set of “in-
tuitive structures” permits the identification of the sta-
blest structure in this set and possible phase interconver-
sions among them. While generally successful, the
predictive value of this approach does depend on one’s
ability to guess correctly a canonical set of structures
which includes the “winning” (minimum-energy)
configuration. One wonders, however, whether a
different, hitherto unexpected structure could have yet
lower energy, or whether linear combination of two other
structures with compositions x, and x; (and
X4 <X, <xp) could have a lower energy than o (hence, o
will disproportionate into a plus ). Addressing this
problem, even for binary A4,By_, compounds requires,
in principle, calculation of the total energies of the 2V
atomic configurations for each type of lattice (fcc,
bee, . . .) with N lattice sites per cell. Even limiting N to
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0(10)-0(10%), this is a formidable task for first-
principles electronic structure methods, where the effort
involved in obtaining the total energy of a single
configuration scales as (MN)*, where M is the number of
orbitals/atom used to expand the single-particle wave
functions. While lattice theories of statistical mechan-
ics!”72?% provide an effective means of searching for the
ground-state configuration within model (e.g., Ising-type)
Hamiltonians, this approach has often evolved around
the limited task of identifying the Hamiltonian parame-
ters that produce given phase phenomena, rather than ex-
plaining them in terms of a microscopic theory of elec-
tronic structure.

In this paper we demonstrate how one can effectively
identify the ground-state structures among many
[0(2Y)] atomic configurations directly from a micro-
scopic electronic structure theory, using the (quantum-
mechanical) calculated total energies of only ~ 10 crystal
structures. The method is illustrated for the four in-
termetallic alloys of Fig. 1 and Al,_,Ni,. This estab-
lishes a direct link between the ab initio electronic struc-
ture theory and structural preferences in solids.

II. CLUSTER EXPANSION OF PROPERTIES
OF BINARY LATTICES

The physical properties of various lattice
configurations are often depicted by “‘cluster expansions™
described by Sanchez et al.?® These are formulated as
follows. A binary lattice with N sites can exist in 2V
different configurations o, corresponding to the various
occupations of the N sites by the atoms 4 and B. Each
configuration can be labeled by a set {S;} of fictitious
spin variables §,-: +1 if site i is occupied by B, —1 if it is
occupied by 4. We will be interested in describing vari-
ous physical properties P (o) of given configurations, e.g.,
its total (electron plus ion) energy E (o), equilibrium mo-
lar volume V(o), composition X (o), etc. While for
periodic crystals with a reasonable small number of
atoms per unit cell P (o) could be readily calculated (e.g.,
from band theory), the multitude of configurational and
structural degrees of freedom characterizing either disor-
dered or imperfectly ordered configurations renders the
direct calculation of P(co) intractable.?® Whereas one
could calculate P(o) directly®® for certain limited classes
of configurations, the basis of lattice model'”~2° is to ex-
pand it instead in a series of contributions p, of “figures”
f and focus on the calculation of these elemental contri-
butions p,. A figure is defined as a cluster of atoms with
kf vertices (i.e., a selection of k, out of N sites). The ex-
pansion is defined with respect to an orthonormal set of
coefficients, as follows. One defines the spin product

Hf(U):§1/§2/ "'§k ,

; 2.1

for each of the 2" figures in configuration o. The set
{H(0)} is orthonormal,? [including the “empty figure”
f =0 for which II,(o)=1] in that for two figures f and
f ' we have

S (o), (0)=2"8 . . (2.2)

Equation (2.2) shows that 2~ M1 r(o) is the inverse matrix
of Il;(o); multiplying the matrices in reverse order one
obtains the second orthogonality condition between the
two configurations ¢ and o':

ZHf M,(0")=2 NS, (2.3)

One can hence expand any property P(o) of the lattice
configuration o in the orthonormal set of {I1 (o)} as®’
2N

P(o)= 2 IT 1 (

pf , (2.4)

where the conﬁguratlon-independent contribution p, of

figure f to the property P is given from Egs. 2.2)-(2.4)
by
2N
pr=2" NEIIf )JP(o) . (2.5)
The serles (2.4) may be reduced using symmetry. Denot-

ing by R one of the N ;. operations of the space group of
the lattice (not the space group of a particular
configuration o) we have

P(Ro)=P(o) (2.6)
and

My (Ro)=T,(0), 2.7)
hence, Eq. (2.5) gives

PRy =Ps » (2.8)

so all ND symmetry-related figures contribute equally to
P(o). This fact can be used to reduce the sum in Eq.
(2.4) to just the symmetry-inequivalent figures F

P(o)=N S (0)Dppy , (2.9)
F
where the “lattice-averaged spin product’ (denoted by an
overbar) of the prototype figure F in configuration o is
1 Ny

Hp(o)= NL EHIQF(O' , (2.10)
and N, is the number of operations R in the lattice space
group (e.g., N, =48N for fcc lattices). The set of
{Ilz(0)} charecterizes unequivocally the structure of
configuration o. Indeed, using the alternative definition
to Eq. (2.10), and summing over the figures f that are
symmetry related to F:

(2.1D

one finds that
N

SDpp(0)Ip(o")= (2.12)
F

8 ,
NNL % o,Ro

which is the orthogonality condition between symmetry-
unique configurations, analogous to Eq. (2.3).
The cluster expansion of Eq. (2.4) defines a multisite Is-
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ing Hamiltonian!® which includes “interactions”
Pr=Pkm between k pseudospins separated by up to the
mth neighbor distance (the choice k=2, m =1 corre-
sponds to the classic,!”!® nearest-neighbor pair interac-
tion case). Since the configurational property P(o) can
depend in general on the external volume ¥V (or pressure)
of the lattice, so will the cluster contributions {p}.

It is useful to expand the configurational property
P(o) with respect to some reference configuration. One
possibility is to expand it relative to the property P of

equivalent amounts of pure A4 and pure B lattices. The
cluster expansions for 0 = 4 and 0 =B are
P(A V)= 3 (—=1*D; ,.pi (V) (2.13)
m k
and
P(B,V)= 22 (+1) kapkm(V) , (2.14)

since for pure 4 and pure B spin products of Eq. (2.1) are
+1 for all k=even figures, while for k=o0dd they are —1
for co=A and +1 for =B (see Tables III and IV
below). Extracting from Egs. (2.13) and (2.14) the value
of p; ,, for the “empty figure” (k,m)=(0,1) and for the
site-only (1,1) figure, and substituting them into Eq. (2.9)
gives the excess property AP for the A ,_,B, system with
respect to equivalent amounts of 4 and B

AP(o,V)=P(o,V)—[(1—x)P(A4,V)+xP(B,V)] .
(2.15)
The cluster expansion for AP is then
AP(o,V)= 3 3 [, —=1]Dsmpim (V) 5 (2.16)

m>0k>1

where 7=1 for k=even and 7=(2x —1) for k=odd.
Choosing alternatively the perfectly random (R) 4,_, B,
alloy as a reference system, the ensemble average over the
2% configurations (denoted by angular brackets) is

(M, Y =(2x —1)* (2.17)
The excess energy of the perfectly random alloy is then
(AP)r=3 3 [2x —D*=]Di wbim(V),  (2.18)

m>0k>1

so the cluster expansion can be written with respect to
(AP); as

AP(o,V)=(AP),
+ 3 S [M,.(0)—

m>0k>1

(2x = 1*1Dy mPiym -

(2.19)

While the complete cluster expansions of Eqs (2.4),
(2.16), or (2.19) are formally exact, they merely replace a
direct calculation of 2V values of P(co) by an equivalent
number of calculations of the elementary contributions
py- The utility of these expansions rests, however, in the
possibility of identifying a hierarchy of a small (<<2")
number of figures whose contributions py ,, to the physi-

cal property P dominates those of the remaining figures.
To the extent that this is possible, the full informational
content of 2V values of P(co') can be reduced to a smaller
set of {pr} elementary interactions. These can then be
used to predict P(o) for other structures,?’ to search
among all 2" configurations'*~2* for the T =0 “ground-
state structure” (that has the lowest P=total energy), or
to predict the finite-temperature thermodynamic proper-
ties of 4,_, B, through solution of the Ising problem!®?’
of Eq. (2.4).

There are qualitative indications that the cluster ex-
pansion might be reasonably rapidly convergent for a
number of physical properties P(o ). Note first that such
expansions need to capture only the difference AP(o ) be-
tween the property P(o) of some structure 4,_,B, and
the average property taken over equivalent amounts of its
constituents 4 and B. Indeed, such differences are often
much smaller than P(o) itself, e.g.: (i) for P=molar
volume or lattice constant, Zen’s and Vegard’s rules!®
state, respectively, that AP =0; (ii) for P=total energy,
the formation enthalpy AP is many orders of magnitude
smaller>!>!6¢) than the total electron and ion energy of
A,_,B,; and for (iii) P=optical band gap of semiconduc-
tors, the “optical bowing parameter”” AP is usually less
than?"@»(®109% of P. Similarly, comparing AP(o) for
some ordered configuration o to its values (AP ) in the
random alloy at the same composition [Eq. (2.19)] shows
comparable trends, e.g., for (i) AP= formation enthalpy
AP(c)—{AP)y is often <1 Kcal/mole for many in-
termetallics;’ (i) the changes in molar volume,"*!° and
(iil) optical band gaps?’ upon ordering of a random semi-
conductor alloy are often ~1%. Second, note that the
notion of the dominance of interactions between neigh-
boring atomic sites over interactions between more dis-
tant sites underlines much of the phenomenological
structural chemistry of intermetallic phases.® !
Theories of atom packing in lattices®® 3% retaining but
the first few pair interactions have been eminently suc-
cessful for many types of solids.

Many previous applications of the Ising-type Hamil-
tonian of Eq. (2.4) have not formulated p, ,, through a
microscopic theory. Instead, it was often postulated!® 23
that a given set of interactions describe some generic
physical systems; nearest-neighbor pair interaction mod-
els are some of the popular idealizations of Eq. (2.4).
Often, those interactions are adjusted to fit an observed
phase diagram.’™3® The general expansion (2.4) can,
however, be made useful for predicting structural ener-
gies of solids to the extent that a reasonably rapidly con-
vergent series of interaction {p; ,} can be calculated a
priori. We next review the way in which these interac-
tions were obtained previously.

III. THEORIES OF INTERACTION ENERGIES {p; ,, }

The expansion of the configurational energy of a mole-
cule or solid in terms of pair and multiatom interactions
has a long history in organic®*®3! and inorganic3®3* chem-
istry, metallurgy,?®33 physics of semiconductors®® and
ionic solids.?>3? The interaction potentials are generally
obtained there without reference to lattice models: they
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are extracted, for example, through fits of the observed
dissociation energies, molecular conformations, and
vibrations,30323435a) or fits of calculated®®"? (e.g., by
the Hartree-Fock® or density functional®®® Born-
Oppenheimer energy surfaces), or through pseudopoten-
tial perturbation expansions.”” In many cases, py ,, is
identified with interatomic interaction potential, not with
averages over the fotal energies [Eq. (2.5)]. A classic ex-
ample that serves to emphasize this distinction is the
Madelung (M) energy*? of a lattice configuration o

1 , Qin

Eylo)=—+ )
M 2N < |R,—R}]

(3.1)

where the prime excludes the i = term and the pair in-
teraction potential
9 4
=83 3.2

is the Coulomb interaction between point charges Q; and
Q, on lattice site R; and R;. As is well known,* this
series converges both slowly and conditionally due to the
slow decay of p; ; (unless one is summing over carefully
selected neutral clusters of sites). In contrast, the cluster
expansion considered in this paper [Egs. (2.4) and (2.5)]
identifies the cluster parameters p, ,, with interaction en-
ergies that renormalize a set of (possibly long-ranged) po-
tentials. In the context of the Madelung problem, the
effective interaction energies of Eq. (2.4) take the form
(2.5)
2N

Pom =2V, , (0)Ey(o), (3.3)

representing an average over configurations of converged
lattice sum E, (o). Hence, the (renormalized) effective
interaction energies {py ,,} can be of considerably shorter
range than conventional interaction potential {p; ,,}.
This is illustrated in Sec. IV E below.

The empirical approach of extracting {p; ,,} from ex-
perimental data has also been used extensively in the con-
text of lattice models of phase diagrams. There, one first
truncates the cluster expansion to a given range, and ad-
justs {py ,,} in the solution of the corresponding Ising
model of Eq. (2.4) to reproduce certain features (e.g.,
transition temperatures) of the experimental phase dia-
grams. Examples include the fit of Kikuchi et al.3¢ of
Cu-Ag-Au phase diagrams to a nearest-neighbor Ising
model (m =1, k <4) solved through the cluster-variation
method (CVM), the fit of Sigli and Sanchez®” of Al,_ Ni,
phase diagram through a nearest-neighbor pair model,
and a similar fit by Sanchez et al.’® using the nearest-
neighbor Lennard-Jones form for p, ;. While good fits
can be obtained within nearest-neighbor models,*®~3® the
extent to which these empirical interactions renormalize
longer-range terms remains unknown, as is their physical
interpretation. These interaction energies can also be es-
timated directly from x-ray- or neutron-diffuse-scattering
measurements, as done, for example, by Cenedese et al.*°
for Al;_,Ni, and Fe,;_,Ni,.

In contrast with the classical empirical interaction po-

tentials discussed above which circumvent altogether the
consideration of the (quantum-mechanical) electronic de-
grees of freedom, the embedded-atom model*"*? (EAM)
describes configurational energies in terms of electron-
density-mediated interatomic energies. There, E(o) is
expanded in terms of a sum over single-site (k =1, m =0)
terms, each representing the energy of embedding atom i
in an electron bath of density p;, and a set of pair-
interaction terms. The site charge density p; includes the
configuration-dependent effect of the charge densities of
the surrounding atoms; embedding energies are described
within the density functional model, e.g., through the
quasiatom approach of Stott and Zaremba*’ or the
effective medium approach of Ngrskov and Lang.** In
many practical applications*""*? the parameters of the
electron densities, two-body potentials, and the embed-
ding functions are adjusted to fit experimental data (e.g.,
equilibrium lattice constants, cohesive energies, vacancy
formation enthalpies, bulk and shear moduli).

A direct quantum-mechanical approach to calculating
interaction energies within the lattice model is provided
by the definition of Eq. (2.5). In practical calculations,
the number of configurations included in the sum are re-
stricted to O (10)-0(10?), and P(o)=E(c) is evaluated
within simple non-self-consistent tight-binding models.
Applications of this ‘“direct configurational average”
(DCA) method* showed that (within the limitations of
an inherently short-ranged electronic Hamiltonian), the
pair interactions {p, , ] describing model binary transi-
tion metal alloys converge rapidly with the cluster size m.

Current quantum-mechanical approaches to calculat-
ing effective interaction energies—the ‘“concentration
wave” (CW) method** 3! and the “generalized perturba-
tion method”*™>’ (GPM)—are based on expanding
AP(o,V) relative to the random alloy average (AP ),
[Eq. (2.19)] without expanding the latter quantity in a
cluster from [Eq. (2.18)]:

AE(O' )= < AE(X) >SCPA+% z V,~(jZ)(x,- —X )(xj —Xx)
i

43 Vi —x) = x)(x —x)+ - - -

,j : (3.4)
ijk

Here, the energy of the random alloy is calculated in-
dependently from an electronic Hamiltonian that is ex-
plicitly configurationally averaged, using the site
coherent potential approximation®® (SCPA), while V%
are effective k-body potentials and x; is the concentration
of atom B on site i. In the ‘“concentration wave” ap-
proach,* ™! P2 is obtained from the derivative of the
inhomogeneous CPA energy

(2) — 82<E{xi}>CPA (3.5)

iy dx,0x, ’ )
whereas in the “generalized perturbation method”*?~>7
the effective energies are obtained from a spectral integral
of transfer matrices and Green’s functions.”> The SCPA
energy (E )scpa common to both approaches was formu-
lated either within the tight-binding®? >’ or the muffin-
tin Korringa-Kohn-Rostoker (KKR) formalism.*’ 5! In
the former case, the total energy includes but the sum of
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single-particle energies (the “band-structure” term), while
in the latter case ‘“‘double counting” (electron-electron
Coulomb and exchange-correlation) terms could®! be in-
cluded.

The self-consistent KKR-CPA total energy (AE )cpa
of the random alloy (including both band structure and
double-counting terms) has been calculated for fcc
Cu,_,Zn, alloys,”! yielding the composition-dependent
equilibrium lattice constant a (x), in good agreement with
experiment. The effective interactions, obtained for
Pd,_,.Rh, (Ref. 49) and Cu,_,Pd, (Ref. 48) were calcu-
lated, however, from the one-electron band-structure
terms, neglecting charge transfer, atomic relaxation, vari-
ation of the total energy with respect to volume, and non-
spherical terms in the atomic potentials. Despite this, the
calculated Pd,_ Rh, phase diagram* (using ideal mix-
ing entropy) and the short-range order diffuse scattering
map” are in qualitatively good agreement with experi-
ment.

The CPA-GPM approach® %7 has been applied within
the non-self-consistent tight-binding d band model to a
large number of transition metal binary alloys, yielding (i)
predictions for fcc and bee ground-state structures® and
phase diagrams®® in terms of tight-binding constructs
such as d electron count per atom and d band widths, (ii)
formation enthalpies of ordered and disordered alloys,’’
(iii) predictions of relative stabilities of different ordered
structures at the same composition®>*® (e.g., L1, and
DO,,), and (iv) predictions of effective cluster interac-
tions,>* 3¢ exhibiting a rather fast convergence as a func-
tion of the cluster size. Extensions in which the tight-
binding Hamiltonian is replaced by a KKR form within
the CPA-GPM were also reported.>?

Methods that are based on Eq. (3.4), e.g., the CPA-
GPM or CPA-CW rely fundamentally on the adequacy of
the SCPA approach to the description of the total energy
of the random system and perturbations thereof. All
such applications to date*’ >’ are based on the im-
plementation of the CPA within the site-only approxima-
tion.”® This approach amounts to assuming that at a
fixed composition the properties of an atomic site in the
alloy (e.g., electronic charge, local density of states, self-
consistent potential) do not depend explicitly on the
configuration of the surrounding atoms, including its first
nearest neighbors. The simulations of the electronic
structure of random configurations by Alben et al.,*®
Davis et al.,’® and Gonis et al.%C demonstrated, however,
significant local environment effect on the density of
states. In actuality, this electronic inequivalence between
chemically identical species in the alloy (i.e., the different
A sites in a random configuration) would create nonvan-
ishing forces about the atoms, driving positional relaxa-
tions. The existence of a distribution of local charges
would also set-up a finite Madelung energy for the ran-
dom alloy. In short, the electronic “glue” creates about
each site a “sphere of influence,” whereby the structural
and chemical information associated with the atoms in
this sphere affect the local properties of the central atom.
The SCPA replaces this “sphere of influence” by a point.
The local density of states and total energy of such a
configuration is evaluated by replacing the distribution of

many inequivalent local environments by a uniform medi-
um, having the high symmetry of the empty lattice and
vanishing Madelung energy. There are but two distinct
average potential functions in the problem (one for A4,
one for B); all 4 atoms (and separately, all B atoms) are
taken to be electronically equal. Hence, in averaging
over all local environments to produce an effective medi-
um, the SCPA removes all geometrical aspects of the
problem (e.g., the particular way in which an atom is
coordinated to a certain number of neighbors), retaining
but the topology (i.e., the correct coordination symmetry
underlying the Bravais lattice of the pure constituents).
The present authors find this approximation to be physi-
cally implausible for systems with significantly different
A versus B bonding properties (e.g., sizes, ionicities, or
scattering strengths). We will further demonstrate this
point in Sec. IVE. We find there [Eq. (4.24)] that setting
the random Madelung energy to zero, as assumed by the
SCPA makes a 100% error in the electrostatic contribu-
tion to the ordering energy. In what follows, we will
hence cluster expand the energy of the random alloy [Eq.
(2.18)] and that of ordered structures [Eq. (2.16)] in a
precisely equivalent manner, avoiding single-site effective
medium averaging. We next demonstrate how the cluster
properties p; ,, can be obtained from the configurational
properties { P(o )} of a subset of distinct configurations.

IV. CALCULATION OF EFFECTIVE
CLUSTER PARAMETERS p, ,, FROM P(o)

A. Formalism

To the extent that the basic cluster expansion of Eq.
(2.9) converges regularly and rapidly with respect to the
figures {F} (a point examined below), one can use any
sufficiently large set of {P(o)} in Eq. (2.9) to evaluate the
effective cluster properties {pr}. Conversely, nonunique
values of {pp} obtained from two different sets of
configurations {o} and {o’} of comparable sizes testify
to the importance of interactions beyond the truncation
limit used. This suggests that one can (i) establish a trial
maximum figure F, ., to be retained in the cluster expan-
sion of Eq. (2.9), (ii) select a computationally convenient
set of configuration {o} (e.g., periodic structures) from
which p for F<F,, can be obtained, and (iii) examine
convergence by using {py} to predict the property P(c’)
for other structures {o’}7{o}; if this fails, F,,, is in-
creased until transferability is established.

Following Connolly and Williams®' we specialize the
expansion of Eq. (2.9) to a set of N, periodic structures
{o}={s} for which (i) P(o) can be readily calculated
(e.g., from band theory) and (ii) {T1(s)} are known trivi-
ally. This reads

F

max

P(s,V)=N 3 T(s)Dppy .
F

max

4.1)

One then obtains the effective cluster properties {pg} ei-
ther through matrix inversion (if N; equal the number N
of figures used), as suggested by Connolly and Williams®!
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N,
1 5= _

PF= Npo g.[HF(S)] P(s), (4.2)
or (if Ny < N;) by minimizing the weighted variance,

Ns NF 2

S o, |P(s)— 3 N(s)Dppr | =minimum , 4.3)

s F

with the weights

ws:48Nc(s)/NG(S) . (44)

Here N(s) and Ngs(s) are the number of atoms per unit
cell and number of point group operations for the struc-
ture s, respectively. An immediate consequence of Egs.
(4.1) and (4.2) is that'if the contributions of clusters with
F>F_, can be neglected, the property P(o) of an arbi-
trary configuration o can be represented as a superposi-
tion of the properties {P(s)} of a set of ordered struc-
tures, i.e.,

NY
P(o)=3 &(o)P(s), (4.5)
where the weights are
Fmax
E(0)= 3 [Mp(s)] (o) . (4.6)
F

Note that {P(s)} of Egs. (4.3) or (4.5) could be calculated
for any configuration s (including, if one wishes, ‘“ran-
dom” configurations) as long as P(s) can be calculated
accurately (e.g., without the site-only decoupling). In
practice, one would seek to establish a sufficiently small
set of representative configurations (see below), and judge
its adequacy by the extent to which the interaction pa-
rameters extracted from it are transferable to the descrip-
tion of other configurations.

This method of “superposition of periodic structures”
[Egs. (4.5) and (4.6)] has been used by a number of au-
thors, restricting, however, F,,, to the nearest-neighbor
figures. Within this approximation (to be examined
below), there are only five nonequivalent values of
f=(k,m), i.e., m =1 and k=0, 1, 2, 3, and 4; the max-
imum figure F_,, is the A,B, , tetrahedron with
0<n <4. Applications of this nearest-neighbor model to
P=total energy of bulk alloys include the work of Con-
nolloy and Williams,®' Terakura et al.®*® and Takizawa
and Terakura®® on transition metal alloys, that of San-
chez and Carlsson,**® and Carlsson®*® on Al,_, Ni,,
that of Sluiter et al.®®) on LiAl, of Srivastava et al.,*
Mbaye et al.,85%62) and Ferreira et al.®’ on semiconduc-
tor alloys, and the work of Wei et al.%® on noble metal al-
loys. Applications to epitaxial alloys were reported by
Mbaye et al.,**® and by Wood and Zunger.%® All of
these applications evaluated P(s)=FE,, using first-
principles electronic structure techniques. Applications
to P=band gaps include the work of Bernard and
Zunger®®® on II-VI semiconductor alloys, Wei and
Zunger®® and Ling and Miller”® on III-V semiconduc-
tors alloys. Application to P=spin-orbit splittings were
carried out by Chadi’! and by Wei and Zunger.”? Finally,

application to P=bond lengths in semiconductor alloys
were carried out by Balzarotti et al.,”® Letardi et al.,’*
Sasaki and Ichimura,’> Martins and Zunger,’® and Wei
and Zunger.®®

Extension of the “‘superposition of periodic structures
approach” of Egs. (4.1) and (4.2) to include a converged
set of figures (e.g., up to fourth neighbors in fcc systems)
was presented by Ferreira er al.>’® and by Wei et al.2’®)
for different II-VI and III-V semiconductor alloys, and by
Lu et al.?’® on transition metal alloys. Such larger,
converged representations of the cluster expansion are
considered next.

B. Selection of structures and figures

We see that there are two distinct convergence issues
in this approach: (i) the truncation of the sum over
figures in Eq. (4.1) to F<F_,, and (ii) the truncation of
the number of structures in Eq. (4.2) or (4.3) after N,
terms. Note that the concentration wave method,*®*’
and the generalized perturbation method® 37 encounted
only the first of these two convergence problems.

Our previous studies?’” showed that one must start first
with a rather large set of figures and reduce their number
on the basis of convergence tests. In addition to the nor-
malization figure (k,m)=(0,1) and the single-site figure
(k,m)=(1,1), we will use a hierarchical set of pair interac-
tions (2,m)=(2,1), (2,2), (2,3), (2,4) for first, second, third,
fourth fcc neighbors, respectively (fifth for bee), as well as
the three-body (k,m)=(3,1) and four-body (4,1) terms.
These N =38 figures are defined in Table II; Fig. 2 depicts
them graphically.”” This is the most extensive set of clus-
ter interactions used to date in first-principles calcula-
tions of metal alloys.

Regarding the set of N, periodic structures {s}, the
choice must be such that different sets of structures
{s}#{s’} must yield through Eq. (4.2) or (4.3) similar in-
teraction parameters {pr}, and {pr},, hence, reproduce
P (o) of an arbitrary structure with equivalent precision.
Note that, depending on the properties described, the

(a) [EI (b)

e

7 & B

|~}
K2 | ¢
' %
()
W

K2

FIG. 2. Real-space depiction of the figures (Table II) used in
the cluster expansion. (a) fcc and (b) bcc. Here,
J2=J51, K2=J,,, L2=J,3, M2=J,,, N2=J,5, J3=J;,,
K3=J3,,J4=J,,,and K4=J,,.
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cluster expansion permits (but does not require) that pp
depend on composition: the situation here is analogous
to the expansion of a wave function P (o) by a finite set of
(obviously nonunique) basis orbitals p, that could, but
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SB Name: A1, (fcc L1 1, B2
(other) (fcc) 2 (B1, p2)
Formula:
Crystal
Structure
Ona
[ J:]
Example Cu Cus Au TiAl
Bravais Face-centered Cubic Simpl bi Body-centered Body-centered
Lattice imple Cubic Tetragonal Tetragonal
Unit ( 0,1/2,1/2) (1,0,0) (1, 0,0 (172, 1/2, 0)
Cell (172, 0,1/2) 0,1,0) (o0, 1,0 (1/2,-172, 0)
Vectors (1/2,1/2, 0) (0,0,1) (1/2,1/2, 1) (172, 0,3/2)
Space Group:
Int. Tables: Fm3m Pm3m 14/mmm 14/mmm
N 5 1 17 17
Shoenflies: [ O, D4n Dgn
Number: 225 221 139 139
Pearson Symbol: cF4 cP4 ti8 ti6
Equivalent
sg:g’r‘l‘a‘:{i‘ce None None A4B along [201] A,B; along [001]
SB Name: L1y L1, (CH, "40") (22)
(other)
Formula: AB AB AzB;
Crystal
Structure
Oa
o8B
Example CuPt NbP
Bravais Rhombohedral Body-centered "
Lattice Simple Tetragonal (Triagonal) Tgtragonal Simple Tetragonal
Unit (1/2,1/2, 0) (1/2,1/2, 1) (1, 0,0 (1/2,1/2,0)
Cell (-1/2, 0,1/2) ( 1,1/2,1/2) (0, 1,0 (-1/2,1/2, 0)
Vectors (00, 1) (1/2, 1,1/2) (1/2,1/2,1) ( 0,0,2)
ISpace Group:
Int. Tables: P4/mmm R3m 14,/amd P4/nmm
1 5 1 7
Ishoentflies: Dgn D3qg D4: Dan
Number: 123 166 141 129
Pearson Symbol: tP4 hR32 ti8 tP8
ival
gﬂ:;?a?{i'ée A;B, along [001] A4By along [111] A,B, along [201] A,B, along [001]
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need not depend on an energy parameter. We have previ-
ously shown?” how an optimal set of structures can be
selected so as to avoid any near-linear dependence (i.e.,
obtain a numerically stable inverse matrix T;'). In the

FIG. 3. Crystal structure information for the fcc compounds used in the cluster expansion. Table III gives the lattice-averaged
spin products ﬁk,,,, for these structures. In cases where a structurbereicht (SB) symbol is unavailable, we have made one up (given on

top).
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present study we have used 12 fcc and 12 bee structures
that satisfy the above conditions.
Figs. 3 and 4 that also give the unit cell vectors, Bravais
lattices, space groups, and structure-type symbols. In

LU, WEI, ZUNGER, FROTA-PESSOA, AND FERREIRA 44

They are

cases where a structure-type symbol is unavailable in the
literature we use our own labels. Tables III and IV give
the lattice-averaged spin products I, , (s) and degenera-
cies Dy ,, [Eq. (2.12)] (D, is set, for convenience, to uni-

shown in

SB Name: A2, (bcc)
(other)
Formula: A;B
Crystal
Structure
Oa
oB
Example w Bi F3, Cs3Sb Cu Tig MoSi,
Bravais i i i Body - Centered
Lattice Body Centered Cubic |Face Centered Cubic | Simple Tetragonal TZtragonal
Unit (172, 1/2, 1/2) ©, 1, 1) (1, 0, 0) (1, 0, 0)
Cell (1/2,-1/2, 1/2) 1,0, 1) (0, 1, 1) (0, 1, 0)
Vectors (1/2, 172, -1/2) (1, 1, 0) (0,-1, 1) (1/2,1/2,13/2)
|Space Group:
Int. Tables Im3m Fm3m P4/mmm 14/mmm
|shoentfiies: of o} D}, o}l
Number: 229 225 123 139
Pearson Symbol: ci2 cF16 tP4 ti6
Equivalent N A,B, along [111 None 1
Superfattice one 3B4 along [111] A,B4 along [001]
SB Name: B2 Aq B32 B11
(other)
Formula: AB AB
Crystal
Structure
Oa
o8B
Example CsCl +IrvV NaTl ¥TiCu
Bravais
Lattice Simple Cubic Ogﬁg:g::gic Face-centered Cubic | Simple Tetragonal
Unit (1,0,0) (1/2, 1/2,1/2) 0,1,1) (1,0,0)
Cell (0,1,0) (1/2,-1/2,1/2) (1,0, 1) (0,1,0)
Vectors 0,0,1) (-1, 0, 1) (1,1,0) (0,0, 2)
Space Group:
Int. Tables: Pm3m Cmmm Fd3m P4/nmm
19 7
Shoenflies: o, Dop oy LY
Number: 221 65 227 129
Pearson Symbol: cP2 oCs8 cF16 tP4

Equivalent
Superlattice

A,B, along [001]

A,B, along [101] A,B, along [111] A,B, along [001]

FIG. 4. Crystal structure information for the bcc compounds considered in the cluster expansion. Table IV gives the lattice-
averaged spin products II, ,, for these structures. In cases where a structurbereicht (SB) symbol is unavailable, we have made one up

(given on top).
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TABLE II. Definition of the basic figures in the fcc and the bec lattices and their degeneracies Dr. We use the lattice parameter

a=2. See Fig. 2 for a real-space representation of these figures.

fee bee

Figure Site positions Site positions
symbol Dg (in units of a=2) Dy (in units of a=2)

0,1) 1 Empty 1 Empty

(1,1) 1 (0,0,0) 1 (0,0,0)

(2,1) 6 (0,0,0),(1,1,0) (0,0,0),(1,1,1)

(3,1 8 (0,0,0),(1,1,0),(1,0,1)

(3,2) 12 (0,0,0),(1,1,1),(1,1,— 1)

4,1) 2 (0,0,0),(1,1,0),(1,0,1),(0,1,1)

(4,2) 6 (0,0,0),(1,1,1),(1,1,— 1),(2,0,0)

(2,2) 3 (0,0,0),(2,0,0) 3 (0,0,0),(2,0,0)

(2,3 12 (0,0,0),(2,1,1) 6 (0,0,0),(2,2,0)

(2,4) 6 (0,0,0),(2,2,0)

(2,5) 4 (0,0,0),(2,2,2)

ty) for these structures. Since we wish to use the same
canonical set of structures and figure for all alloys studied
here, we examine next how these sets predict, via the
cluster expansion, simple configurational properties P (o)
such as moments of composition, molar volumes, and
Madelung energies. To the extent that a single set of
structures and figures can be used to describe such a
range of properties, the approach would be deemed both
practical and physically appealing.

C. Cluster expansion of the moments of the composition

Equation (2.18) shows that the excess energy of a ran-
dom alloy can be written as a power series of composi-
tion, where the coefficients of X2, X3, and X*, for exam-
ple, are determined primarily by pair, three-body, and
four-body interactions, respectively. It is hence impor-
tant that the general cluster expansion correctly capture
the various powers X* of the composition, in particular
the dominant A=2 (pair interaction) term. Using our set
of N,=12 structures (Figs. 3 and 4) and N,=38 figures,
we specialize Eq. (4.1) to P(s)=X2}, i.e.,

X}=N 3 Tp(s)Dpxg(A) . 4.7)
F

Here, X} is the Ath power of the composition of
X=m/(n +m) of the B atom in some structure 4,B,,.
We determine the N expansion coefficients pyp=xz(A)
from N, values of P(s)=X> of the ordered structures {s}
by minimizing the variance of Eq. (4.3) (the cluster ex-
pansion reproduces identically the A=0,1 moments).
Table V compares for 12 fcc and 12 bee structures the ex-
act composition square X? with that recalculated by the
cluster expansion, using the coefficients obtained from
Eq. (4.7). We see that using this set of structures and
figures reproduces X2 rather accurately: the standard de-
viations Y are 0.009 and 0.008 for fcc and bcec lattices, re-
spectively. The errors are larger for X2 (x=0.021 and
0.014 for fcc and bcc, respectively), but this would not
affect seriously the calculated energies, as X° multiplies a
rather small three-body term (Sec. V C below).

D. Cluster expansion of molar volumes

Another lattice property P (o) whose cluster expansion
is physically relevant is the equilibrium molar volume
V(o) of configuration o. Using the linear-muffin-tin-
orbital (LMTO) method’® (described in Sec. V) we have
minimized the total energies AE(s, V) of 12 fcc and 12
bee ordered structures {s} of AINi compounds, finding
for each (without any cluster expansion) the equilibrium
volume

dAE(s, V)

=0. (4.8)
v |v=rbe

These directly calculated equilibrium volumes are denot-
ed V‘e}])(s). We then cluster expand, for P(s)=V(s)

V(s)=N 3 Mp(s)Dpvg , (4.9
F

obtaining the coefficients pr =v; by minimizing the cor-
responding variance in Eq. (4.3). Inserting these expan-
sion coefficients into Eq. (4.9) gives the recalculated
volumes, denoted V(e(zl’(s). Finally, we calculate the
volumes in a third way, by minimizing the cluster expan-
sion for the energies

dAE (s, V) dlp(V) _
av 1 ’
where pp=J are the expansion coefficient for the ener-
gy. This gives the equilibrium volume denoted V‘eg)(s).
Table VI compares these three equilibrium volumes,
showing good agreement between them, and rapid con-
vergence of the volume cluster expansion (4.9).

Equations (2.15) and (2.16) show that the normaliza-
tion term p,; and the site-only term p, ; give the linear
part [second term on the right-hand side of Eq. (2.15)] of
the property P(o), whereas the many-body terms py ,,
with k>1 and m >0 describe deviations from linearity
[“bowing” of P(o)]. Table VII gives the expansion
coefficients vy of the volume series of Eq. (4.9) for the
AINi compounds, showing only small “bowing” of ¥V (x)

=N 3 1;(s)D 4.10)
F
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TABLE V. Comparison of the exact expectation values of the composition squared X? with the values obtained from the cluster
expansion of Eq. (4.7) (using Ny=8 and N;=12). The weights are given by Eq. (4.4). The crystal structures are shown in Figs. 3
(fce) and 4 (bece); Fig. 2 gives the figures (k,m ) used. The last line gives the standard deviation.

fee bee
Exact Clust. Clust.
Comp. Xx? Struct. Weight Xx? Struct. Weight b &

A 0.0000 fcc 1 0.0000 bee 1 0.0000
AsB 0.0625 L1, 4 0.0664 DO, 4 0.0601
A,B 0.0625 DO,, 12 0.0612 L6, 12 0.0649
A,B 0.1111 B1 9 0.0968 Cl11, 9 0.1001
AB 0.2500 L1, 6 0.2617 B2 2 0.2783
AB 0.2500 L1, 8 0.2500 A, 12 0.2476
A,B, 0.2500 “40” 12 0.2513 B32 4 0.2524
A,B, 0.2500 Z2 12 0.2643 B11 12 0.2610
AB, 0.4444 B2 9 0.4301 Cl11, 9 0.4334
AB, 0.5625 DO, 12 0.5612 L6, 12 0.5649
AB, 0.5625 L1, 4 0.5664 DO, 4 0.5601
B 1.0000 fcc 1 1.0000 bce 1 1.0000
Deviation: 0.0089 0.0082

TABLE VI. Comparison of the equilibrium molar volume (in cm®/g-at.) of Al,_,Ni, intermetallic
compounds as obtained by three different methods. ¥‘!)(s) is obtained by minimizing the LMTO ener-
gy of structure s (no cluster expansion), ¥?(s) is obtained by cluster-expanding molar volumes using
the 12 structures (Figs. 3 and 4) and 8 interactions (Fig. 2), and V*(s) is found by minimizing the cor-
responding energy cluster expansion with respect to volume. Note the good agreement between the
cluster-expanded values ¥? and V*» and the “exact” result V‘!. Here, y denotes standard deviation.

V“’(s) V(Z)(s) V(3)(s)
Structure [Eq. (4.8)] [Eq. (4.9)] [Eq. (4.10)]
fcc
fcc (A=Al 9.595 9.595 9.595
L1, (A;B) 8.258 8.276 8.298
DO,, (A4;B) 8.285 8.279 8.272
Bl (A4,B) 7.891 7.919 7.963
L1, (AB) 7.191 7.174 7.155
L1, (AB) 7.337 7.337 7.337
“40” (A4,B,) 7.173 7.181 7.173
Z2 (A,B,) 7.479 7.478 7.456
B2 (AB,) 6.861 6.835 6.744
DO, (ABj3) 6.675 6.665 6.670
L1, (AB;) 6.630 6.661 6.647
fcc (B=Ni) 6.343 6.343 6.343
X 0 0.016 0.046
bce

bee (A=Al 9.738 9.738 9.738
DO, (A3B) 8.307 8.275 8.329
L6y (A;B) 8.269 8.269 8.223
Cl11, (A,B) 7.811 7.836 7.872
B2 (AB) 7.079 7.102 6.917
A, (AB 7.310 7.310 7.289
B32 (A,B,) 7.270 7.271 7.292
B11 (A,B;) 7.395 7.403 7.377
Cl11, (AB,) 6.810 6.769 6.837
L6y, (AB;) 6.667 6.668 6.672
DO, (ABj3) 6.678 6.709 6.696
bee (B=Ni) 6.397 6.397 6.397

X 0 0.019 0.040
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TABLE VII. The interactions Drvy for the volume cluster
expansion (in cm®/g-at.) of Eq. (4.9) for Al,;_,Ni, compounds.
V?)(s) of Table VI are the equilibrium volumes obtained with
these expansion coefficients.

fce bce
V(s) series V(s) series
Figure [Eq. (4.9)] [Eq. (4.9)]
0,1) 7.355 7.374
(1,1) —1.620 —1.618
(2,1) 0.521 0.121
(3,1) —0.006
(3,2) —0.004
4,1) —0.048
(4,2) —0.005
(2,2) 0.066 0.051
(2,3) 0.076 0.014
(2,4) —0.001
2,5) 0.001

(i.e., deviations from Vegard’s rule), with v, being the
leading nonlinear term. Among pair interactions, we see
that the first neighbor term dominates, i.e.,

D, 10y,1>>D) 5055, Dy 3033, Dygvyy - (4.11)

Regarding the many-body terms, we see that pair interac-
tions dominate over the three- and four-body terms:

D, vy, >>D; 03, Dyyvs; - (4.12)

Since the bowing in V' (x) is rather small, we will assume
for the CuX compounds (X =Au, Pd, Pt, and Rh) the
linear approximation. This is discussed further in Sec.
VA.

E. Cluster expansion of electrostatic lattice energies

Since this paper focuses primarily on the cluster expan-
sion of P (o )=total lattice energy, it is of interest to find
a closely related quantity for which exact analytical re-
sults are available, so the convergence of the expansion
can be examined. Such a case is offered by the total elec-
trostatic energy of a lattice of point charges [Eqgs. (3.1)
and (3.2)], i.e., the classic Madelung problem.

Evaluation of the Madelung energy>? requires (i) mod-
eling the distribution of point charges on the various lat-
tice sites i occupied by (generally, crystallographically
inequivalent) 4 and B atoms and (ii) summation of the
electrostatic energies in Eq. (3.1) for a given model of
point charge distribution. The choice of a model for a
point charge distribution is generally nonunique; only in
simple ordered binary AB compounds (e.g., CsCl) where
there are just two inequivalent sublattices, one can make
a unique choice Q&= — Q' for all sites.

Consider first problem (i). As discussed in Sec. III,
methods that are based on the SCPA approach (i.e.,
CPA-GPM>2757 or CPA-CW*¢7 5! use a single-site decou-
pling of the configuration average in which only a single
scatterer is treated exactly, while the rest are incorporat-
ed into an effective medium whose atoms are taken to be
equal to one another. One is hence assuming there that

in an arbitrary random configuration the net charge Q;
on site i does not depend on the environment of this site;
all 4 atoms are assumed to have the same net charge
(and so do all B atoms). It then follows”"® that the
configuration average (Q,;Q;)r in Eq. (3.1) (appropriate
to the random alloy) factors into the product
(Q:r( Q; ) g which is zero [on account of global charge
neutrality {(Q;)r=0], hence, {E,(0))=0. Consider,
however, a random distribution of many 4 and B atoms
on a fixed lattice. This will generally create various crys-
tallographically inequivalent A sites (and separately, B
sites) that are distinguished ‘by different local atomic ar-
rangements around them. It then seems reasonable to as-
sume that an atom surrounded locally by atoms of the
same chemical type would have a smaller net charge
transfer than an atom surrounded, e.g., only by atoms of
the opposite type. Hence, a random occupation of sites
need not lead to a random distribution of the physical
properties of sites, e.g., charges. We hence model the net
charge Q; to be proportional to the number of atoms of
opposite type in the first coordination shell (containing Z,
atoms):

Zl
Q=13 [S;—8¢*tV, 4.13)
k=1

where S, is the spin on site i, § ¥ *! is the spin on one of
the Z, atoms that are nearest-neighbors to site i, and A is
a scaling constant determining the maximum charge
transfer (2Z,A). This is not an arbitrary model: self-
consistent calculations of Q; for many ordered structures
of Cu-Pd, Ag-Au, and Ag-Pd show?’?) a striking linear
dependence of Q; on the occupations of the nearest
neighbors, in clear conflict with the SCPA. The charge
distribution of Eq. (4.13) has the following properties: (i)
the charges on A’s and B’s have opposite signs: different
A sites (and different B sites) can have different charges
reflecting variations in the local atomic arrangements; (ii)
electroneutrality Y Q; =0 is naturally satisfies; (iii) E,, of
Eq. (3.1) is symmetrical with respect to the A<«>B re-
placement; and (iv) it reduces to the standard
definition’® for prototype AB ordered lattices.

The Madelung energy per atom of Eq. (3.1) can be
written for fcc-based structures s as

—a, (s)(161)2
2R ’
where a,(s) is the Madelung constant, R =aV2/2, is

the nearest-neighbor bond length and a is the cubic lat-
tice constant in the fcc structure. Our model reduces to

Ep(s)= (4.14)

- the standard definitions®? for simple ordered compounds

such as the L1, when ¢ =16A. We will next carry out a
cluster expansion for a,(s), evaluating from the electro-
static energy of the random alloy {a, ) g. This will then
be compared with the analytic results for {a, ).

1. Cluster expansion of {ay ) g

Using Ewald’s method”®® we have calculated the “ex-
act” Madelung constant a,,(s) for our 12 canonical fcc
ordered structures of Fig. 3, within the charge model of
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Eqgs. (4.13). The upper part of Table VIII (denoted
“structures belonging to basis’) gives the point charges
obtained by this model and the “exact” Madelung con-
stant a%(s) obtained by applying Ewald’s method to
these structures. We then cluster-expand these a,,(s) us-
ing a set of pair-interactions {p, , } with m =1, 2, 3, 4,
and 5 (Since the Madelung energy represents pair interac-
tions, all k72 interaction energies p; , vanish. This in-
creases the linear dependence of structures. In this case,
out of the 12 canonical structures, only six of them are
linearly independent.) Minimizing the variance of Eq.
(4.3) yields”®

Py =0.73675, p¥ =—0.32393,
pY,=0.08345, p¥, =0.06093,

p3,=0.03478, p35=0.00139 . 4.15)

Note that this cluster expansion converges rapidly with
the interatomic separation m, unlike the interaction po-
tentials p, ,, of Eq. (3.2). These effective cluster energies
of Eq. (4.15) can then be used to calculate the Madelung
constants using the cluster expansion (CE) of Eq. (4.1).
The upper part of the Table VIII gives the recalculated
Madelung constant a$F(s).

To test the convergence of the cluster expansion for the
Madelung energies, we now use Egs. (4.5) and (4.6) along

with the set of interaction energies (4.15) and predict
oy (s’) for additional structures {s’'} ={s}. The accuracy
of these predictions can then be examined by comparing
them to the Madelung constant a,(s’) calculated for
these additional structures directly by Ewald’s method.
The additional structures {s’} that we select can be de-
scribed as superlattices whose layers are oriented in a
given direction G. We select a rather general set, corre-
sponding to a range of ordering vectors G:

Y2=A4,B, with G=(1,1,0),

V2=A4,B, with G=(1,1,1),

W2=A4,B, with G=(1,1,3),

Z1,Z3= A;B and AB; with G=(0,0,1),
Y1,Y3=A4,B and AB; with G=(1,1,0),
V1,V3=A4;B and AB; with G=(1,1,1),
W1,W3=A;B and AB; with G=(1,1,3),
al,a2=A,B and 4B, with G=(1,1,1),
Y1V2=A,B and AB, with G=(1,1,0) .

(4.16)

The bottom half of Table VIII compares the Madelung
constant af (s’) of these additional “structure not in

TABLE VIII. This table gives, for various structures s, the point charges Q/"(s) on atom ¢ (= 4 or
B) at site i according to the model of Eq. (4.13) and their Madelung constant a,,(s) [Eq. (4.14)]. The
top part of this table gives results for the 12 canonical fcc structures (Fig. 3) used in the cluster expan-
sion of the Madelung energies. aj;(s) is the “exact” (E) Madelung constant calculated from Ewald’s
methods and a§f(s) are the constants recalculated according to the cluster expansion (CE) using the
coefficients extracted from these 12 structures. The bottom part of the table gives predictions of addi-
tional structures outside the set of 12, defined in Eq. (4.16). Note that these predictions compare very
well with those obtained directly by Ewald’s method for these additional structures. Structures A wBm
and A4,,B, with the same symmetry have the same Madelung energy, hence we list only the A-rich

member for each pair.

afE(s)
Structure ak(s) (cluster
s Qi{(s) 044 (s) QB (s) (Ewald) expansion)
Structures belonging to basis
Al (4) 0 0 0 0
L1, (A4;B) —8A 24A 1.19577 1.1958
DO,, (A;3B) —8A —8A 24A 1.21691 1.2169
Bl (4,B) —8A 16A 0.448 63 0.4486
L1, (AB) —16A 164 1.594 36 1.5944
L1, (AB) —12A 1224 0.69509 0.6951
“40” (A,B,) —16A 16A 1.636 64 1.6366
Z2 (A,B;) —8A 81 —0.13537 —0.1354
Structures not in basis

Y2 (A,B,) —12A 124 0.588 82 0.5837
V2 (A,B,) —6A 61 —0.24053 —0.2434
W2 (A,B,) —14A 141 1.06725 1.0635
Z1 (A;B) —8A 0 16A 0.33091 0.3309
Y1 (A;B) —8A —4A 20A 0.693 00 0.6905
V1 (A;B) —6A 0 124 0.053 51 0.0521
W1 (A;B) —6A —8A 20A 0.707 40 0.7055
al (A4,B) —6A 120 0.07207 0.0694
vl (A4,B) —10A 20A 1.204 58 1.2029
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basis” (calculated directly by Ewald’s methods) with
those predicted by the cluster expansion, using the
coefficients of Eq. (4.15). The agreement is seen to be
very good. We hence judge this expansion to be con-
verged to within the error limit reflected in Table VIII.

Having established the convergence and transferability
of the cluster expansion coefficients for Madelung con-
stants, we can use Eq. (2.18) and predict the Madelung
energy for the perfectly random (R) alloy. This gives,
within the charge model of Eq. (4.13)

Mm(R,x)=4x (1—x)X0.7368 (for N,=12) (4.17a)

using the 12 canonical structures and five effective pair
interactions, or

ay(R,x)=4x(1—x)X0.7392 (for N,=27) (4.17b)

using in the basis all structures of Table VIII and six
effective pair interactions.

2. Analytic results for { Ep ) g

We next evaluate the Madelung energy analytically
without using the cluster expansion, so that the precision
of the latter can be evaluated. The configurational aver-
age of the Madelung energy, appropriate to a random al-
loy is

__1_ <Qin>R
Fulo)n= Nz;' Ry
=%§ %ﬂzm , (4.18)

where Q; ,,, is the charge on an atom in the mth shell
(containing Z,, atoms) about the origin at i and R,, is the
distance to the origin. Substituting our model (4.13) for
the distribution of point charges into Eq. (4.18) gives

_ }\'2 o Zm
<EM>R_ 2 m2= Rm Fm(x) ) (419)
where
Fl(x):—4x(1-x)(22,—K1) >
(4.20)

F, . (x)=4x(1—x)K,,
and K,, is the number of nearest-neighbor atoms shared
by sites i and i +m. In an fcc lattice Z,, is 12, 6, 24, 12,
24, and 8 while K, is 4, 4, 2, 1, 0, and O for shells m =1,
2, 3, 4,5, and 6, respectively. Note that K, . =0, hence
F, . s=0. From Egs. (4.19) and (4.20) we have
A2 ZZ% 4

(Eylo))=4x(1—x) + Zn
m(o))=4x x > R, 2 R—m"Km

m=1

4.21)

Equating this to the definition of Eq. (4.14) then gives the
analytical result

ay(R,x)=4x(1—x)X0.7395182. .. . (4.22)

This analytic result should be compared to that of the
truncated cluster expansion [Eq. (4.17)]: the agreement is
seen to be excellent; using more than six interactions im-
proves this rapidly.

S

3. Discussion of the Madelung energies

In the remainder of this paper we will apply the same
cluster expansion procedure used above for the Madelung
energies (Sec. IVE 1) to calculate the total electron plus
ion energies. In the latter case, analytic results are not
available for comparison. However, the agreement found
here between the truncated cluster expansion and the an-
alytic results for the Madelung lattice, lend credence to
this general procedure. Observe, in particular, that
despite the long range of the bare Coulomb interactions
pij of Eq. (3.2), the renormalized interactions used
throughout this paper [e.g., Eq. (3.3) and (4.15)] are of
considerably shorter range, leading to a rapid conver-
gence of the cluster expansion.

Our results E,,(R)70 [Egs. (4.14) and (4.22)] should be
contrasted with E;,(R)=0 assumed by all models that
are based on the homogeneous SCPA. The contribution

of the Madelung energy to the “ordering energies”
AES‘=E\(s)—Ey(R) (4.23)

are given in Eq. (4.24) in units of (161)?/2R; we give in
parentheses the values corresponding to the SCPA:

L1,—0.8549 (—1.5944) ,
L1,:+0.0444 (—0.6951) ,
“40:—0.8970 (—1.6366) ,
Z2:+0.8749 (+0.1354) ,
L1,,—0.6411 (+1.1958) ,
DO,,:—0.6623 (—1.2169) .

(4.24)

We see at x =1 the structure ““40” has the lowest

Madelung ordering energy in this group, whereas at x =+
or x =32, the DOy, structure has a lower Madelung order-
ing energy than the L1, structure.”® It is important to
emphasize that for systems with significantly different 4
versus B bonding properties one can expect also
significant charge transfer (proportional to A), and that in
such cases the SCPA introduces large errors in the order-
ing energy as seen in Eq. (4.24). This could alter qualita-
tively ordering predictions by the SCPA.

Having established the adequacy of our canonical set
of figures (Fig. 2) and structures (Figs. 3 and 4) to cluster
expansion of “simple” lattice properties, we proceed to
apply this method to the total quantum mechanical ener-
gies.

V. CLUSTER EXPANSION OF EXCESS
TOTAL ENERGIES

A. Electronic Hamiltonian and its solution

The excess total energy of Eq. (2.15), taken with
respect to equivalent amounts of the solid binary consti-
tutesin 4,_, B,

AE(s,V)=E(s,V)—(1—x,)E( A,V )

—x,E(B,Vg) (5.1)
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was calculated for 12 fcc and (for AINi and CuPd) 12 bee
structures {s} shown in Figs. 3 and 4, respectively. The
values of AE(s, V) at the equilibrium volume ¥V (s) give
the formation enthalpies AH(s). Note that the scale of
AE(s,V) is not that of the total energy of a given struc-
ture, or that of the cohesive energy, but rather the rela-
tive energy of A,B, with respect to its constituents
(~1072 eV). The large constant terms appearing in E (s)
(e.g., sum of atomic energies) are largely canceled in the
construct of Eq. (5.1). We calculate AE(s, V) in the spin-
unpolarized local-density approximation (LDA).*® The
LDA equations are solved by the linearized augmented-
plane-wave (LAPW) method;®! in one case (AINi) we also
use the LMTO method.” In the LAPW calculations we
use the Wigner form® of ¢, and V,,, whereas in the
LMTO calculation the form of von Barth and Hedin®®
has been used (with the parameters given by Moruzzi
et al.B®). The charge density was determined self-
consistently and variationally from the semirelativistic
(i.e., retaining all relativistic terms but spin-orbit interac-
tions) local-density Hamiltonian.

Note that unlike some other calculations
(but not Ref. 51) of alloy energies our total energy expres-
sion includes the correct ‘“‘double counting terms.” Note
further that all lattice sums over the potentially long-
range interactions are calculated to convergence. Hence,
the effective interaction energies py obtained from a su-
perposition of such total energies [e.g., Eq. (4.2)] converge
faster with the range of the figure F than would be ex-
pected had py been an interatomic interaction potential.

In the LAPW calculations of the total energies of the
Cu-based intermetallic systems, we use the mulffin-tin
(MT) radii Ry=2.4 a.u for Au, Pd, Pt, and Rh, while
for Cu we use Ry =2.2 a.u. No shape approximation is
made for either the potential or the charge density. In-
side the MT spheres, the nonspherical charge density and
potential are expanded in terms of lattice harmonics of
angular momentum / <8. A basis set of about ~90
LAPW’s/atom are used (equivalent to kineic energy cut-
off of 16.7 Ry). The Brillouin-zone (BZ) integration is
performed using the special-k point methods,**® with
60-400 special k points in an irreducible wedge of the BZ
(depending on the structure and the material). The con-
vergence error for total energy is estimated to be about
10 meV/atom.

The convergence of formation enthalpies with respect
to the k-points sampling deserves further comments. We
find that structures with 2—3 atoms per cell and small
number of symmetry operations (e.g., the L1, and L1,
structures) tends to require a large number of k points for
obtaining converged results. For example, in the case of
the CuPt alloy, the formation enthalpies of the unrelaxed
L1, structure are —90.4, —107.6, and —111.9
meV/atom, using 60, 110, and 408 k points, respectively.
Similarly for the unrelaxed L 1, structure of the CuPd al-
loy, the enthalpies are —50.0 —55.8, —72.4 and —66.8
meV/atom, using 60, 110, 280, and 408 k points, respec-
tively. On the other hand, the energies for other struc-
tures (e.g., fcc, bee, B2, L1,, and DO,,) converge rather
rapidly with the number of k points. Using again the

48—50,52—57

Cu, _, Pt, as an example, in the case of the L1, structure,
the enthalpies for Cu;Pt are —112.9 —116.4, and
—115.8 meV/atom, using 20, 56, and 120 k points, re-
spectively, while for CuPt; the enthalpies are —100.4
—96.4, and —96.3 meV/atom, using 20, 56, and 120 k
points, respectively.

In the LMTO calculations we use the atomic-sphere
approximation’® (ASA) with the “combined correction”®*
(CC) (without the combined corrections, the integrals
entering the Hamiltonian and overlap matrices are ap-
proximated by integrals over the Wigner-Seitz spheres.
When the combined correction is included, a more realis-
tic potential is used to treat the interstitials and sphere
overlap region, and the integrals are evaluated over the
correct Wigner-Seitz cell). The basis set consists of / =0,
1, and 2 orbitals for both Ni and Al; the Wigner-Seitz
spheres have the same sizes for both elements. 120 k
points are used in the irreducible section of the Brillouin
zone for pure Ni and Al (fcc or bee), whereas for the cu-
bic 4,B, compounds we use 120/(n +m) k points. For
systems with lower symmetries the number of k points
was increased in order to keep the spacing of points in
the Brillouin zone nearly constant. The equilibrium lat-
tice constant a.q(s) was found from a three-point para-
bolic fit to E(a;) i =1, 2, 3; the energy was then recalcu-
lated at this interpolated a.q(s). The internal precision, is
estimated at 10 meV/atom.

In both LMTO and LAPW calculations we have fit the

equation of state AE(s, V) to a Murnaghan form®
AE(s,V)=A(s)+C(s)V+D(s)V'7E (5.2)

where B’ is the pressure derivative of the bulk modulus.

B. Results for elemental solids and ordered compounds

Table IX gives the calculated equilibrium parameters
for the elemental metals studied here. Our previous stud-
ies?’ [as well as the volume cluster expansion of Eq. (4.9)]

TABLE IX. Calculated [using a fit to Eq. (5.2)] and experi-
mental equilibrium lattice constants a, bulk moduli B, and their
pressure derivatives B’ for solid Al, Ni, Cu, Rh, Pd, Pt, and Au.

Elemental a (A) B (GPa) B’

Metal Calc. Expt.? Calc. Expt.’ Calc.

Al(fce) 3.994 4.050 87 72.2

Al(bce) 3.186 ’ 88

Ni(fcce) 3.480 3.524 248 186

Ni(bce) 2.770 224

Cu(fcc) 3.562 3.615 183.3 137 5.42

Cul(bcc) 2.836 179.2 5.67

Rh(fcc) 3.795 3.803 292.9 270.4 4.85

Pd(fcc) 3.882 3.890 211.1 180.8 5.28

Pd(bcc) 3.089 207.2 5.33

Pt(fcc) 3.935 3.923 287.0 278.3 5.28
Aul(fcc) 4.094 4.078 182.5 173.2 5.60

2Reference 1.
YReference 13(b).
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suggested that little precision is lost for the Cu com-
pounds if we linearize the equilibrium volumes and bulk

moduli with respect to composition, i.e.,
Vis)=(1—x,)V(A4)+x,(B), (5.3)

and similarly for B (s). For example, the LAPW calculat-
ed volumes, bulk moduli B, and their pressure derivatives
B’ for the bee elemental solids are
V(Cu)=76.882 a.u.®,
B(Cu)=1.798 Mbar B’'(Cu)=5.86,
(5.4)
V(Pd)=99.454 a.u.? ,

B(Pd)=2.072 Mbar, B'(Pd)=5.33.

The 50%-50% linear averages of the above are
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V(CuPd)=88.168 a.u.’ ,
B(CuPd)=1.935 Mbar ,
B'(CuPd)=5.60,

(5.5)

whereas the directly calculated values for the CsCl struc-
ture of (CuPd) are

V (CuPd)=87.744 a.u.? ,
B (CuPd)=1.952 Mbar ,
B’ (CuPd)=5.62 ,

i.e., the averages are within better than 1% from the
directly calculated values. Results in the same range are
obtained for Cu;Pt and CuPt; in the L1, structure. We
hence use the linearized volumes and bulk moduli for the

(5.6)

TABLE X. Formation enthalpies AH (in meV/atom) of the unrelaxed (ur) and relaxed (r) fcc compounds considered here, and the
unit cell volumes (in cm®/mole) at which the calculations were performed. The first line gives the unit cell volume, the second line
gives the unrelaxed AH,,, and the third line gives the relaxed AH.. All Cu-based compounds are calculated using the LAPW method
with the Wigner exchange correlation, whereas the Al-Ni compounds were calculated using the LMTO method with the von Barth-
Hedin exchange correlation. The LMTO calculations were performed only for unrelaxed structure. Where available, we also give
the formation enthalpies obtained by previous calculations and experimental values.

L1, DO,, Bl L1, L1, “40” Z2 B2 DO,, L1,
A;B A;B A,B AB AB A,B, A,B, AB, AB, AB,
7.685 7.685 7.979 8.567 8.567 8.567 8.567 9.155 9.450 9.450
A=Cu —35.1 —30.8 59.9 —33.4 68.1 —152 155.3 46.4 -9.1 —16.1
B=Au —35.1 —31.7 —5.6 —62.0 28.6 —20.0 —16.9 —49.9 —10.8 —16.1
—37°
—74.2° —91.1% —59.4°
—64.9° —69.7° —34.0°
7.304 7.304 7.471 7.805 7.805 7.805 7.805 8.139 8.307 8.307
A=Cu —85.0 —75.5 —36.4 —75.9 —66.8 —76.4 —4.3 —48.6 —46.4 —53.4
B=Pd —85.0 —76.4 —45.6 —86.3 —82.0 —84.6 —72.0 —72.0 —46.4 —53.4
—78¢ —68¢ —494
7.395 7.395 7.592 7.988 7.988 7.988 7.988 8.383 8.580 8.580
A=Cu —115.8 —96.7 —40.8 —83.3 —111.9 —63.8 34.7 —31.2 —65.9 —96.3
B=Pt —115.8 —97.6 —66.4 —98.9 —128.9 —63.8 —43.0 —79.0 —65.9 —96.3
—117¢ —117.0¢  —206.7¢ —136¢
—174.3°
7.159 7.159 7.277 7.515 7.515 7.515 7.515 7.753 7.872 7.872
A=Cu 68.5 72.0 110.2 168.8 98.9 94.6 78.5 100.8 57.7 128.4
B=Rh 68.5 72.0 108.0 164.0 92.8 93.7 75.9 100.8 57.7 128.4
8.258 8.285 7.891 7.191 7.337 7.173 7.479 6.861 6.675 6.630
A=Al —233 —237 —234 —580 —355 —594 —110 —351 —476 —504
B=Ni  —220° —600° —450°
—438f —486f
—4258

*Calculated results of Ref. 86 at the experimental lattice constant, using the linear augmented Slater-type-orbital method and the

Hedin-Lundqvist exchange-correlation.
“Experimental results of Ref. 5.

“Calculated results for the unrelaxed structures of Ref. 62(a) using the augmented spherical-spherical wave (ASW) method and the

von Barth-Hedin exchange correlation.

dCalculated results for the unrelaxed structures of Ref. 62(b) using the ASW method and the von Barth-Hedin exchange correlation.
Calculated results of Ref. 87 using the ASW method and the von Barth-Hedin exchange correlation.
fCalculated results of Ref. 88 using the LMTO method and the Hedin-Lundqvist exxhange correlation

EExperimental result of Ref. 7(b).
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Cu compounds [this constitutes a significant computa-
tional economy as we only need to calculate AE(s, V) ata
single volume]. Since the variations are somewhat larger
for AINi [in particular, ¥ (x) of two structures of the
same composition are slightly different], we do not linear-
ize V and B for these compounds. Since the pressure
derivative B’ contains a significant numerical uncertainty
(being a third derivative), we have not attempted to cal-
culate it for each structure; instead, we use it as an ad-
justable parameter in the fit of Eq. (4.3). This gives for
the fce structures.

B’ (CuAu)=1.5, B’(AINi)=5.1. (5.7)

For all other compounds we used the harmonic value
B’'= —1, which is very close to the minimum of the vari-
ance [Eq. (4.3)]; the latter is found to be rather insensitive
to the value of B’ near —1. Tables X and XI list our cal-
culated formation enthalpies for all intermetallic com-
pounds studied here. Where available we also give exper-
imental values®’ and values from other calculations.3¢~#8

In the relaxed LAPW calculations we have allowed the
c/a ratio and the position of the atoms inside the unit
cell (that are not fixed by symmetry) to vary so as to mini-
mize AE(s,V) at V given by Eq. (5.3). When such
structural degrees of freedom are unavailable (e.g., in
L1,), relaxation does not exist; otherwise, it lowers the
energy. This lowering is enormous in structures possess-
J

NS
2 o
s

m>0k>1

with the weights o, given by Eq. (4.4) and Table V.
Tables XII and XIII compare the directly calculated
(LAPW or LMTO) AE(s, V) for fcc and bee structures,
respectively, with those obtained from the cluster expan-

AE(s,V)— 3 3 [ ,,(s)=n]1Ds mJim (V) |*=minimum ,

ing a number of such structural degrees of freedom (e.g.,
B1, B2, Z2), but is smaller in other structures (e.g., DO,,,
“407).

Tables X and XI show that the augmented-spherical
wave (ASW) method used in Refs. 62 and 87 produces
significantly more negative unrelaxed formation enthal-
pies (relative to the more accurate LAPW method used
here) for the fcc CuAu and CuPt, and bcc CuPd com-
pounds, whereas the results for fcc CuPd are comparable
to ours. The LMTO results of Ref. 88 for AINi are simi-
lar to the present LMTO result, as are the ASW results®’
for this system.

C. Extracting effective cluster interaction energies

The cluster expansion of the excess total energy
AE(s, V) of Eq. (2.16) reads

AE(s,)=3 3 [T n()=01Ds mTim(¥)

m>0k>1

(5.8)

where {J; ,,(V)} are the volume-dependent effective in-
teraction energies and n=1 for k=even and {2x; —1) for
k =odd. We have extracted Np=38 functions {J; ,,(¥)}
from the N, =12 excess total energy functions {AE (s, V)}
and the lattice-averaged spin products {II, ,,(s)} (Tables
III and IV) by minimizing the variance

(5.9)

-

sion (5.8), using the coefficients J; ,, (V) determined from
Eq. (5.9) [the comparison is given at the equilibrium
volume obtained from Egq. (4.9)]. The cluster expansion
was carried out separately for the ‘unrelaxed”

TABLE XI. Formation enthalpies AH (in meV/atom) of the unrelaxed (ur) and relaxed (r) bcc compounds considered here, and
the unit cell volumes (in cm?/mole) at which the calculation was performed. The first line gives the unit cell volume, the second line
gives the unrelaxed AH,, and the third line gives the relaxed AH,. All Cu-based compounds are calculated using the LAPW method
with the Wigner exchange-correlation, whereas the Al-Ni compounds were calculated using the LMTO method with the von Barth-
Hedin exchange correlation. The LMTO calculations were performed only for unrelaxed structure. Where available, we also give
the formation enthalpies obtained by previous calculations and experimental values.

DO, L6, Cll, B2 A, B32 B11 Ccl1i, L6, DO,
AB A;B A,B AB AB A,B, A,B, AB, AB, AB,
7.364 7.364 7.537 7.868 7.868 7.868 7.868 8.206 8.372 8.372
A=Cu —37.7 —29.9 —50.8 —97.6 9.1 13.9 40.3 17.4 18.7 30.8
B=Pd —37.7 —97.6 —-74 13.9 30.8 30.8
—223°
—142.3°
8.307 8.269 7.811 7.079 7.310 7.270 7.395 6.810 6.667 6.678
A=Al —166 —175 —353 —787 —383 —449 —207 —504 —449 —490
B=Ni —741°

2Calculated results of the unrelaxed structures of Ref. 62(b) using ASW method and the von Barth-Hedin exchange correlation.
"Experimental result of Ref. 5 at x = %
“Experimental result of Ref. 7(b).
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TABLE XII. Comparison of the directly calculated (LAPW or LMTO) and the cluster-expanded [Eq. (5.8) using Ny=28 and
N,=12] unrelaxed excess total energies (in meV/atom) for the fcc-based intermetallic structures. The 12 structures are shown in Fig.
3; the interaction energies are depicted in Table I and Fig. 2(a). The last two lines show the standard deviation y of the fit for both

unrelaxed and relaxed structures. B’= — 1, except for CuAu, for which B’=1.5, and AINj, for which B’'=35.1
fce Cu;_,Au, Cu,_,Pd, Cu,_,Pt, Cu,_,Rh, Al,_Ni,
structure LAPW Fit LAPW Fit LAPW Fit LAPW Fit LMTO Fit

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
L1, (A;B) —35.1 —379 —85.0 —79.3 —115.8 —112.5 68.5 99.3 —233 —236
DO,, (A3B) —30.8 —29.9 —75.5 —77.4 —96.7 —97.9 72.0 61.7 —237 —236
Bl (A,B) 59.9 57.1 —36.4 —40.8 —40.8 —37.8 110.2 98.5 —234 —257
L1, (AB) —33.4 —32.8 —75.9 —78.4 —83.3 —91.2 168.8 170.2 —580 —588
L1, (AB) 68.1 68.1 —66.8 —66.8 —111.9 —111.9 98.9 98.9 —355 —355
“40” (A,B,) —15.2 —15.9 —76.4 —74.8 —63.8 —61.3 94.6 95.5 —59%4 —590
Z2 (A,B,;) 155.3 154.6 —4.3 —3.6 34.7 31.7 78.5 81.9 —110 —109
B2 (AB,) 46.4 50.8 —48.6 —46.0 —31.2 —27.2 100.8 106.1 —351 —355
DO,, (AB;) —9.1 —8.7 —46.4 —47.7 —65.9 —69.7 57.7 66.1 —476  —483
L1, (AB;) —16.1 —17.4 —53.4 —49.4 —96.3 —85.0 128.4 103.2 —504 —484
B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
Deviation

Xunret, (MeV) 1.9 2.5 4.1 10.6 9.0

Xrelaxed (MeV) 16.3 11.9

7.0 10.6

geometries, i.e., when the total energies are varied with
respect to the unit cell volumes but the 4 and B atoms
are assumed to reside on their cubic fcc or bece sites, and
for the “relaxed” geometries, when the total energy is op-
~ timized with respect to all structural degrees of freedom
consistent with the respective space group symmetry.
Table XII and XIII show that the cluster expansion
(5.8) describes the excess energies of the unrelaxed or-
dered structure to within ~3 meV/atom for the fcc
structures of CuAu, CuPd, and CuPt, while the error is
~10 meV/atom for fcc CuRh and AINi and for the two

bece structures. On the other hand we see from Table XII
that when the ordered structures are allowed to relax, the
truncated cluster expansion result in significantly larger
errors (compare the standard deviations, X, e a0d X elaxed
in these tables). We next briefly discuss the role of relaxa-
tion,

D. Role of relaxation

The molar volumes and atomic positions in disordered
alloys and ordered intermetallic compounds generally de-

TABLE XIII. Comparison of the directly calculated (LAPW or LMTO) and the cluster-expanded
[Eq. (5.8), using Ny=8 and N;=12] unrelaxed excess energies (in meV/atom) for the bcc-based struc-
tures. The 12 structures are depicted in Fig. 4 and the eight interactions are shown in Fig. 2(b).
B’'=—1.0 for both CuPd and AINi. We also give the standard deviation Y.

bee Cu,_,Pd, Al;_,Ni,
structure LAPW Fit LMTO Fit

A 41.2 41.2 55 55
DO; (A3B) —37.7 —44.7 —166 —143
L6y (A3B) —29.9 —34.3 —175 —201
C11, (A,B) —50.8 —36.2 —353 —337
B2 (AB) —97.6 —93.8 —787 —773
A, (AB) 9.1 9.3 —383 —363
B32 (A,B,) 13.9 13.7 —449 —469
B11 (A,B,) 40.3 41.5 —207 —213
Cl11, (AB,) 17.4 0.5 —504 —511
L6y (AB3) 18.7 22.5 —449 —458
DO; (ABj3) 30.8 38.5 —490 —470
B 58.6 58.6 30 30
Deviation

Xunret (MeV) 8.1 16.5
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viate from what simple rules might suggest (e.g., Zen’s
rule for molar volumes or ideal fcc positions for atomic
coordinates); we refer collectively to these deviations as
“relaxation.” We will distinguish ‘“‘volume relaxation”
(when molar volumes are nonideal) from ‘“‘sublattice re-
laxations” (when atoms do not reside on ideal fcc sites).
Carlsson®¥® distinguished three levels of approximation
for ‘“‘volume relaxation” in the context of the method of
‘“superposition of periodic structures” [Egs. (4.1)-(4.6)].
These are distinguished by the form of the molar volume
used to evaluate the excess energy P(s,V)=AE(s, V) of
ordered structures in Eq. (4.1).

(i) Complete neglect of volume relaxation. This corre-
sponds to the use of a single (composition-independent)
arbitrary volume ¥V, in the excess energy P(s)=AE(s,V)
of Eq. (4.2) for all ordered structures s. This was deemed
unphysical.®3®

(ii) “Global relaxation,” i.e., when AE(s, V) represents
an equation of state calculated continuously as a function
of V. In this case the interaction energies of Eq. (4.2) are
volume dependent. The equilbrium volume is calculated
variationally [Eq. (4.10)] or simplifed further [Eq. (5.9)].
Our cluster expansions shown in Tables XII and XIII
correspond to this model.

(iii) “Local relaxation,” i.e., when AE (s, V) is calculat-
ed for each structure s at a single volume V; that mini-
mizes AE(s, V). In this case AE(s,V,)=AH, is the for-
mation enthalpy of compound s. We find that this pro-
cedure leads to a very slow convergence of the cluster ex-
pansion: e.g., for CuAu the standard deviation increases
to 16.3 meV from 1.9 meV, while for fcc CuPd it is 11.9
meV rather than 2.5 meV. Hence, introduction of a con-
tinuous volume variable in Eq. (5.14) considerably im-
proves the convergence of the series. We will, hence, not
consider local relaxation in what follows.

Another form of volume relaxation was recently con-
sidered by Sluiter et al.5*9: the excess energy AE(s, V)
of the unrelaxed (ur) lattice was decomposed into a
“chemical” and “elastic” pieces as

AE (5, V)=AE 4.m(s, V)+AE ,(x,, V), (5.10)
where the elastic energy is given by
AE (X, V)=Q(X)[V—(1—x)V ,—xVz]*. (5.11)

Here AE , refers to the excess energy calculated with
LAPW as a function of volume, assuming that the atoms
reside on ideal fcc sites, ¥, and Vj are the equilibrium
volumes of pure 4 and B, respectively, and Q(x) is a
function of composition calculated from harmonic elasti-
city. The cluster expansion of Eq. (4.1) was performed
with |

AE(Z2,10,=0.825,15,=1.175)— AE(Z2,7¢,= 1,5, =1)= — 139 meV /atom .

To see what fraction of this relaxation energy results
from elastic effects, we will model it from the deforma-
tion energies of the constituent solids (i.e., charge transfer
is excluded). The sum of the deformation energies of the
constituents is

P(s,V)=AE .. (s,V)

=AE (5, V)= AE g (x5, V) (5.12)

ur

alone; the resulting chemical interaction energies {pr}
were then used to construct the chemical energy of arbi-
trary configurations, to which the elastic energy of Eq.
(5.11) was then added. Note, however, that for ordered
structures AE ... (s, V)+AE 4, (x,, V) of Egs. (5.11) and
(5.12) produce the total energy AE (s, V) of a lattice in
which the atomic positions are unrelaxed; our Table X
shows that this misses considerable energies (compare the
second and third lines in this table, giving AE , and
AEg, respectively). Note further that to the extent that
equilibrium molar volume ¥ (x) of the alloy is linear with
composition and the bulk moduli difference
AB=Bz—B, is small AE (s, V)=AE ;..[s,V(x,)]
=AH,, hence, this model®*? will give results similar to
that of the “local relaxation” model®® and lead to a
slow convergence of the cluster expansion.

We conclude that “global volume relaxation” is a con-
sistent model for describing alloy-induced changes in V,
but that “sublattice relaxation” needs, in general, to be
added. The basic reason that ‘“global volume relaxation”
plus “sublattice relaxation” (reflected in the relaxation
energies of Tables X and XI) lead to a slowly convergent
cluster expansion (Tables XII and XIII) can be appreciat-
ed as follows: when all atoms are assumed to reside on
ideal fcc sites, the figures (k,m) exhibit symmetry proper-
ties [Egs. (2.6)—(2.8)] that lead to certain degeneracies
[expressed by the factor Dy in (2.11)]. In this case,
Jp=J and the cluster expansion may be carried out only
on prototype (symmetry-unique) figures F. In the pres-
ence of sublattice relaxation, however, part of this degen-
eracy is removed, e.g., the pair figure (2,1) along the [001]
relaxation direction of the 4,B, [001] superlattice (Z2)
is no longer symmetry related to this figure in the perpen-
dicular direction. Hence, since relaxation can alter the
size of the symmetry-related figures (which have the same
size and associated energy in the unrelaxed lattice), trun-
cation of Eq. (2.5) for relaxed configurations could make
Jr very different from J, leading to a slower convergence
of Eq. (2.9) for the same number of figures. To quantify
this, consider a simple numerical example. The “Z2”
structure, consisting of a Cu,Au, superlattice along the
[001] direction (Fig. 3) relaxes such that the tetragonal
n=c /a ratio becomes 0.825 in the Cu segment and 1.175
in the Au segment. In the “ideal” structure, c/a =1 in
both segments. The relaxation energy given in Table X
then corresponds to

(5.13)

[
AEg(s,x;)={E[Cu,7=0.825]—E[Cu,n=1]}
+{E[Au,n=1.175]—E[Au,n=1]}

=—153 meV /atom . (5.14)
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We see that the sublattice relaxation of the constituents
[Eq. (5.14)] accounts for most of the total sublattice relax-
ation energy [Eq. (5.13)]. Clearly, this type of relaxation
is missed by the models of Carlsson®*® or Sluiter
et al®Y [Egs. (5.100-(5.12)].

This discussion suggests that sublattice relaxation is
likely to be less of a problem in describing disordered
phases, since there one uses a configuration average over
the energies J, hence, much of the symmetry lowering
will be averaged out. Fortunately, this can be tested, as
follows.

E. Predicting structural energies from the cluster
expansion

To examine the transferability of the interaction ener-
gies {J; ,,(V)}, we have recalculated them from Eq. (5.9)
for Np=8 figures, using, however, a set of only N, =10 out
of 12 structures. The resulting interaction energies are
then used in Eq. (5.8) to predict the excess energies of the
two remaining structures, not used in determining the J’s.
Comparison of these predicted energies with those calcu-
lated directly by the LAPW or the LMTO gives this
“prediction error” shown in Table XIV for five pairs of
structures for each compound. We see that the standard
deviation Y over these five predicted energy pairs is
within the underlying precision of the direct, LAPW or

LMTO calculations, except for Cu,_,Pt, (y=13.4 meV)
and Al _,Ni (y=22.1 meV) (in the latter case, the error
is still much smaller than AH itself).

We have also calculated the excess enthalpy of the ran-
dom alloy using different sets of J’s obtained from the
various combinations of 10 structures. Table XIV exhib-
its robust predictions of these excess enthalpies (given at
x =21) both for the relaxed and for the unrelaxed struc-
tures. We conclude that the interaction energies {J.} ex-
tracted from the relaxed equations of state AEg (s, V) pro-
vide an adequately converged description of the disor-
dered phase. In what follows we will use this description.
However, for ordered phases we will use this unrelaxed
Jr; we will comment on this below only to the extent that
the use of relaxed J5 leads to qualitatively different con-
clusion (see Sec. VIB3 below). Development of a
comprehensive treatment of volume and sublattice relax-
ation on equal footings is clearly lacking and needed.

F. Magnitude and range of the interaction energies J;_,, (V)

The unrelaxed interaction energies J; ,, [V (x)] are de-
picted in Fig. 5 for fcc Cu;_,Au,, Cu,_,Pt,, and
Cu,_,Rh,, while Figs 6 and 7 give the interaction ener-
gies for Cu,_,Pd, and Al,_,Ni,, respectively, both for
the fcc and the bee cases. Note the following features: (i)
In all cases but Cu,_,Rh,, the energy expansions con-

TABLE XIV. First-principles excess energies {AE(s,V)] are available for the 12 fcc-based structures:
4, B, L1, “40”, L1,, Z2, L1,, DO,,, and B shown in Fig. 3. Using 10 out of these 12 structures we cluster expand their energies
according to Eq. (5.8) thus determining the 8 interaction parameters of Fig. 2(a). Using these we then predict the formation enthal-
pies AH(s) for the two remaining structures not used in the fit. This table compares the predicted enthalpy with the “exact” value (in
parentheses) for five different pairs of structures not included in the fit; ¥ gives the deviation in meV. We also give the predicted ener-
gies of the random alloy at x =% for both unrelaxed (ur) and relaxed (r) systems: (Unit: meV/atom.) While the precision is lower
than that obtained using the 12 structures in fit (Tables X1II), the prediction error is still remarkably small on the scale of the LAPW
error (~ 10 meV/atom).

Cu,_,Au, Cu,_,Pt,
Struct. AH AH AH AH AH AH AH AH
not in first second random random first second random random
fit struct. struct. ur T struct. struct. ur r
B1,32 57.1(59.9) 52.1(46.4) 68.5 —6.0 —35.6(—40.8) —23.9(—31.2) —45.6 —78.3
L1, L1, —38.1(—35.1) —33.6(—32.8) 68.3 —8.8 —120.2(—115.8) —112.9(—83.8) —43.6 —177.6
L1,L1, —39.7(—35.1) —189(—16.1) 68.4 1.0 —108.0(—115.8) —78.0(—96.3) —47.1 —76.4
DO,,,D0,, —26.3(—30.8) —6.2(—9.1) 68.5 2.6 —104.6(—96.7) —84.2(—65.9) —50.4 —78.9
DO,,,B1 —26.4(—30.8) 56.8(59.9) 69.1 —1.9 —102.3(—96.7) —36.7(—40.8) —47.0 —77.8
X 3.7 0.3 4.3 13.4 2.2 0.8
Cu,_,Pd, Al,_Ni,
Struct. AH AH AH AH AH AH AH AH
not in first second random random first second random random
fit struct. struct. ur by struct. struct. ur r
B1,32 —41.2(—36.4) —46.9(—48.6) —47.8 —78.5 —259(—234) —351(—351) —329
L1, L1, —78.6(—85.0) —80.6(—75.9) —47.2 —179.2 —250(—233) —611(—580) —326
L1, L1, —75.4(—85.0) —459(—53.4) —47.9 —173.5 —231(—233) —472(—504) —329
DO,,,D0,, —85.1(—75.5) —53.9(—46.4) —50.1 —77.3 —239(—237) —507(—476) —335
DO,,,B1 —83.6(—75.5) —41.9(—36.4) —49.2 —77.4 —228(—237) —265(—234) —330

X 7.2 1.1 2.0 22.1 2.8
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FIG. 5. Fcc interaction energies J; ,,[ V(x)] obtained from the cluster expansion for (a) and (b) Cu,_,Au,, (c) and (d) Cu,_,Pt,,
(e) and (f) Cu,_,Rh,.

verge with respect to the figure sizes in the sense that the fourth-neighbor pair interaction J, 4, is often larger
among pair interactions the nearest-neighbor terms  than the third-neighbor pair interaction Jy,3- A similar
D, Jy,, are considerably larger than the longer-range  trend has been observed in tight-binding calculations for
pair interactions, and the three- and four-body terms are  transition metal alloys.’® (iii) The dominant nearest-
rather small. This is illustrated in Fig. 8 for x =21. (ii)  neighbor pair interaction J 2,1 is ‘‘antiferromagnetic”
The magnitude of the pair interactions J, ,,(¥) do not  (J,,>0) in the compound-forming alloys Cu;_,Au,,
decay monotonically with the interatomic separation m;  Cu,_,Pt,, Cu,_,Pd,, and Al,_,Ni,, while for the
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FIG. 6. Interaction energies J; ,,[V(x)] obtained from the FIG. 7. Interaction energies Jy ,,[V(x)] obtained from the
cluster expansion, comparing fcc Cu,_,Pd, [parts (a) and (b)] cluster expansion, comparing fcc Al,_,Ni, [parts (a) and (b)]

with bee Cu,_, Pd, [parts (c) and (d)]. with bee Al Ni, [parts (c) and (d)].
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FIG. 8. Interaction energies J; ,,[V(x)] at x =3, showing

they decay with the order (k) and size (m) of each figure.

known*~7 phase-separating Cu,_,Rh, case, it is “fer-

romagnetic” (J,; <0). Concomitantly, Jg,(x =1)
[which, by Eq. (2.18) gives the excess enthalpy of the
ranom alloy at x=1] is negative for all compound-
forming systems, and positive for the phase-separating
Cu,_,Rh, system. (iv) The excess enthalpy of the ran-

dom alloy J, ;(x =1) could change sign as the Bravais
lattice is changed, e.g., it is negative (stable ) in fcc
Cugy sPdy s, but positive (unstable) in bcc CugsPdgs.
Hence, despite the fact that Cuy sPd s orders in a bee
structure (see Fig. 1 and Fig. 9 below), when disordered,
it is stabler in the fcc structure, as observed experimental-
ly.37% (v) The second-neighbor pair interaction J,, is
uniquely negative (“ferromagnetic”) for CuAu (Fig. 8)
while J,; is positive (“antiferromagnetic”), indicating
that this alloy is frustrated.

Numerous previous applications® ~% have restricted
energies {J; ,, (V)] to just first fcc neighbors (m =1); the
five {J; ;(¥)} values for k =0, 1, 2, 3, and 4 were deter-
mined by direct inversion of Eq. (4.2) using five values of
AE(s,V). Table XV applies this Connolly-Williams®!
procedure to the alloys studied here. The quality of the
fit is rather poor (compare with Table XII that uses a
converged set of interactions). Furthermore, this ap-
proach spuriously produces a degeneracy in the energies
of certain structure pair, e.g., {L1l,; DOy} and
{L1y;740}, and misses the fact that L1, structure is the
lowest energy for CuPt at x =1. Clearly, the cluster ex-
pansion needs to be extended (Tables XII and XIII)
above this nearest-neighbor model.

VI. GROUND STATES

A. Finding the ground-state line

As discussed in the Introduction, our aim, is to identify
among 2% possible lattice configurations, those that are
ground state, using a input first-principle total energy cal-
culation on only O (10) structures. The preceding section

TABLE XV. Comparison of the directly calculated (LAPW or LMTO) and the cluster-expanded [Egs. (4.1) and (4.2), using the
Ny=N,=5 Connolly and Williams structures] unrelaxed excess total energies (in meV/atom) for the fcc-based intermetallic struc-
tures. The last line shows the standard deviation y of the fit for the unrelaxed. B'= —1, except for CuAu, for which B’=1.5, and
AINi, for which B’=5.28. Note that the use of just first-neighbor interactions (Jo ;, J1,1, J2,1, J3,1, and J4 ;) leads to significant er-
rors, except for the five structures 4, 43;B(L1,), AB(L1,), AB;(L1,), and B used in the fit. This approach also produces a spurious

degeneracy between {L 1,,D0,,} and {L 1o, “40”}.

fce Cu;_,Au, Cu,_,Pd, Cu,_,Pt, Cu,;_,Rh, Al,_,Ni,
structure LAPW Fit LAPW Fit LAPW Fit LAPW Fit LMTO Fit

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
L1, (A3B) —35.1 —35.1 —85.0 —85.0 —115.8 —115.8 68.5 68.5 —233 —233
DO,, (A;B) —30.8 —35.1 —175.5 —85.0 —96.7 —115.8 72.0 68.5 —237 —233
Bl (A,B) 59.9 61.2 —36.4 —20.0 —40.8 —10.6 110.2 129.2 —234 —283
L1, (AB) —334 —334 —175.9 —75.9 —83.3 —83.3 168.8 168.8 —580 —580
L1, (4AB) 68.1 60.0 —66.8 —36.2 —111.9 —52.6 98.9 119.3 —355 —296
“40” (A,B;) —15.2 —334 —176.4 —75.9 —63.8 —83.3 94.6 168.8 —594 —580
Z2 (A,B,) 155.3 156.0 —4.3 28.4 34.7 64.3 78.5 125.6 —110 — 146
B2 (AB,) 46.4 48.5 —438.6 —22.3 —31.2 —5.9 100.8 132.6 —351 —361
DO,, (AB;) —9.1 —16.1 —46.4 —53.4 —65.9 —96.3 57.7 128.4 —476 —504
L1, (AB;) —16.1 —16.1 —53.4 —534 —96.3 —96.3 128.4 128.4 —504 —504
B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
Deviation

Xunrel (meV) 7.7 18.5 28.4 43.3 29.4
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demonstrated that a converged Ising representation of
the quantum-mechanically calculated excess total energy
can indeed be obtained from such a limited information.
We now turn to the question of identification of ground-
state structures from such an Ising representation. To
define what is meant by a ground state, consider the three
configurations o, a, and 8 with concentration of B atoms
x (o), x (a), and x(B) in the order

x(a)=x(o)=x(B) . (6.1)

If the energy E (o) is larger than the linear average of
E(a)and E(B), i.e., if

x(o)—x(B) x(o)—x(a)

x(a)—x(f3) x([;’)—x(a)E(B)

then configuration o does not belong to the ground state
because a mixture of the phases a and 8 would have a
lower energy. On the other hand, if no pair of
configuration (a,B) satisfy Egs. (6.1) and (6.2), then
odoes belong to the ground state. A plot of the ground-
state energy as a function of the concentration x consists
then of straight line pieces between ‘“breaking points”
that correspond to the ground-state ordered (periodic)
configurations of atoms. Any configuration o could be
represented in such a plot by a point {x(o),E(c)}. This
point would be above the ground-state line (GSL) if Eqgs.
(6.1) and (6.2) are satisfied for a certain pair a and S3.

The ground state of a Hamiltonian of the type given in
Eq. (2.4) is a classical problem in magnetism and in
theory of the alloys.'®"2* For fcc alloys, the most com-
plete search for the ground state was given by Kanamori
and Kakehashi'® (KK) while for bec it was given by Finel
and Ducastelle.?’

Kanamori and Kakehashi!® studied the exact ground
state in fcc symmetry, assuming: (i) volume and concen-
tration independent interactions (denoted here v, ,,),
(ii) null triangle (k,m)=(3,1) and tetrahedron (k,m)
=(4,1) interactions, i.e.,

E(a)+ (6.2)

v31=v4,=0, (6.3)

and (iii) that the first-neighbor pair interaction is much
larger than the other interactions, i.e.,

(6.4)

|V2,1| >>|V2,2|§ |V2,3 ;lV2,41 .

Under assumption (i) one can use Egs. (2.13) and (2.14) to
obtain the sum rules

even

Yo,1— T > sz,m"k,m >
k m

odd

vl,lz_ 2 sz,mvk,m .
k m

(6.5)

The problem is then reduced to three parameters
V2,29 'V2'3, and 'V2’4, or two ratios 'V2’2/V2,4 and V2’3/V2,4'
Kanamori and Kakehashi!® mapped all fcc ground states
containing <16 atoms/cell as a function of these two ra-
tios, using assumptions (i)—(iii).

Although illuminating, the Kanamori and Kakehashi'®

assumptions are seldom met in practical cases. For in-
stance, we find that in most cases the interaction energies
depend on volume and composition (Figs. 5-7), hence as-
sumption (i) does not hold. Further, in the Cu-Au alloy
system, three-body terms (k =3) play an important role
in producing the observed® 7 asymmetry of the phase di-
agram about x = so that assumption (ii) is false. Furth-
ermore, actual calculations (e.g., Fig. 8) show that,
though the first-neighbor pair interaction is stronger, it is
not much larger than the other interactions, so assump-
tion (iii) is often not met either. Finally, when dealing
with volume (or concentration) dependent interactions,
the sum rules of Eq. (6.5) do not hold. Hence, a practical
study of the ground state must deal with a larger number
of parameters than the two ratios considered by
Kanamori and Kakehashi. In addition, one is frequently
interested not just in ground-state structures but also in
configurations that have slightly higher energies and
could conceivably form metastable structures when kinet-
ic circumstances permit this.

Although restricted, the Kanamori-Kakehashi study is
very enlightening. For any ratios v, ,/v, 4 and v, 3/v, 4,
they found that only 40 fcc configurations can be ground
states. These periodic structure have different numbers
of atoms in the unit cell. They found that, in general,
ground-state structures have rather small unit cells: only
8 possible breaking points have unit cells with more than
12 atoms per cell (or 12 fcc sites). Moreover,
configurations with large unit cells, though theoretically
belonging to the GSL, might be very difficult to grow be-
cause they require a long-range correlation between
atomic positions. For these two reasons it is practical to
study the ground state restricting ourselves to those
configurations with unit cells of limited sizes. In adopt-
ing this view we might miss some breaking points in the
GSL, but hopefully not many.

Our calculation of the ground state then proceeds in
two steps.

(1) We construct a file of all fcc-based and bcc-based
configurations with unit cells smaller or equal to a certain
maximum size (M =16 sites). For each configuration we
store the values of Il for the figures of Table II. We
have described elsewhere®® a systematic procedure to
construct this file, without missing any configuration, and
without repetitions.

(2) Once the file is constructed, finding the ground state
for a given set of interactions {Jp} is carried out
by computing AE(o,V) of Eq. (5.8) and comparing
{AE(0,V);X(0)} with the values for the configurations
a and B [using Egs. (6.1) and (6.2)] that up to this point
were found to be the breaking points of the GSL. If Eq.
(6.2) is not satisfied by the pair a, that satisfy Eq. (5.8),
configuration o is a new breaking point. In this case we
rescan the previously determined breaking points a and
B, examining whether any of them are now excluded from
the GSL due to the introduction of o. Note, therefore,
that we combine a homogeneous ground-state search (i.e.,
finding the lowest energy configuration for a fixed compo-
sition) with a heterogeneous search (i.e., comparing
ground states of different compositions, identifying there-
by true ‘“‘breaking points”).
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B. Predicted ground-state structures

Figure 9 depicts the ground-state lines for the alloy
systems studied here. The symmetries established clearly
from experiment are also found theoretically, even
though we have purposely omitted from the basis set used
to extract J; some of the structures which are known to
be ground states. Note that while high-temperature-
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FIG. 9. Ground-state line for (a) Cu,_ Au,, (b) Cu,_,Pd,,
(c) Cu;_,Pt,, (d) Cu;_,Rh,, and (e) Al;_,Ni,. Energies shown
are for the unrelaxed cluster expansion [Eq. (5.8)].

ordered phases are relatively easy to detect experimental-
ly, some of the potentially low temperature “ground-state
structures” discussed in this section might be more
difficult to observe (due to the slow atomic diffusion rates
at low temperatures). In what follows we summarize the
pertinent low temperature experimental data.

1. Cu,_,Pt,

Experimentally,>~7 Cu,_, Pt, [Fig. 1(c)] shows at low
temperatures the fcc L1, structure of Cu;Pt near
x =0.20, and the rhombohedral L1, structure at x =0.5.
At higher temperatures the L1; structure undergoes a
first-order transition into the disordered fcc alloy at
812°C. This transition is particularly interesting in that
the number of unlike nearest neighbors is unchanged
through the transition. At Pt concentrations above
x=0.5 and low temperatures one finds a set of continu-
ous transition into other ordered structures: the cubic
L1, (CuPt;), as well as the CuPt, and Cu;Pts structures.
The crystal structures of the latter two phases are un-
known, although both correspond to fcc modifications.

Our calculation is in substantial agreement with experi-
ment. We find for CuPt the established Cu,;Pt (L 1,) and
CuPt (L1,) phases, i.e., we correctly describe the com-
petition between rhombohedral (L1;) and tetragonal
(L1,) symmetries. Two additional ground-state fcc com-
pounds Cu,Pt (“D1”) and CuPt, (“D7”), having twice
the primitive fcc lattice vectors are also identified; these
were not included in the ‘“basis set” as they were un-
suspected by the normal method of guessing to be ground
states (the D1 A4,B and D7 AB, structures are identical;
they are depicted in Fig. 10). We tested our prediction by
calculating the energy of Cu,Pt (D1) directly from
LAPW (finding AH = —65.5 meV/atom), confirming the
cluster expansion prediction (AH = —61.5 meV/atom).
Indeed an early®™ investigation did propose the existence
of the CuPt, (“D7”) structure on the basis of electric
measurements (however, this was not directly confirmed
by x-ray studies).

2. Cu,;_,Pd,

Experimentally,~7 Cu,_,Pd, [Fig. 1(b)] shows at low
temperatures the bcc-type CsCl (B2) structure near
x =1 and the fcc-type L1, structure around x=0.19.
For 0.22<x =<0.25 one finds a tetragonally deformed
(¢ /a ~0.986) L 1,-like structure, best described as an an-
tiphase boundary (APB) between adjacent L1, unit
cells.’>*? The ordered low temperature L 1, phase under-
goes a transition to this long-period superlattice structure
(LPS) consisting of APB’s at 470°C for x =0.18, and at
350°C at x =0.21. These long-period superlattice disor-
der above ~500°C and may not exist at low tempera-
tures.

Our calculated results [Fig. 9(b)] for CuPd show the
observed fcc-type CusPd (L1,) and bee-type CuPd (B2)
structures, indicating that our theory correctly repro-
duces the delicate balance between fcc and bcc interac-
tions. The cluster expansion also predicts that
CuPd; (L1,) and CuPd, (D7) are only ~3 meV/atom
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FIG. 10. Crystal structure information for commonly occurring intermetallic transition metal alloys that are generally not ob-
served in the CuAu and CuRh treated here. We use our cluster-expansion method to verify that these structures are indeed unstable

(Sec. VIC). See caption to Fig. 3 for further details.

below the line connecting B2 (x =1) with Pd (x=1),
hence, could form at low temperatures.

3. Cu;_, Au,

Experimentally,>~7 Cu,_ Au, [Fig. 1(a)] shows at low
temperatures the fcc-based CujsAu—I (L1,) cubic or-
dered structure at x =1. At x=1, Cu,_, Au, forms the
fcc-based Cu-Au-I (L1,) structure. This structure has a
tetragonal distortion, with the ¢ /a ratio between 0.931 to
0.938.7@), At T=658 K, this Cu-Au-I phase transforms
into the Cu-Au-II structure best described as one-
dimensional LPS, with repeat period ~5 Cu-Au-I cells.
This LPS disorders above ~683 K. The ordered struc-
ture seen for CuAu; at x =2, is, however, less certain: it
is believed to be a two-phase mixture of the L 1,-type and
a one-dimensional antiphase structure.”®. Similarly,
there exists a one-dimensional LPS denoted as the
Cu;Au-II phase. It occurs at Au-rich compositions with
18 CujAu-I cells an antiphase domain boundary located
after 9 unit cells.”®

Our calculation [Fig. 9(c)] for CuAu correctly identifies
CuzAu (L1,), CuAu (L1,), and CuAu; (L1,) to be on
the GSL. The Cu;Au and CuAu structures are found to
be very stable. On the other hand, the CuAu; is less
stable: it moves above the GSL, when the structural re-
laxation is incorporated. This is consistent with the ex-
perimental fact that other structures can effectively com-
pete with CuAu; at low temperatures.

4. Cu,_.Rh,

Experimentally,®>~7 Cu,_,Rh, [Fig. 1(d)] exhibits fcc
disordered solid solutions above 1150°C. At lower tem-
peratures, the phase field exhibits a wide miscibility gap
corresponding to phase separation into Cu-rich and Rh-
rich fcc alloys. Our calculation for CuRh shows indeed a
trivial horizontal GSL (not shown in Fig. 9) representing
phase separation, as observed.

5. Al,_ Ni,

Experimentally,®~7 Al,_,Ni, shows both fcc- and
bee-based structures. The presence of the CsCl (B2)
structure at x =4 and the L1, structure at x =3 is well
established.”® In addition, a bce-like Al;Nis structure
has been identified recently at low temperatures at
x=2.7® Tt is isotypical with Ga;Pts and shown in Fig.
11, where it is denoted as DS5.

Our calculation are shown in Fig. 9(d). The presence
of the cubic CsCl structure (B2) and the NiAl; (L1,)
phase in the ground state are correctly reproduced.
These are very stable phases with properties studied by
many authors.> At x=3 we find the D5 structure
(Ga,Pts-like) in the GSL. It is barely below the line join-
ing the CsCl and L1, points in Fig. 9(d), which means
that, if truly a stable phase, it exists only at lower temper-
atures. True Ga;Pt; has an orthorhombic distortion
which we have not considered, but which could lower its
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FIG. 11. Crystal structures, see caption to Fig. 10.

we predict the fcc-based

configuration denoted D7 (see Fig. 10), whose stability is

not an experimental fact.

In addition to these ground-state structures we have

identified other metastable structures whose energies are
not far from the GSL. For example, our calculations
place the DO,, configuration just 2.2 meV above the
ground state at x =, while the DO; energy is further
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FIG. 12. Crystal structures, see caption to Fig. 10.
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FIG. 13. Crystal structures, see caption to Fig. 10.

above.®® At x=2 we find the DO,; structure, just 1.3
meV above the L 1, structure: it can be characterized as
an AlsNi;Al;Ni, superlattice along the [410] direction. It
is hence an intermediate structure between the L1, and
DO,, with ordering vector [201]. Finally, at x =3 we
found a configuration just 0.9 meV above the GSL. Itisa
AlsNi;Al, superlattice along the [531] direction.

Overall, we conclude that the local density functional
description of structural energies correctly predicts the
stable phases of these compounds (scanning 2'°=65 536
structures for each compound), and identifies additional
candidate low temperature phases.

C. Predicting formation energies of unstable structures

We have considered so far structures that are either
ground states, or very nearly so; these are amenable to ex-
perimental observations. Since the cluster expansion is

not limited to such structures, it might be interesting to
consider trends in formation energies of other structures
that are not observed for Cu intermetallics, but occur
commonly in other intermetallics. Figures 10-13 de-
scribe such crystal structures, and Fig. 14 gives their pre-
dicted energies for Cu,_,Au,, Cu,_,Pd,, and
Cu,_,Pt,. In all cases, they are above the ground-state
line. We have performed LAPW calculations for some of
the simplest structures in this group. The results (Table
XVI) confirm the general trends in the predictions from
the cluster expansion. We conclude that the latter can be
used to reliably obtain energies of experimentally inacces-
sible structures. The trends in these energies observed in
Fig. 14 are rather interesting: the DO0,; structure is al-
ways a contender to the ground-state structures at x =%
and x =3, as is the NbNig-type structure at x=% and

TABLE XVI. Comparison of the LAPW calculated formation enthalpies (meV/atom) of some com-
mon intermetallic structures (Figs. 10~13) not occurring in the CuAu, CuPd, and CuPt systems with

predictions of the cluster expansion.

Cu;_,Au, Cu,_,Pd, Cu,_,Pt,
Structure LAPW Clust. LAPW Clust. LAPW Clust.
A4B, (D4) 66.8 71.5 —65.5 —61.0 —106.7 —82.0
A,B (y1) —10.4 —2.9 —73.3 —76.8 —84.2 —85.8
AB, (y2) 5.2 10.7 —41.6 —58.1 —29.9 —65.0
A,B (D1) —65.5 —61.5
AB, (D7) —65.1 —43.6
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D. The L1, and “D4” structures: an interesting observation

Figure 11 depicts the “D4” structure with composition
A4By,: it has the fcc Bravais lattice and the Fd3m space
group. Inspection of its “lattice averaged spin products”
I, ,(s) show that they are identical to those of the L1,
structure of composition 4B (having a trigonal Bravais
lattice and space group R3m; see Fig. 3) except for J 41
for which D4,1ﬁ4’1(L 1,)=—2 (Table III), while
D, I, (D4)=+2 (this observation is due to F. Du-
castelle, private communication, for which we ate grate-
ful). Hence, all physical properties of these two struc-

tures which are not related to the four-body terms, should -

be identical. This suggests a simple method for calculat-
ing J, ; from

AE(D4)—AE(L1)=4J,, , (6.6)
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FIG. 14. The solid lines connecting diamond-shape symbols
give the predicted ground-state structures; crosses gives the pre-
dicted (unrelaxed) energies of commonly occurring intermetallic
compounds (Figs. 10-13) that are not stable for the alloys con-
sidered here. The symbols in the inset to part (a) refer to the
structure types described in Figs. 10-13. (a) CuAu, (b) CuPd,
and (c) CuPt.

independent of the cluster expansion. Unfortunately, J, ,
is rather small for these systems (see Fig. 8), hence the
uncertainty in these values is not negligible. Using, nev-
ertheless Eq. (6.6), we find at x =1 that J, ,(CuPd)=0.3
and J, ;(CuPt)=1.3 meV compare with the values from
the cluster expansion (Fig. 8) J,;(CuPd)=1.5 and
J4,1(CuPt)=7.0 meV, i.e., they are of the correct order

of magnitude.

VII. FINITE-TEMPERATURE
THERMODYNAMIC PROPERTIES

We have so far addressed the issue of T=0 ‘“‘ground-
state structures,” finding some phases that are highly
stable and well-documented experimentally (e.g., L1, in
CuAu, L1, in CuPt, and B2 in CuPd), along with some
phases whose energy is barely below the GSL (e.g., the
D5 Al3Nijg structure and the D7 AIN; structure); these
correspond to structures that can disorder at low temper-
atures, hence might escape experimental detection. Al-
though it is not our intention to discuss in this paper in
detail the finite-temperature properties of these alloys,
we will touch upon the issue of finite temperature stabili-
ty for some of these structures, providing estimates for
ordering temperatures. For example, in the case of Al-
Ni, our calculated ground state presents the yet unreport-
ed phase D7. Although the ground-state calculation may
be made following different procedures (different ways of
handling the molar volume, e.g., by minimizing of the en-
ergy, or by expansion in a series of figures, see Sec. IV D)
we always found that the D7 structure was present in the
calculated ground-state line of Al-Ni. Another interest-
ing feature of our AIl-Ni results is that it clearly places
the Ga;Pts-like phase D5 also in the ground-state line.
Earlier experimental determinations of the phase dia-
gram® excluded this low temperature phase. Since the
formation enthalpies of the Al-Ni ordered compounds are
sufficiently large (Table XI) to make the LDA or cluster-
truncation errors relatively unimportant, we were special-
ly interested in using our first-principle interaction ener-
gies (Fig. 7) to calculate the resulting phase diagram by
means of the cluster variation method (CVM).% It is well
known that a phase diagram represents a delicate com-
petition between phases of nearly equal energies. Hence
even the topology of the phase diagram is highly sensitive
to small errors in the energy parameters and constitutes a
sensitive test of the LDA. It is not our intention to de-
scribe the details of the CVM; we just note that we have
used the tetrahedron approximation® for calculations of
entropies, while all {J; ,, } interactions are included in the
description of the internal energies. We used a correla-
tion function program, and the Newton-Raphson method
to find the solution of the nonlinear equations (not a den-
sity matrix program and the natural iterations®>). The
correlation functions for the pairs not contained in the
tetrahedron, such as the figures (k,m)=(2,2), (2,3), (2,4)
for fce, and (2,3), (2,5) for bee, were expressed as products
of the point correlation functions of their vertices.’® This
decoupling was very successful in the case of the calcula-
tion of the phases diagram of semiconductor alloys.?”‘®
Vibrational entropies and liquid-state effect were neglect-
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ed in this calculation.

Figure 15(a) gives the observed®® phase diagram; the
calculated fcc and bcc solid phase portions of the
Al,_,Ni, phases diagram is given in Fig. 15(b). The
lines of equilibrium are cut at T=1640 K where melting
begins.”” The binodal of B2-L1, and L 1,-Ni equilibrium
lines agree well with experiment at temperatures near
melting.”®. At lower temperatures the B2-L1, binodal
is deformed by the occurrence of the Al;Nis phase D5,
which we find to be stable below 950 K. The experimen-
tal phase diagram near the onset of the D5 stability is not
exactly reproduced by our calculation, but does not differ
much from it. Thus, the onset of the D5 stability marks
the appearance of a new parameter of order in the B2
medium. At lower temperatures, our L 1,-Ni binodal
falls faster (vertically) than experiment, due to the pres-
ence of the stable AINi, phase (D7) in our calculations.
This phase has never been reported, but the observed in-
stability of the binodal® might be indicating the presence
of a hidden phase like our D7. Since this phase has a
very low Al concentration, and since its translation vec-
tors are fcc-like (but doubled), this phase might be easily
confused with fcc Ni with a random distribution of Al
impurities.

The cluster variation method provides also the finite-
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FIG. 15. (a) Experimental (Ref. 3) and (b) CVM calculations
for the phase diagram of Al,_,Ni, for x =20.5. Vibrational en-
tropy and liquid-state effects were neglected.

temperature excess thermodynamic functions, such as the
mixing enthalpies AH(x, T') and free energies AF(x, T) of,
e.g., disordered (imperfectly random) alloys. We have
noted in Sec. VD that the cluster expansion for disor-
dered alloys converges well even using relaxed energies
(Table XIV). We can hence use the relaxed interaction
energies to describe AH(x,T). Figure 16 compares our
CVM calculated thermodynamic properties with experi-
mental data,’ when available, showing reasonable agree-
ment.

VIII. SUMMARY

We have shown that the informational content of total
energy curves for O(10) ordered A4,B,, structures suffices
to determine a reasonably complete renormalized set of
Ising-like interaction energies, and that this enables a
‘“ground-state search” of ~ 65000 other structures. This
removes much of the uncertainty underlying the use of
the local density formalism to predict equilibrium struc-
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CuAu, (b) CuPd, (c) CuPt, and (d) AINi.
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tures out of a limited set of only O(10) possibilities. The
most stable experimentally observed ground-state struc-
tures of Cu,_,Au,, Cu,_,Pd,, Cu,_,Pt,, Cu;_,Rh,,
and Al,_,Ni, are correctly identified and a few addition-
al low-temperature candidate structures are offered as
predictions. The same method for extracting renormal-
ized interactions works for simpler lattice properties,
such as molar volumes and electrostatic energies. A
unified description of general atomic relaxations is, how-
ever, lacking. In addition to this shortcoming, the main
approximations in our treatment are the following.

(i) Use of Vegard’s rule for determining the equilibrium
volumes. Section V B examined this approximation and
found it to introduce negligible errors in all cases but
Al,_Ni, for which this approximation was not used.

(ii) Neglect of vibrational entropies. This can contrib-
ute significantly when one contrasts different Bravais lat-
tices (e.g., fcc versus bec) at finite temperatures, a com-
parison avoided here.

(iii) Renormalization of the contribution of large
figures to the entropy. This approximation was tested
quantitatively against Monte Carlo simulations [Ref.
27(b) Fig. 15] and was found to introduce negligible er-
rors in the enthalpy and phase diagrams.

(iv) Truncation of the cluster expansion and use of a
finite number of structures to extract interaction energies.
This is a rather controllable approximation whose conse-
quences are checked quantitatively in our transferability
tests (Tables XII-XVI).
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