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EPR measurements of the temperature dependence of the g factor have been performed on single crys-
tals of Cu(l. -alanine)2, the copper complex of the amino acid I.-alanine. The angular variation of the ob-
served g-value shifts reflects the layered arrangement of the copper ions in the crystal structure of this
compound. The experimental results are interpreted in terms of the theory of Kubo and Tomita for the
magnetic resonance absorption. Using only parameters obtained from the EPR data and crystallograph-
ic information for Cu(L-alanine)2, it is shown that the dominant contribution to the temperature depen-
dent g-value shifts arises from the combined eft'ect of the dipole-dipole interaction between copper ions
and the spin polarization induced by the applied magnetic field. The effect of this first-order mechanism
is independent of the Heisenberg exchange (J/k = —0.5 K) and the spin dynamics of the system, and
predicts an angular dependence and magnitudes for the g-value shifts in good agreement with the data.
Our calculations reveal the important role played by the geometry of the spin arrangement in the magni-
tude and angular variation of the shifts.

I. INTRODUCTION

The temperature ( T) dependence of the electron
paramagnetic resonance (EPR) absorption spectra in
paramagnetic materials can be studied from different
points of view. The most direct change is that of the in-
tensity of the resonance, due to the proportionality of the
absorption to the T-dependent (static) magnetic suscepti-
bility. However, absolute measurements of the EPR ab-
sorption intensity as a function of T are rather diFicult to
perform. Easier to follow are changes in the shape, posi-
tion, and linewidth of the resonances. Lattice expansion
and structural phase transitions, as well as spin-lattice re-
laxation effects, produce variations in the local internal
fields "seen" by the spins, then inducing changes with T
in the overall magnetic response of the system. In the
case of thermal expansion, the changes are larger at
higher temperatures. Spin-lattice relaxation also causes a
broadening of the resonances when T is increased.

In this work we study changes with T of the positions
of the resonances arising from the polarization of the spin
system. These changes are larger at lower T. The prob-
lem has been studied by Kambe and Usui, ' who obtained
the moments of any order of the spectra as a function of
T and reported explicit results for the zeroth-, first-, and
second-order moments. They calculated the changes
with T in the positions and shapes of the resonances and
applied the results to the cases of EPR for noninteracting
and equivalent magnetic ions, as well as NMR in (elec-
tronic) paramagnetic crystals.

McMillan and Opechowski analyzed in detail the T
dependence of the positions and shapes of the resonances
in cases where the spin-spin interactions are not negligi-
ble. Their results were applied to systems with effective
spins —, and 1 and illustrated with data for nickel fiuosili-
cate.

Nagata and Tazuke calculated the effect of short-
range order on the positions of the EPR signals in the
linear-chain antiferromagnets CsMnC13 2H20 and
(CH3)&NMnCL3. The one-dimensional (1D) behavior of
the spin dynamics of these materials, where the Mn +

ions are arranged in chains, allowed these authors to use
the spin-correlation functions obtained from Fisher's ex-
act solution for the classical 10 antiferromagnet. Con-
sidering a situation in which the Zeeman energy is larger
than the dipolar energy, but smaller than the isotropic
exchange energy, Nagata and Tazuke obtained good
agreement between the predicted and observed T varia-
tions of the gyromagnetic factor. Small discrepancies
were attributed to fine-structure terms, which are impor-
tant for Mn + (S=—', ) ions.

In recent EPR studies of a series of paramagnetic
copper —amino acid complexes [Cu(AA)2], we have ob-
served sizable changes with temperature in the positions
of the EPR resonances. Preliminary experimental re-
sults ' were analyzed in terms of a phenomenological
model, and the magnitude and angular variation of the
changes with T were qualitatively related to the layered
arrangement of the copper ions in Cu(AA)z. ' Here we
report EPR data in single crystals of the copper deriva-
tive of the amino acid I:alanine Cu[NH2CHCH3CO2]2, to
be called Cu (I.-alanine)2, obtained at 9 GHz, as a func-
tion of temperature between 1.5 and 293 K. A large and
anisotropic temperature variation in the line position is
observed for T~ 50 K, i.e., at temperatures where mag-
netic order due to exchange coupling (J/k = =0.5 K) is
not expected. To explain the data we use a theory based
on the linear response formalism and the Anderson-Kubo
theory ' for the magnetic resonance absorption, which
considers the polarization of the spin system induced by
the external magnetic field when the temperature is
lowered. Because of the dipole-dipole interaction be-
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tween spins, this polarization, which becomes effective in
low-dimensional systems, gives rise to a net internal field,
shifting the resonance line. Using only measurable pa-
rameters (structural data, g tensors), the model predicts
well the general characteristics of the data. Corrections
to the model arising from anisotropic exchange or from
higher-order mechanisms, which depend on the exchange
interaction and spin dynamics, are of little importance
for Cu(AA)2 because of the relative smallness of J. Con-
sequently, the general trends predicted by our model for
the T dependence of the line positions are particularly
applicable to systems where the exchange interactions are
small and comparable to the Zeeman interaction, as ob-
served in Cu(L, -alanine)z.

II. COPPER —AMINO ACID COMPLEXES
AND Cn (L-alanine) 2

DifFerent experimental techniques have been used to
study the magnetic properties of Cu(AA)2. Because of
the layered arrangement of the copper ions in their crys-
tal structures, most Cu(AA. )2 exhibits low-dimensional

magnetic behavior. This has been shown through mag-
netic susceptibility' '" and electron paramagnetic reso-
nance (EPR) on single-crystal samples, " ' as well as by
specific-heat measurements. ' EPR has been shown to be
an appropriate tool to reveal the low-dimensional mag-
netic behavior of these compounds. As an example,
selective collapse of the resonances of magnetically non-
equivalent spins within a copper layer in
Cu(L-isoleucine)z occurs as a result of the magnitude of
the intralayer exchange interaction. ' No such collapse
occurs for the resonance lines corresponding to spins in
different layers, indicating a difFerence in magnitudes be-
tween the intra- and interlayer exchange interaction.
Also, linewidth data in some Cu(AA)2 can be interpreted
in terms of the theory developed by Richards and
Salamon, ' ' which considers the effect of the spin dy-
namics on the dipole-dipole interactions in 2D spin sys-
tems.

The x-ray crystal structure of Cu (L-alanine)z was re-
ported by Dijkstra' and more recently by Hitchman
et al. It is monoclinic, corresponding to the space
group P2&, with a=9.166 A, b =5.045 A, c =9.521 A,
and P=94.6. There are two species (A and B) of
symmetry-related copper atoms, which are arranged in
layers parallel to the b-c plane, at distances 5.05 and 5.39
A between nearest-neighbor coppers within the layers
and 9.14 A between layers.

Our magnetic-susceptibility measurements, between
0.013 and 240 K in powders of Cu (L-alanine)2, ' suggest-
ed a predominant spin-chain behavior with an antiferro-
magnetic exchange interaction J/k= —0.52 K, between
nearest-neighbor copper ions. On the other hand, the ob-
served change of the EPR linewidth with the microwave
frequency" was attributed to the presence of two non-
equivalent lattice sites for copper in Cu(I;alanine)2. The
linewidth data and a model' ' ' based on the theory of
Kubo and Tomita for the magnetic-resonance absorption,
allowed us to calculate

~
J~/k =0.47 K for the exchange

parameter. " The agreement between these two values of

J, obtained from different experiments, indicated a
predominantly 1D exchange network in Cu(L-alanine)2.

III. EXPERIMENTAL DETAILS AND RESULTS

The procedures followed to grow and orient single-
crystal samples of Cu(L:alanine)2 have been described in
Ref. 11. The samples used in this work were thin plates
of about 0.1X2X4 mm . We used an E-12 Varian EPR
spectrometer having a rotating 12-in. magnet with Hall-
probe control and a cylindrical cavity cooled within a
conventional set of nitrogen and helium Dewars.

The temperature of the sample, measured with cali-
brated copper and carbon resistors, was maintained at
fixed points (293, 77, 4, and 1.5 K), while the angular
variations of the line position were measured in three per-
pendicular planes a'-b, a'-c, and b-c, where a '=b Xc. In
other sets of experiments, the magnetic field was oriented
along the crystal axes a', b, and c, and the line position
was measured as a function of T as T was slowly varied
between 1.5 and 293 K. A single, exchange-collapsed
EPR line was observed in all cases for the two nonequiva-
lent copper sites in Cu(L-alanine)2. The g factor was ob-
tained using a microwave-frequency counter and a NMR
Auxmeter to measure the magnetic field. The angular
variation of the squared g factor measured in the b-c. a'-
h, and a'-c .crystal planes, at 293, 77, 4, and 1.5 K, is
displayed in Fig. 1. The g factor increases with decreas-
ing T when the magnetic field 8 is applied in the b-c crys-
tal plane (where the copper layers are located), while it
decreases when 8 lies along the a' axis normal to this
plane. The temperature dependence of the g factor ob-
served for 8 applied along the a', b, and c axes is
displayed in Fig. 2 as a function of 1/T. Below 50 K, g is
proportional to 1/T for all directions of 8.

IV. ANALYSIS OF THE DATA

8;„,( T)=47'( T) 8, (3)

where the "internal susceptibility" tensor y(T) has to be
real and symmetric. Then

where

poS'gr'8 ~ (4)

The data in Figs. 1 and 2 were analyzed using a spin
Hamiltonian and a phenomenological model that helps to
stress the observed features and tabulate the experimental
results. It defines the g tensor go measured at high T as

poS
' go'8,

where S is the effective spin (S=—,') and po is the Bohr
rnagneton. When T is lowered, the effective field acting
on the spins is the sum of 8 and an internal field 8;„,pro-
duced by the polarized neighbor spins. Then

&z =poS go [8+8;„,(T)],
where 8;„,(T)~0 for T +oo. We assume—a tensorial
(linear) dependence between 8;„,and 8 given by
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gz. = [U+4irg( T) ].gz .

In Eq. (5), go is assumed to be the limiting value of gz for
T large and U is the unit matrix. The components of the
symmetric tensors g z and g o were evaluated from the
data at different T displayed in Fig. 1, by least-squares
fitting to the function

gr(8, @)=(gz ) sin 8cos N+(gr)» sin 8sin 4&

+(gz )„cos 8+(g7 ) sin 8 sinC& cosN

+ (gr ), sin8 cos8 cos&b

g (T)=A +B /T . (7)

Least-squares fits of Eq. (7) to values of g (T) observed
for a =a ', b, and c were performed, and the results are
included in Fig. 2 and Table II. Above 50 K the devia-

given in Table I. The components (gr)„» and gr),» are
zero at any T, as expected from the symmetry of Cu(L-
alanine) 2.

Figure 2 shows the linear relation between the g factor
and reciprocal temperature (I /T) observed for all direc-
tions of B, in the low-T region, i.e.,

+ (gz ), sin8 cos8 sin@ . (6)

The polar and azimuthal angles 8 and N in Eq. (6) are
defined in an x,y, z axes system when x=a', y=b, and
z=c.

The values obtained for the components of g ~ are
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FIG. 1. Angular variation of the g factor measured in the
three crystallographic planes at fixed temperatures. The solid
lines axe the best fits to Eq. {6)and were obtained with the com-
ponents of the tensor g & given in Table I.

FIG. 2. Temperature dependence of the g factor measured
for fields applied along the a '=1Xc, b, and c crystal axes. The
data are plotted as a function of inverse temperature to show
the linear behavior observed at low T. Least-squares fits of the
data to Eq. (5) are included.
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TABLE I. Components (g&);j of the gyromagnetic tensor obtained by least-squares fits of Eq. (6) to
the data in Fig. 1, obtained at 9 GHz, at different temperatures T. The components (gp) y and (gz ) y
are zero because of the lattice symmetry of Cu(L-alanine)2. The uncertainties are calculated from the
dispersion of the data. The values indicated as for T= Do were obtained from the extrapolation of the
low- T data.

T (K)

(g~2)„.

(g7" )yy

(g&)„
(g~2),.

293

4.599{1)
4.396(1)
4.481(1)
0.334(1)

77

4.587(2)

4.412(2)

4.496(1)
0.330(2)

4.415(2)
4.495(2)

4.542(2)

0.312(2)

1.5

4.229(2)

4.609{2)
4.590(2)

0.287(2)

4.529

4.441

4.519
0.326

—(T) 1 —I
(

2 2) —i (9)

tions form the 1/T dependence are large, probably be-
cause of lattice expansion effects. Thus only experimental
results below 10 K were considered in performing the fits.

The components of the tensor g o, included in Table I,
were obtained from an extrapolation to high T (1/T~O),
of the low-temperature data displayed in Fig. 2 and from
the parameters obtained from the fits with Eq. (7). The
components of go were then obtained from those of g o,
assuming that go is symmetric. Using Eq. (5), and since

g z- is also a symmetric tensor, it is

g T g 0=gogo'v(T)'go .

Considering Eq. (8), the components of the tensor y(T)
can be obtained from the experimental data at different
T, us1ng

V. TEMPERATURE VARIATION
OF THE EPR ABSORPTION

g"(co)= J (M (t)M )exp( icot)d—t .
00

(10)

In Eq. (10), M is the component of the magnetic mo-
ment for unit volume of the sample (magnetization opera-
tor) along the linearly polarized rf field B, (& =B,/~B, ~ ),
having a frequency co. Equation (19) is valid provided
that %co (&kT.

For a system of X equivalent isotropic spins S; per unit
volume, the magnetization operator is given by

A. Magnetic resonance absorption in the high-T limit

Within the linear-response theory, the EPR spectra at
low microwave powers are described by the absorption
component of the dynamical susceptibility y"(co):

According to the 1/T temperature dependence of the g
factor shown by Fig. 2, the tensor C=Ty(T) defined in
Eq. (9) is symmetric and T independent. Its components
are given in Table II, where the values of 3 and 8 are
included.

M= —gpo g S;=—gpoS,

where S is the total spin. The operator M (t) in Eq. (10)
1S

M (r) =exp(igft/iri)M exp( i&t/fi—),
where & is the full Hamiltonian of the spin system. The
thermal average

Parameter Experimental Calculated

TABLE II. Values of the parameters 3 and B for a=x, y,
z (where x=a'=1Xc, y=b, and z=c), obtained by least-
squares fits of Eq. (7) to the data in Fig. 2. Values of the com-
ponents of the tensor C, defined in Eq. (9), obtained from the
data in Figs. 1 and 2, and those calculated with our model, as
described in the text.

(M (t)M ) =Tr[pM (r)M ]

is calculated with the density matrix

p =exp( —&/kT) /Tr [exp( gf/kT) ] . —

(13)

(14)

The magnetization M interacts with the static magnet-
ic Aeld 8, and the Zeeman Hamiltonian is given by

B

By

B,
C
Cyy

C„
C,„

2.1281
—0.13 K

2.1074
0.067 K
2.1257
0.034 K

—3.93X10-' K
2.25X10-' K
0.97X10-' K

—0.41X10-' K

—0.086 K

0.051 K

0.035 K
—3.23 X 10 K

1.91 X 10 K
1.32X10-' K

—0.11 X 10 K

S,= —M B=gpoS.B . (15)

where R; =R;—R is the vector joining the spins at R;
and RJ, and R=R/~R~. The case of the dipole-dipole in-
teraction for anisotropic spins is analyzed in the Appen-

The dipole-dipole interaction between isotropic spins is
given by

2 2

[S; S —3(S; R;J )(S R;J )],dd 2 g 3 / J / EJ J IJ
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dix, using existing methods. Another contribution to
the Hamiltonian & is the isotropic exchange interaction

= —g J"S SJ (J;;=0), (17)

%=&,+%,„+&qq=&0+&',
where

(18)

where the sum is over all spin pairs. Anisotropic (sym-
metric and antisymmetric) exchange interactions, as
well as hyperfine interactions, may contribute to the
Hamiltonian & and are considered in the Appendix.

It is seen in Eq. (15)—(17) that [&„&,„]=0, but
[%„%zz]and [%,„,%zz] are nonzero. Considering that
&&~ has a magnitude smaller than &, and &,„, the stan-
dard procedure to calculate the EPR spectrum from Eq.
(10) is a perturbative method, ' ' ' which separates the
Hamiltonian % as

In this case 5=0, as a well-known result ' ' which fol-
lows from Eq. (22) using Eq. (24). Also, Q( t, r)
=Qr(t, ~)

~ r is given by

Tr [ [&'(r ),S+ ][S,&' ] ]
Q(r, ~)=( I/A')(t —r)

Tr S+S (25)

When Eq. (25) is introduced in Eq. (21), we obtain the
EPR absorption signal at higher temperatures. In the
theory introduced by Kubo and Tomita, the terms
within the large parentheses of Eq. (21) are considered as
arising from the series expansion in powers of &' of the
so-called relaxation function, which at high T (when
5=0),is given by

t
4(r) = 1 — Q(t, r)dr+

0

=exp —f Q(t, r)dr (26)
0

&0=&,+&,„
Then Eqs. (21) and (26) give

19

is the unperturbed Hamiltonian and, in the simple case
we are considering,

g"(co —coo) =(A@V/2kT)Tr(M+M )

X f [@(t)exp[ i(co co—o)t]]—dt, (27)

dd (20)

is the perturbation. The problem is expressed in the base
where z is along the applied field B and &0 is diagonal.
Up to second order in &' and considering only the reso-
nance at positive frequencies,

y"(a)—coo) = (M+ M )2k'
X f I+i5t f Qr(t, r)d—~

—i(~—~0)tXe ' dt,
where coo=g poB /fi, while

1 ([m', s, ]s
(s,s )

and

(t —r) ([~',[~'(r),S+ ]S ]
Q

(21)

(22)

p=po= U/Tr(U) . (24)

In Eq. (23),

&'(r) =exp(i&or/A)%'exp( i&or/R)—
is the interaction &' of Eq. (20), time modulated by the
exchange and Zeeman interactions contained in &0 of
Eq. (19). Smaller contributions to Eq. (23), depending on
the direction of the microwave field, which appear in sys-
tems with a low-symmetry arrangement of spins, are
neglected. %'ithin this perturbative scheme, the statisti-
cal averages included in Eqs. (21)—(23) can be approxi-
mated by using &0, instead of & in Eq. (14). At infinite
temperature (when kT ))gp&P and kT ))J), p of Eq. (14)
is given by

where coo=gop&P /A'. If &' is neglected, C&(t) = 1, and the
spectrum consists of two narrow resonances at +~0.
When &' is considered, there are two kinds of contribu-
tions. Secular contributions to Q(t, r) (those arising from
the terms of %' commuting with &,) give rise to
broadening of the line. Nonsecular terms produce shifts
of the resonances, as well as additional contributions to
the linewidth. Both broadening and shifts of the lines in-
volve the presence of &,„through the phenomenon of ex-
change narrowing. ' As mentioned above, besides &zz,
other contributions to &' of Eq. (20) may add similar
effects which have been discussed by different au-
thors 1 8& 257 26~ 3 1 ) 32

=@(t)exp(i5t ), (28)

where we have neglected finite-temperature corrections in
Qz (t, r) and 5 is given by

5= —Tr(&0[&',S+ ]S )/[Tr(S+S )fikT] . (29)

When N'(t) of Eq. (28) replaces @(t)of Eq. (26) and is in-
troduced in Eq. (27), it gives

B. Temperature dependence of the absorption

The T +00 approxima—tion [Eq. (24)] leading from Eqs.
(21)—(23) to Eq. (27) enters through the values of
(M+M ), 5=0, and Qr(t, r)=Q(t, w). At finite tem-
peratures the T dependence of (M+M ) is proportional
to the static susceptibility and varies accordingly with T,
producing a change in the signal intensity, which is not
considered here. The thermal averages involved in 6 and
Qr(t, r) in Eqs. (22) and (23) may be calculated at finite
but high temperatures by a series expansion in 1/kT.
Then, at finite T, @(t)of Eq. (26) should be replaced by

C '(t) = 1+i5r f Q(t, r)d7+—
0
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y"(co co—o)=(coV/2kT)(M+M )

X f exp[ —i[co —(coo+5)]t]4(t)dt . (30)

Therefore, 6 represents a frequency shift in the position
coo of the resonance line. Thus we may define an e6'ective
temperature-dependent g factor g ( T) as

1. 1D chain

In this case, it is Ro, =na e„ in Eq. (32), where n is an
integer, e is a unit vector along the chain, and a is the
lattice parameter. If 0 is the angle between the applied
field and chain axis the following is obtained for an
infinite chain:

g ( T) =Pi(coo+ fi) /p(P

Tr(S, [&',S+ ]S )
=go kT Tr(S+S )

(31)

S(8)
1D

g2(T) g2

2
go 1D

—3uK1D
(1—3 cos.8),

(33)

If &' consists only on the dipole-dipole interaction be-
tween isotopic spins [&d~ of Eq. (16)], one gets, from Eq.
(31) and Eqs. (A17)—(A19) of the Appendix,

where

a=gogo/a k (34)

g2( T) g2

2
go

—3g

ohio

1 —3(b.RO; )

4kT (32)

and

K,D
= g (1/n ) = 1.202. . . .

n=1
(35)

where b =8/~B~ is the direction of the applied field B.
The sum in Eq. (32) assumes that one spin is located at
the origin of coordinates.

It should be noted that the theory developed up to this
point makes use of an expansion up to first order in two
diA'erent senses. On the one hand, it involves a first-order
correction in &o/kT for the density matrix used to calcu-
late the thermal averages. On the other hand, it is linear
in the perturbation gj'. Taking into account that
&o=&,+&,„and A' are traceless and because of the
isotropy of &,„ in the spin space, only the combination of
&, and &dd may create at each lattice point a local field
which shifts the resonance. This occurs provided that
the symmetry of the spin arrangement allows for Add to
become eff'ective (shown in Sec. VC). This result is
refiected by Eq. (32), which does not depend on the mag-
nitude of the exchange interaction.

Two types of second-order corrections may be con-
sidered. The first type arises from terms in (&o/kT) in
the expansion of 6, being still linear in .& . It can be
shown that their explicit forms agree with those that can
be derived from the results of Nagata and Tazuke who
calculated the frequency shifts using the first moment of
the resonance line. This is to be expected since, within
the theory of Kubo and Tomita, our calculation of
~o+6 amounts essentially to considering the dominant
contribution to the first moment. Another type of
correction includes that which has gf'' to second order,
but linear in &o/kT, which follows from QT(t, r) after
expanding Eq. (14) in powers of 1lkT in Eq. (23). Both
of them involve the presence of the exchange interaction,
as might be expected. However, they will not be con-
sidered in our treatment on the grounds that, for the sys-
tem under consideration, gopQ —J (&kT in the range
covered by our experiments.

C. Explicit results for simple lattices

In order to discuss our results, we now apply Eq. (32)
to simple 10, 2D, and 3D crystal lattices.

For a =5 A and g =2, the fractional shift S(8)~iD at
T= 1 K is about 7%%uo for 8=0. This value is reduced to a
half and changes sign for 0=90, while it vanishes for
cos8= I /&3 (the "magic angle" 8= 54. 75').

2. 2D square planar lattice

In this case it is

S(8)
2D

g2( T) g2

gO 2D

3aZ2D
(1—3 cos 8), (36)

where 0 is the angle between the applied field and the
normal to the spin layer, and

00 2

K2D =K,D+2 g =2.244. . .
=i(m+n )

(37)

Thus a positive shift is expected whenever B is within
the layer (8=90'), doubling this value and changing sign
for B along the normal to the layer, with a fractional
change of about 13% at 0=0, for the same value of a
used for the 1D chain and at 1 K. In calculating Eq. (36)
it was assumed that there is an infinite (unbounded) layer.

3. 3D simple cubic lattice

Assuming we are dealing with a spherical sample, Eq.
(32) vanishes identically in this case.

The previous results for the simplest 1D and 2D spin
systems are indicative of the features to be expected for
spin arrangements having chain- or layer-type structure.
They point to the fact that large temperature variations
of the g factor are to be expected for 1D and 2D spin sys-
tems and when the real spatial 3D spin configuration ap-
proach these ideal cases.

R„=(m e„+n e, )a,
where e and e are unit vectors in the plane, m and n are
integers, and a is the lattice parameter. In this case one
obtains
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2

[3D—UTr[D}] . (38)

Also, the coefficients B defined in Eq. (7) are given by
[see Eq. (A17)]

~ D. -agonzo 'go' 'go

4k A ++ ++ Aa.go- go.a
(39)

for n=x, y, z. The tensor D appearing in Eqs. (38) and
(39) is defined in Eqs. (A18) and (A19) of the Appendix.

The components of the symmetry-related tensors g~
and g~, for copper spins in crystal sites 3 and B in the
Cu(L-alanine)z lattice used to calculate the components of
D, were determined from the components of g o (Table I),
assuming axial symmetry. ' The summation in Eq. (A18)
was performed numerically, using the crystallographic
data for Cu(L;alanine)z reported by Hitchman et al.
The values of B calculated with Eq. (39) are given in
Table II, where they are compared with the experimental
values. The components of the tensor C calculated with
Eq. (38) are also given in Table II together with the ex-
perimental values. Note that, according to Eq. (38), this
tensor should be traceless. In obtaining numerical re-
sults we assumed that go in Eq. (39) is obtained from the
experiments, although these include small corrections of
nonsecular origin.

VI. DISCUSSION

As shown in Table II, the predictions of our model are
in good agreement with the values of the components of
the tensor C calculated from the data. The predicted an-
gular variation of the g-value shifts for the simple case of
spins with isotropic g factors in a square planar lattice de-
scribes we11 the behavior of the data displayed in Fig. 1.
Equation (38) provides a more appropriate result, in
which the structural details of the 1ayered spin arrange-
ment and the anisotropy of the g factor are explicitly in-
cluded. The discrepancies between these results are rela-
tively small, indicating that the simple model of Sec. V C
for the 2D planar lattice contains the physical ingredients
most relevant for the case of Cu(L-alanine)z.

In a more detailed analysis, the small differences be-
tween the calculated and experimental values suggest that
other contributions are present. The calculated values of
the components of C, although having the correct sign,
have magnitudes smaller than the experimental ones (ex-
cept for C„). This indicates that another contribution ex-
ists. Since the anisotropic (symmetric) exchange behaves
tensorially as the dipole-dipole interaction, ' one is
tempted to attribute the discrepancies to this interaction.
We have not calculated this contribution to the g-value
shifts, which would require knowing the strength of the

D. Application to the case of Cn(L-aianine)~:
Contribution of the dipole-dipole interaction

Using the quantization axis z=go h/~go. h~ as de-
scribed in the Appendix, it is easy to see from Eqs. (8)
and (32) that the tensor C in Eq. (9) is, according to our
model, given by

anisotropic exchange parameters. It is possible to see,
however, that anisotropic symmetric exchange is not the
only source of discrepancy. According to Eq. (83), both
dipole-dipole and anisotropic exchange contributions pre-
dict a traceless C tensor, in contradiction with the experi-
ments [where Tr(C) = —0.71 K]. Then additional contri-
butions should be considered, and these can be traced
back to the second-order terms in &', arising from
Ar(t, r) of Eq. (23). In that case, in addition to Add, in-
teractions such as hyperfine, residual Zeeman, etc., can
also contribute. Their analyses require the knowledge of
the spin-correlation functions of Cu(L-alanine)z, which re-
gulate the spin dynamics of the compound. ' ' These
second-order effects in &' give rise to g-value shifts of
nonsecular origins even at T= Oo. At finite T they
could contribute with a trace of C different from zero and
become important whenever the correction of first order
in &' and I/kT vanishes, as it could happen because of
symmetry reasons.

As a concluding remark, it is interesting to see that the
main features of the angular variation of the shifts of g
with temperature can be explained through the role
played by the 2D spatial arrangement of the magnetic
ions, as described through the effect of the dipole-dipole
interaction. The time-dependent spin-correlation func-
tions have no role in the shifts with T in the resonance
positions of Cu(L, -alanine)z. This is a consequence of a
relatively weak exchange interaction (~ J~ /k =0.5 K).
Thus only structural information is required to provide
acceptable predictions of the g-value shifts.
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APPENDIX

Here we give details on the first-order calculation of
the shifts of the resonances with temperature. The role of
the anisotropy of the gyrornagnetic factors of copper in
the dipole-dipole interaction, the anisotropic exchange
(symmetric and antisymmetric), and the hyperfine in-
teractions are considered here.

In Cu(L-alanine)z, where there are two species of aniso-
tropic copper ions, the total magnetization operator of
Eq. (11)should be replaced by

N

PO X (gA SiA +gB iB )

where the summation is over N (a very large number) unit
cells of the crystal. Equation (Al) can also be written as

M = —po(g S+G s), (A2)

where
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g=-,'(g~+Sa» (A3) &' =&dd+&,'+&,„+&,„„+&h„. (A13)

G= —,'(g~ —Sa»
S= g (S;„+S;~),

(A4)

(A5)
(A14)

According to Eqs. (29) and (30), we are to calculate

Tr(&p [& S+ ]So )6=-
AkT Tr(S+S )

s= g (S;„—S;s) . (A6)

&,=&,o+&,',
where

(A7)

Within the spirit of the linear-response theory and
since we are dealing with a system showing a single
exchange-collapsed line, we will assume in the calculation
of the correlation function involved in Eq. (9) that

M= —p g-S.

Thus contributions proportional to Cx of Eq. (A4) were
neglected. On the other hand, the Zeeman interaction
can be decomposed as

This calculation involves several contributions arising
from the combinations (&p,Vf'), where &p and &' are
given by Eqs. (A12) and (A13). The contributions arising
from (&,o,&,') and (&,„,Add) vanish, as they involve
traces of an odd number of spin operators. The contribu-
tion arising from (&,„,&,') gives zero as it follows from
the exact cancellation of the traces produced by the spins
of both A and 8 sublattices. The contribution of the
hyperfine interaction vanish, as it involves traces of
operators linear in the nuclear spin components. The
effect of the antisymmetric exchange also cancels. Then
terms involving &,p, with Add or &,„,are the only con-
tributions to Eq. (A14). By choosing a quantization axis
z=g h/g, where h=B/~B and g =h g g h, &,p takes
its diagonal form:

&zp —POS ' g ' B (A8) ~zo=gPpB z . (A15)

S,'=@ps.G B . (A9)

To the isotropic (Heisenberg) exchange interaction of
Eq. (17), we may add anisotropic contributions composed
by symmetric and antisymmetric terms,

Defining

gT=go+&~/s P
one obtains, from Eq. (A14),

go Tr(S, [&~d,S+ ]S )

kT Tr(S+ S )
(A16)

(ia,jp)=S, J,~ (ia,jp).SJi3, (A 10)

&,„,(ia, jP) =S, ,J,„,(i a,jP) SJ&, . (A 1 1)

~p ~zo+~ex (A12)

and

where J, and J,„, are traceless symmetric and antisym-
metric tensors. The parameters involved in Jsym and
cannot be accurately calculated without going into a
first-principles theory. For ions with an orbital contribu-
tion to the ground state producing an anisotropy 6g of
the gyromagnetic factors, Moriya estimated
~J,„,~=(5g/g)Jp and ~J,„~=(6g/g) Jp. Besides these
facts, the anisotropic (symmetric) part of the exchange
may be handled for many purposes in a way similar to
the dipole-dipole interaction. When there are nuclei with
spin I, =0, hyperfine interactions &hf should be con-
sidered. In paramagnetic materials the hyperfine interac-
tions are, in general, washed out by the exchange and not
observed. However, they may produce sizable effects on
the EPR linewidths. '

When the interactions gf", , &,„,&,„„and &h& are
considered, Eqs. (19) and (20) for &o and &' can be
rewritten. Now

In order to consider the effect of the anisotropy of the
gyromagnetic factor in the dipole-dipole interaction, it is
convenient to write it in terms of mixed tensor operators,
taking advantage of their commutation properties with
total spin operators. Then a straightforward calculation
using Eq. (A16) gives

2
pp

g =g 1 — [3z D z —Tr(D)] (A17)

where, for an infinite crystal,

D= g D(0,a;j,P),
a, jp

(A18)

n being the number of magnetic ions per unit cell [n =2
for Cu(L-alanine)2 and a,p= A, B] and

D(i, a;j,P)= (g .
gp

—3g 'Rp Jp)(Rp, ,q gq) .
(Ro Jp)

(A19)

Equations (A17)—(A19) are the basic formulas which
have been used to derive the results for simple lattices
[Eqs. (33)—(36)], as well as to perform the numerical cal-
culations for Cu(l. -alanine)z described in the text, with re-
sults displayed in Table II.
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