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Using recently developed histogram techniques and an ultrafast multispin coding simulation algo-
rithm, we have investigated the critical behavior of the d =3 simple-cubic Ising model. We have studied
lattice sizes ranging from L =8 to 96 using between 3 X 10 and 12 X 10 Monte Carlo steps (complete
lattice updates). By accurately measuring the finite-size behavior of several different thermodynamic
quantities, we are able to determine the critical properties with a precision comparable to that obtained
with Monte Carlo renormalization-group and sophisticated series-expansion techniques. The best esti-
mate of the inverse critical temperature from our analysis is X, =0.2216595+0.0000026. The advan-
tages of the histogram technique are discussed, as are the potential problems that can arise at this level
of resolution.

I. INTRODUCTION

Because of their simplicity, Ising models have served as
fertile testing grounds for innumerable projects in statisti-
cal mechanics. Although the one- and two-dimensional
Ising models have been solved analytically, the three-
dimensional model has defied solution in spite of intense
effort. ' While the exact behavior is as yet unknown,
various numerical methods have succeeded in providing
accurate information about the nature of the phase tran-
sition. Series-expansion data have been produced and
analyzed with increasing sophistication yielding impres-
sive estimates for T, as well as the critical exponents.
Renormalization group and e-expansion studies ' have
provided accurate estimates for the exponents. The
Monte Carlo renormalization group (MCRG) has
been used to determine the critical temperature and criti-
cal exponents with high accuracy. A recent sophisticated
reanalysis of series-expansion data has also yielded an
accurate estimate for Tc, but this value appears to be just
outside the errors of the MCRG study.

The importance of these studies has been twofold.
First, the knowledge gained has provided valuable infor-
mation about critical exponents, scaling, corrections to
scaling, etc., which has helped develop our understanding
of the critical properties of the Ising model as well as crit-
ical behavior in general. Beyond this, however, accurate
numerical estimates of various critical properties provide
stringent tests for ascertaining the quality of approximate
techniques as well as of supposed exact solutions.

Monte Carlo (MC) simulations have also been used to
investigate the d =3 Ising model. Early studies' apply-
ing finite-size scaling analyses produced results of only
modest quality due to the limitations (low statistics and
small system sizes) imposed by the computers existing at
the time. Much longer Monte Carlo runs were made by
Barber et al. using a special purpose processor, " but
subsequent work by several groups' ' showed that
these simulations were in error, presumably because of
random-number generator problems.

Performing a high-precision finite-size scaling analysis
using standard MC techniques is very difficult due to con-
straints on the available computer resources. To accu-
rately locate the position of the maximum in a thermo-
dynamic derivative, which defines an effective (finite-
lattice) transition temperature T, (L), one must perform
multiple simulations in the vicinity of the peak. (The un-
certainty in the location of the peak decreases as the
number of simulations is increased. ) To reduce the efFects
of corrections to scaling and finite-size scaling (see Sec.
II B), the simulations must be performed on large systems
which require more computer time. In addition, each of
the multiple simulations must be of high accuracy, which
is made more difficult because of critical slowing down
near the transition. A further problem is that different
thermodynamic derivatives have their peaks at different
temperatures so that the process of performing multiple
high-precision simulations to locate a peak must be re-
peated for each quantity considered. Because of this need
to obtain high resolution data at many temperatures,
standard Monte Carlo simulations have not previously
been able to compete with other numerical techniques in
providing highly accurate estimates for T, .

The recent introduction of histogram techniques'
to extract the maximum information from Monte Carlo
simulation data at a single temperature enhances the po-
tential resolution of Monte Carlo methods substantially.
In this paper we present the results of an extensive Monte
Carlo study of the critical behavior of the d =3 Ising
model. The data were generated using a vectorized mul-
tispin coding simulation algorithm and were analyzed us-
ing histogram methods together with finite-size scaling
techniques to obtain highly accurate estimates for the
critical temperature and exponents. An important
feature of this study is the analysis of several thermo-
dynamic quantities including the specific heat and suscep-
tibility as well as the fourth-order magnetization cumu-
lant and derivatives and logarithmic derivatives of the
magnetization. From this analysis we obtain a
comprehensive picture of finite-size effects and the pre-
dicted critical behavior in the thermodynamic limit.
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II. BACKGROUND

A. Monte Carlo gxethod

We have considered the three-dimensional ferromag-
netic Ising model with the Hamiltonian

&=—J g o.;o.,

The spins o.; take on the values +1 and the sum goes over
all nearest-neighbor pairs. In discussing the critical prop-
erties of the Ising model, it is customary to work with the
dimensionless coupling constant E related to the interac-
tion constant J by K =J/kz T. We also define the dimen-
sionless energy E as E =g(; )cr; o .

We have simulated L XL XL simple cubic lattices with
fully periodic boundary conditions using an efficient vec-
torized multispin coding algorithm. ' The system is
decomposed into interpenetrating sublattices and up to
64 spins on a single sublattice are packed into a single
64-bit word on the CDC Cyber 205. All spins in a word
are "Hipped" at once and the entire process is vectorized
to increase the speed still further. In this program, a new
random number is generated for each spin update. This
improves the quality of the data at the expense of a
reduction in the speed. (Despite this, the maximum
speed of the program is still an impressive 3.8X10 spin
llip trials per second. ) The program produces quasiran-
dom numbers using a vectorized Tausworthe (shift-
register) generator. ' We have tested the algorithm
for difterent values of the "magic numbers" (p =1279,
q = 1063 and p =250, q = 103) to check for any systemat-
ic errors which could be introduced. Within the accura-
cy of this study no systematic effects were observed. (Re-
sults of this test are included in Tables I and II.)

Much of the data used in our analysis had been gen-
erated previously for studies of critical relaxation, al-
though additional data were also obtained for several of
the system sizes. Most of these simulations were per-
formed at K =0.221 654, an estimate for the critical cou-
pling E, obtained by MCRG analysis. A few simula-
tions were also performed at other values of E, including
couplings much below K„ to check for systematic errors
in the histogram analysis. This wiH be discussed in de-
tail in Sec. III. Data were obtained for lattices with

8 & L & 96, and between 3 X 10 and 1.2 X 10 MCS (com-
plete lattice updates) were performed. Such long runs are
necessary to reduce the systematic and statistical errors
which arise due to the finite number of samples taken.
Measurements were made at intervals of either 5 or 10
MCS after up to 10 MCS were discarded for equilibrium.
For the largest lattice, the total run length is more than
5000 times the relevant correlation time. A detailed
analysis of the correlation times for these simulations has
been presented elsewhere. Values of the magnetizatiorl
and energy were stored as a function of time and were an-
alyzed as described in the next two sections.

B. Finite-size scaling analysis

F(L, T, h)=L ' ' '9 (tL', hL'r+~' ), (2)

where t =(T—T, )/T, (T, is the infinite-lattice critical
temperature) and h is the magnetic field. The critical ex-
ponents a, P, y, and v are all the appropriate values for
the infinite system. The various thermodynamic proper-
ties can be determined from Eq. (2) and have correspond-
ing scaling forms, e.g.,

m =I.-i"X'(x,),
C =L. 'Zo(x, ),

(3)

(4)

where x, = tL ' is the temperature scaling variable. Be-
cause we will be interested only in zero-field properties,
x, is the only relevant thermodynamic variable.

In this study we wish to determine the transition tem-
perature accurately. This is accomplished by finding the
location of the peak in a thermodynamic derivative, for
example the specific heat. For a finite lattice the peak
occurs at the temperature where the scaling function
Z (x, ) is maximum, i.e., when

The critical behavior of a system in the thermodynam-
ic limit may be extracted from the properties of finite sys-
tems by examining the size dependence of the singular
part of the free energy density. This finite-size scaling ap-
proach was first developed by Fisher and has proven to
be quite powerful.

According to this theory, the free energy of a system of
linear dimension L is described by the scaling ansatz

TABLE I. Estimates for K, (L), for L =16, obtained from various derivatives. The values of E
shown at the top give the couplings at which the simulations mere made. The values of RNG refer to
the two di8'erent pairs of shift-register random number generator "magic numbers" used.

im/

x
1n/m f

lnm '
U

K =0.221 654
RNG= 1

0.222 1934(68)
0.221 810 8(66)
0.221 566 8(82)
0.221 447 4( 91)
0.221 271( 14)

E =0221 654
RNG=2

0.222 180 3(30)
0.221 804 2(58)
0.221 562 5(80)
0.221 462 5(60)
Q.221 262 5(92)

E =0.221 500
RNG=2

0.222 183 0(79)
0.221 807 2(50)
0.2215542(50)
0.221 473( 10)
0.221 266 1(60)
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TABLE II. Maximum values of derivatives obtained from three different simulations. The values of
K shown at the top give the couplings at which the simulations were performed. The values of RNG
refer to the two different pairs of shift-register random number generator magic numbers" used.

/mf

x
1n/m/

lnm
U

K =0.221 654
RNG=1

97.71(46)
58.50(30)

470.1(26)
788.7(40)
183.7(22)

K =0.221 654
RNG=2

97.41(42)
58.47(36)

471.1{18)
791.0(47)
185.9{32)

K =0.221 500
RNG=2

97.73(49)
58.52(22)

471.7(32)
790.2{25)
184.3(17)

dZ (x, )

dx, X =X
=0.

This temperature is the finite-lattice (or efFective) transi-
tion temperature T, (L ), defined through the condition
x, =x,' to vary with the lattice size, asymptotically, as

T, (L)= T, + T,x,*L (6)

These results for the scaling of thermodynamic quantities
and T, (L) are valid only for sufficiently large L and tem-
peratures close to T, . For smaller systems, corrections to
finite-size scaling must be taken into account. These
manifest themselves as power-law corrections with an ex-
ponent —w so that, for example, the magnetization at T,
would scale with system size like L O~ (1+cL ). As
we move away from T„corrections to scaling due to ir-
relevant scaling fields, or nonlinearities in the scaling
variables must be taken into account. Corrections due
to irrelevant fields are expressed in terms of an exponent
0 leading to additional terms like a, t +a2t +
while nonlinearities in the scaling variables give rise to
correction terms like b, t '+b2t + . . The tempera-
tures we consider in the analysis differ from T, (or t =0)
by amounts proportional to L '~ [Eq. (6)] so that the
correction to scaling terms at these temperatures can be
expressed by power-law corrections of the form
a,L +. . . and b, L ' + . . Fully taking into
account these corrections to scaling and to finite-size
scaling is complicated by two factors.

(1) The value of the correction exponent has been es-
timated to be 0=0.5 (Refs. 30 and 31) so that the ex-
ponents 20/v and 1/v may be very similar, but still
diferent enough that a single correction term wi11 not
compensate for both of them. Also the amplitude of the
first correction L may be zero for some thermo-
dynamic quantities but not for others.

(2) Each correction term we consider requires two pa-
rameters in a fit, which decreases the number of degrees
of freedom. Including more than one independent
correction term is nearly impossible, even with high-
quality data.

For these reasons, we fit our data with at most a single
correction term, L, in the hope that (1) our system
sizes are large enough that any corrections will be small

U=1- &m'&

3&m'&' ' (9)

where m =L g, o; is the magnetization per spin.
Binder showed that the slope of the cumulant at K„or
anywhere in the finite-size scaling region, varies with sys-
tem size like L' . In particular, the maximum value of
the slope scales as L ' . If we take into account a correc-
tion to scaling term, the size dependence of the peak be-
comes

and (2) that any residual corrections from more than one
term can be well approximated by a single correction. A
second possibility is to assume that away from T, the
corrections to scaling are more important than the
corrections to finite-size scaling and then make use of the
theoretical predictions and fit the data with two correc-
tion terms L and L ' . We will compare these two
approaches in Sec. IV.

If we take the correction term into account, the esti-
mate for T, (L) is then modified to be

T, (L)= T, +A, 'L 'i'(1+b'L )

or, in terms of the coupling K

K, (L)=K, +AL '~ (1+bL ") .

Because each thermodynamic function has its own
scaling function, the value of x,*, and therefore A, , de-
pends, in magnitude and sign, on the particular function
measured. For example, for the d =3 Ising model, the
location of the specific heat maximum occurs further
away from (above) K, than the location of the maximum
of the magnetic susceptibility. [Estimates for K, (L) from
other quantities approach K, from below so that rough
upper and lower bounds on K, can be determined by
looking at the values of K, (L) for the largest lattice. ]
However, before Eq. (8) can be used to determine K„it is
necessary to have both an accurate estimate for v and ac-
curate values for K, (L ).

It has traditionally been di%cult to determine v from
Monte Carlo simulation data because of a lack of quanti-
ties which provide a direct measurement. This situation
was greatly improved by Binder's introduction of the
fourth-order magnetization cumulant U defined by
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=aL' (1+bL ) . (10)
III. HISTOGRAM METHOD

A. Theory

(Note that other quantities such as the specific. heat and
magnetic susceptibility diverge with difFerent powers).
The location of the maximum slope of U also serves as an
estimate for an effective transition coupling which can be
used to determine K, . Because of these properties, the
cumulant is an important part of our analysis. In the
same paper, Binder introduced the "cumulant crossing"
method which extracts a transition temperature by exam-
ining the behavior of the magnetization cumulant for
different lattice sizes. We will discuss this method of
determining K, in Sec. IV E.

C. Thermodynamic derivatives

Additional estimates for v can also be obtained by con-
sidering less traditional quantities which should nonethe-
less possess the same critical properties. For example,
the logarithmic derivative of any power of the magnetiza-
tion

The idea of using histograms to increase the amount of
information obtained from Monte Carlo simulations has
been around for more than 30 years but has only recently
been applied with success to the study of critical phenom-
ena. ' ' The histogram technique used in our analysis
has been described in detail elsewhere. ' Here we provide
a brief description of the method as implemented in this
study.

A Monte Carlo simulation performed at T = Tp gen-
erates system configurations with a frequency proportion-
al to the Boltzmann weight, exp [ —P~], where

Po = I /ks To, and & is the Hamiltonian of the system be-
ing studied. As mentioned in Sec. II, we wish to consider
the d =3 nearest-neighbor Ising model with the Hamil-
tonian given by Eq. (1). For a simulation at temperature
Tp, corresponding to coupling Ep, the Boltzmann weight
can be expressed as exp[KOE]. The probability of simul-
taneously observing the system with (dimensionless) ener-

gy E and magnetization M =g,.cr, is then

ln(m") = (m")I

M m" oK Pz (E,M) = W(E, M)exp[KOE],
1

Z KD
(13)

(m "E)
& )(m")

has the same scaling properties as the cumulant slope.
The location of the maximum slope also provides us with
an additional K, (L). In our analysis we will consider the
logarithmic derivatives of (~m~) and (m ), as well as
the derivative of the cumulant, to determine v.

Once v has been calculated, it is necessary to determine
estimates for K, (L). In addition to the values for the
effective transition coupling we obtain from these three
quantities, we also determine K, (L) from the specific
heat, Eq. (12a), the derivative of ~m~ with respect to K,
Eq. (12b), and the finite-lattice susceptibility, Eq. (12c):

where W(E, M) is the number of configurations (density
of states) with energy E and magnetization M, and Z (Ko )

is the partition function of the system. Because the simu-
lation generates configurations according to the equilibri-
um probability distribution, a histogram H(E, M) of E
and M kept during the simulation provides an estimate
for the equilibrium probability distribution, becoming ex-
act in the limit of an infinite-length run. For a finite-
length simulation, the histogram will suffer from statisti-
cal errors, but H(E, M)/N, where N is the number of
measurements made, still provides an estimate for
P~ (E,M) over the range of E and M values generated

0

during the simulation. Keeping this in mind we modify
Eq. (13) to read

C =K'L '((E'& (E &-'), — (12a)
H (E,M) = W(E, M)exp[KOE],Z 0

(14)

8( m(&

M =(& mE) —&lm &(E&), (12b)

(12c)

where W(E, M) is an estimate for the true density of
states W(E, M). From the form of Eqs. (13) and (14), it is
simple to see that knowledge of the distribution at one
value of K is sufhcient to determine it for any K. To see
this, recall that the probability distribution for any value
of K has the same form as Eq. (13):

The derivative with respect to K of a thermodynamic
quantity of interest is calculated using the cross-
correlation of that quantity with the energy E as in Eqs.
(12a) and (12b) above. The true susceptibility calculated
from the variance of m, g =KL "( ( m ) —( m ) ), cannot
be used to determine K, (L) because it has no peak. For
short Monte Carlo runs (m ) is nonzero below T, (L),
but for suf5ciently long runs any finite system oscillates
between states with positive and negative magnetization
which leads to (m ) =0. Therefore, any peak in y is
merely due to the finite statistics of the simulation.

Px(E,M) = W(E, M)exp[KE] .
1

Z K

Z(KO)
W(E, M) = H (E,M)exp[ KOE] . —(16)

If we now replace W(E, M) in Eq. (15) with the expres-
sion for W(E, M) from Eq. (16), and normalize the distri-

Next, note that because we know the distribution at Kp,
from the histogram H(E, M), we can invert Eq. (14) to
determine W(E, M):
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bution, we find that the relationship between the histo-
gram measured at K =Ko and the (estimated) probability
distribution for arbitrary K is

H (E,M)exp[eKE]
g H (E,M)exp[A. KE]
E,M

with 4K =(K —Ko). From Pz(E, M), the average value
of any function of E and M, f (E,M), can be calculated as
a continuous function of K

0.005

0.004—

0.003—
I &E&

0 002—

O.OO 1

K=O.228

K=0.224
K=O.22 1 654

&f(E,M) &x = g f (E,M)Px (E,M) .
E,M

(18)

0.000
—6500 —5500 —4500 —3500 —2500

Equations (17) and (18) will be referred to as the single

histogram equations.
The ability to continuously vary K makes the histo-

gram method ideal for locating the peak in a thermo-
dynamic derivative. Using Eq. (18) we can calculate the
average value of a thermodynamic quantity as well as any
order derivative of the quantity with respect to K. For
example, the derivative of & ~m~ & with respect to K was
given in Eq. (12b) and the second derivative is then sim-

ply

8'& /m/ &~
=(& /m/E &

—
& /m/ & &E & )aK'

a& /m/ &~
(19)

Higher order derivatives can also be calculated if needed.
When a function, such as the specific heat, is maximum,
its derivative with respect to K is zero. The problem of
locating a peak can therefore be turned into that of
finding the root of a function. This can be accomplished,
for example, by using Newton's method since any deriva-
tive can be calculated, in terms of cross-correlations with
the energy E, as a continuous function of K as described
above. This process can be automated so that peaks in
functions can be located quickly and with high accuracy.

B. Implementation of the histogram method

Because of the finite length of the MC run, the single-
histogram equations provide reliable results only for a
relatively narrow range of K values around Ko. As K is
varied, the peak in the distribution calculated using Eq.
(17) moves away from that of the measured histogram.
When K differs too much from Ko, the peak is shifted
into the "wings" of the measured histogram where the
statistical uncertainty is high. This causes increased sta-
tistical errors in the calculated distribution and can lead
to unreliable results. To demonstrate this effect in Fig. 1

we plot the normalized (total) energy histogram for the
L =16 lattice measured at K =0.221 654 (1.2X 10 MCS
sampled every 10 MCS) along with the probability distri-
butions for two additional couplings (K =0.224 and
K =0.228) calculated from this histogram using the
single-histogram equation Eq. (17). The calculated distri-
bution for K =0.224 is fairly smooth, although the high-
energy side of the distribution, which occurs closer to the

FIG. 1. Probability distribution for the (unnormalized) ener-

gy for I. =16 plotted vs dimensionless energy F.. The data from
the simulation are labeled by the coupling at which the simula-
tion was carried out, E =0.221654. The other distributions
were produced by the reweighting technique described in the
text.

peak of the measured histogram, is clearly smoother than
the low-energy side. The "thickening" of the distribution
arising from the tail of the measured histogram is an indi-
cation that the statistical errors are beginning to be
amplified and that the extrapolation is therefore close to
its limit of reliability. The distribution calculated for
K =0.228 clearly suffers from the amplification of the er-
rors in the wing and would not provide reliable results.
This limitation in AK must always be kept in mind, par-
ticularly for large systems because the reliable range of K
values decreases as the system size increases. '

In addition to this amplification of statistical errors,
the single-histogram method can also suffer from sys-
tematic errors if ~b,K~ is too large. This again results
from the finite length of the simulation. While the exact
distribution has values for every possible system energy,
the histogram generated in a finite simulation contains
entries for only a range of energies. We demonstrate this
effect in Fig. 2, again using the measured energy histo-
gram for the I. = 16 lattice. In Fig. 2 we show the distri-
bution measured at K =0.221 654 as a function of the di-
mensionless energy per spin D. In the same figure we plot
the average energy/spin, calculated using Eq. (18), plot-
ted versus K. For large K, the average energy per spin
approaches the value 8= —1.50 although the correct
K~~ value is 6"=—3.0. Similarly, for K~O the calcu-
lated energy per spin approaches 8= —0.75 although the
correct result is 8=0.0. This behavior demonstrates one
kind of systematic error present in the histogram method.
For AK large and positive the average value of the energy
will be systematically overestimated while for large nega-
tive AK, the average of e will be systematically underes-
timated. Figure 2 is also interesting because it points out
the relationship between K and 6 (or E). Because the
partition function Z (K) is the Laplace transform of the
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0.003 0.224

0.002 0.222

0.00 1 0.220

0.000 0.2 18
—1.50 —1.25 —1.00 —0.75

FIG. 2. Probability distribution for the (normalized) energy
for L = 16 (left scale) and the computed (dimensionless) energy-
coupling relation (right scale). The simulation was performed at
K =0.221 654.

E,M

g H (E,M)exp [KATE]
(20)

By performing the sums over M first, this average can be
reexpressed as

g E"(f )(E)H(E)exp[DICE]

computer's memory. Because both E and M are exten-
sive variables, the amount of memory required to store
the histogram increases like the square of the volume of
the system (the complete histogram for our largest lattice,
L =96, would require nearly 10 megabytes of computer
memory). Fortunately the solution to the problem is fair-
ly straightforward. In our analysis we need to calculate
the average of three functions of the magnetization per
spin, ~m, m, and m, as well as several mixed functions
like E "m . Using Eq. (18), the average of such a function
is given by

g E"f( m )H (E,M)exp[AXE]

(E"f(m) )x =
g H (E)exp[AXE]

(21)

density of states W(6 ), IC and 6' are conjugate variables.
We can make use of this relationship in a plot like Fig. 2
to estimate the range of reliable K values. The region of
energies near the peak of I'(6), say from 6 = —1.3 to
6'= —0.8, map onto a corresponding region of EC values,
from K =0.218 to E =0.223 as shown in Fig. 2. Because
the relative statistical error in the histogram over this
range of 8 values is small, we expect that quantities cal-
culated over the corresponding range of K values will be
reliable.

By performing a small number of additional simula-
tions at different values of K we can guarantee that the
results obtained from the single-histogram equation ap-
plied to data generated at the initial K do not suffer from
systematic errors. To check for systematic errors in the
histogram analysis we performed additional simulations
for L =32 at K =0.2215 and determined the location
and value of the peaks in the thermodynamic derivatives
used in our analysis. Simulations were also performed us-
ing two different sets of the random number generator
"magic numbers. " Table I compares our determination
of the location of the peaks for five different quantities:
the derivatives (with respect to K) of

~
m

~
and U, the loga-

rithmic derivatives of ~m~ and m, and the finite lattice
susceptibility y'. Table II compares the values of the
peaks for the five quantities. Within the observed statisti-
cal errors, no systematic deviations are present. To fur-
ther test for systematic errors, we can use the histogram
measured at L =0.221 654 to predict the behavior of the
system at E =0.2215 then compare the results with those
obtained directly from the simulation performed at
E =0.2215. The reweighted results agreed, within the
calculated error (+1 standard deviation), with the direct-
ly measured results for all quantities except the specific
heat. (However, the specific heats did agree within
+2o. )

An additional problem which arises for large systems is
that it becomes impossible to fit the histogram in the

where H (E)=QMH (E,M) is the energy histogram and
(f )(E) is the constant-energy average off(I ) estimated
from the simulation data. This reduces the calculation to
a one-dimensional problem. We therefore use the simula-
tion data to construct the one-dimensional histogram
H(E) as well as three constant-E averages: ( ~m~ )(E),
(m )(E), and (m )(E). From these four one-
dimensional arrays we can calculate all of the thermo-
dynamic quantities needed for our analysis.

IV. RESULTS

A. Data and error analysis

To estimate the errors in our results, we first divided
each simulation into a set of statistical samples (bins), (be-
tween S and 11 bins were used), then calculated all quan-
tities of interest for each of the bins. Estimates for the
statistical error were then determined by considering the
distribution of values obtained from each bin. Error bars
are given as +1o. where o. is the standard deviation of the
mean taken over all of the bin values. (This procedure is
exactly that used to estimate errors in standard Monte
Carlo studies. ) Because each histogram is used to deter-
mine multiple quantities, some correlations are expected
between the different results. We find, however, that
such correlation effects are smaller than the statistical er-
rors, and in our judgment the individual errors may be
treated as uncorrelated. To test the effect of systematic
errors (underestimation of response functions), we per-
formed our analysis for bins of different sizes choosing
the final bin sizes so that systematic errors were negligible
compared to the statistical error. An additional check
for possible numerical error was made by repeating some
of the histogram analysis using double precision arith-
metic (128 bits on the Cyber 20S). No change was ob-
served within the first 10 significant digits. In Fig. 3 we
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1 600

1 200

TABLE III. Estimates for 1/v obtained by finite-size scaling
of the maxima of the cumulant slope and the logarithmic
derivatives of m and ~m~.

1/v

800—

400

/
/

/
/

/
/

U
logm
logfm)

1.5887+0.0085
1.5970+0.0061
1.5958+0.0067

0 I

0.22075 0.22 I 25 0.22175 0.22225

FIG. 3. The derivative of the magnetization cumulant, calcu-
lated using Eq. (18), is plotted as a function of K for L =24, 32,
48, 64, and 96. The triangles represent the location of the
peaks. In all cases the error in the peak value is smaller than
the symbol. The increase in dU/dK for small X (L =96) is
nonphysical and results because these K values are outside the
range of validity for L =96 (see Sec. III B). The location of the
simulated coupling is marked by a vertical line.

B. Finite-size scaling analysis to determine v

The critical exponent v can be estimated without any
consideration of the critical coupling K, . As stated in

1000
Slope

300

10
5 30 100

FIG. 4. Log-log plot of the size dependence of the maximum
values of derivatives of various thermodynamic quantities used
to determine v. The straight lines (with slopes corresponding to
v=0. 6289) show the asymptotic behavior of the fits.

plot the derivative of the magnetization cumulant, calcu-
lated using the single-histogram method, for L ~ 24. The
simulated value of K is shown by a vertical line and the
triangles mark the location of the peak for each lattice
size. (The error in the peak value is smaller than the size
of the triangle for every system size. ) The breakdown of
the single-histogram method can clearly be seen for the
L =96 curve. The increase in dU/dK for K =0.2208 is
nonphysical and occurs only because these values of K
are well beyond the range of validity for L =96. (For
lower K values the slope even becomes negative. ) Other
thermodynamic derivatives showed quite similar qualita-
tive behavior and the data are thus not shown.

Sec. II, we can extract v by considering the scaling be-
havior of certain thermodynamic derivatives, for exam-
ple, the derivative of the magnetization cumulant and the
logarithmic derivatives of ~m~ and m . In Fig. 4 we plot
the maximum value of these derivatives as a function of
system size on a log-log scale. For sufficiently large sys-
tems we should be able to ignore the correction term so
that linear fits of the logarithm of the derivatives as a
function of lnL provide estimates for 1/v. To verify that
our system sizes are large enough to justify this approxi-
mation, we performed several linear fits using system
sizes L;„~L~ 96, each time choosing a smaller value
for L;„.We find that L;„=24 is the smallest value we
can use except in the case of the derivative of the magne-
tization cumulant where linear fits are still satisfactory
for L;„=12. The results for 1/v from these fits are
given in Table III. Combining these three estimates we
obtain 1/v= 1.594+0.004 or v=0. 627+0.002.

By including a correction term, see Eq. (10), we are
able to incorporate the data from smaller systems. Rath-
er than performing nonlinear fits to include this term, we
choose to take the corrections into account in the follow-
ing manner. We fit the derivatives to Eq. (10) by fixing
the values of v and co, determining the values of a and b
which minimize the g of the fit, and then repeated the
procedure for different values of v and co. (This approach
efFectively linearizes the fit at the expense of giving up in-
dividual error estimates for v and co.) By scanning over a
region of (v, co) space, we determined the global minimum
in y and found 1/v = l. 590+0.002 or v =0.6289
+0.0008. The correction term for the cumulant is so
small that we cannot obtain a reliable estimate for the
correction exponent. However, for the logarithmic
derivatives of ~m~ and m the correction exponent is con-
sistent with co-1 which falls almost exactly between 0/v
and 1/v for t9=0.5. We therefore suspect that our
"efFective" exponent is indeed compensating for both of
these corrections. This point will be discussed further in
Sec. IV D.

C. Finite-size scaling analysis to determine K,

With v determined quite accurately we are now in posi-
tion to estimate K, . As discussed in Sec. II, the location
of the maxima of various thermodynamic derivatives pro-
vide estimates for effective transition couplings K, (L)
which scale with system size like Eq. (8). We plot these
estimates for K, (L) as a function of L '/ for L =12, 16,
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0.221 667 0+0.000 007 2
0.221 654 9+0.000 005 2
0.221 659 7+0.000 004 9
0.221 660 4+0.000 005 3
0.221 655 5+0.000006 1
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vides a correction which goes as L . Because this coin-
cides with our estimate for the correction exponent
(co= 1 ), any further consequence of adding lo would be a
second-order effect. We found that in some cases, the y
of the fit did decrease slightly for small lo (lo=0. 5) but
the estimates for K, and v were not affected within the
statistical errors.

0.46

0.42
T0

K
(dU/dK) ~~~

K C(OSS

D. Estimates for v and X, using the predicted form
for the correction terms

0.38
0.00 O.O 3

g —1i
0.02

In Sec. II, we stated that a second approach to includ-
ing the correction to scaling terms would be to assume
the theoretical form for the correction and fit quantities,
for example, the maximum cumulant slope, to the form

FIG. 7. Size dependence of the reduced fourth-order cumu-
lant obtained for K„K=%AU/z~~ and via cumulant crossing.

max

dU
dX

aL 1/v( 1+bL
—1/2v+ L —I/v) (22)

assuming 8=0.5. Estimates for K, (L) would then be fit
to

K (L)=K +aL ' (1+bL ' +CL ' ') (23)

The fact that our single "effective" correction exponent
seems to fall between 1/2v and 1/v would make a correc-
tion of this form plausible. We therefore repeated our
finite-size scaling analysis using Eqs. (22) and (23). The
reanalysis of thermodynamic derivatives of Sec. IV 8 pro-
vides us with the estimate 1/v = l. 5887+0.0004 or
v=0. 6294+0.0002. While we are encouraged by the
small statistical error in these values, we believe that this
is very fortuitous. The y of the fit, as a function of 1/v,
has a broad shallow minimum so that the actual statisti-
cal error, calculated by performing a true nonlinear fit
would be larger. Unfortunately we have neither the reso-
lution nor enough different lattice sizes to attempt such a
fit. Using this value of v we then calculated estimates for
K, from Eq. (23). Our result from this analysis is
E,=0.221 6574+0.000001 8 which is in excellent agree-
ment with our previous estimate. Again, we are en-
couraged by this result, but until we have sufficient data
to resolve two independent correction terms we are more
confident with the value presented in Sec. IV C.

E. Phenomenological renormalization
of the magnetization cumulant

Estimates for K, can also be obtained by considering
Binder's cumulant crossing technique. In this ap-
proach, the magnetization cumulants, Eq. (9), for
different lattice sizes are plotted as a function of K and
the intersections are determined as a function of the two
lattice sizes L and L'. The K value at which the cumu-
lant intersect varies with L and L' as

scaling exponent. In the usual implementation of this
technique, ignoring the correction term b, one approx-
imates the term (b / —1) by (1/v)lnb, which is valid for
smal/ b. For fixed L, plots of K„„,(L, b) versus 1/lnb
should then extrapolate linearly to K, as 1/1nb~0.
However, for the system sizes we examined the values of
b were too large for this approximation to be valid. In-
stead, we took a different approach by considering Eq.
(24) for fixed b rather than fixed L so that the values of
K„„,(L, b) should extrapolate to K, like L ' +'/'. For
the lattice sizes used in our analysis, the approach to K,
was so rapid that we were unable to extract an estimate
for m. We also found that the statistical uncertainty in
determining the intersections was three to four times
larger than that in locating the peaks as in the previous
analysis. Keeping this in mind, the estimate for K, we
found by this analysis is 0.221 66+0.00001 which agrees
with the result obtained above, but is clearly inferior in
resolution.

The value of the magnetization cumulant at the transi-
tion temperature, U, is an important universal quantity.
We have attempted to extract U* in three ways; by deter-
mining the value of U where the slope of U(K) is max-
imum, by fixing X at our estimate for K, and looking at
the cumulant there, and by considering the values of
U[K„„,(L,b)] for b =2 from above. The values of U we
obtain by these approaches are shown plotted versus
L ' in Fig. 7. The estimates obtained via cumulant
crossings and by considering U at E, are consistent with
each other and suggest U* =0.47. The value obtained by
looking at the value of U where dU/dK is maximum is
not consistent with this estimate but rather suggests
U* =0.40. Due to the singular nature of the cumulant as
L ~~, this behavior is not unexpected, and the correct
estimates are those calculated at K =K, and by cumulant
crossings.

K (L b) =K +gL b —1
(24) F. Estimates of other exponents using finite-size scaling

where L is the size of the smaller lattice, b is the ratio of
lattice sizes (L /L), and w is a correction to finite-size

We can also use finite-size scaling to estimate the ex-
ponents v, P/v, and y/v from bulk properties at K, . The
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value of v which we obtain by looking at the derivative of
the magnetization cumulant and the logarithmic deriva-
tives of

~
m and m at K, is identical to that obtained by

scaling the maximum value of the derivatives. By deter-
mining the scaling behavior of m at E„we estimate
P/v=0. 518+0.007. (The linear fit for L ~ 24 yields
p/v=0. 505.) Combining this value for p/v with our es-
timate for v, we estimate the exponent p to be
P=O. 3258+0.0044 which agrees with the e-expansion re-
sult 0.3270+0.0015. We can determine y/v in two
ways. First, we can consider the scaling behavior of the
finite-lattice susceptibility defined in Eq. (11c). The
analysis of this quantity yields y/v =1.9828+0.0057 or
@=1.2470+0.0039. We can also look at the true suscep-
tibility y=KL ((I ) —(m ) ) at E, . Analyzing y at K,
yields y/v=1. 970+0.011 or y =1.2390+0.0071. This
estimate for y is in excellent agreement with the @-

expansion value y = 1.2390+0.0025.

G. Discussion

In this section we compare our values of v and E, with
those obtained by other numerical methods. In Fig. 8 we
show the results of our Monte Carlo study as well as oth-
er high-resolution simultaneous estimates for v and
K, . ' ' The boxes represent the quoted error bars in
both IC, and v assuming independent errors. (For the re-
sults of Ref. 18, only half of the error box is shown be-
cause of the large uncertainty in K, . ) The two boxes for
Ref. 9 correspond to difFerent choices for the susceptibili-
ty exponent y in the series analysis. To the best of our
knowledge, all error estimates represent +1 standard de-
viation. Also shown are two estimates for v only, one
from e expansion (which provides no estimate for IC, )

and another recent series expansion estimate. The re-
sults from our Monte Carlo study are represented by the
cross-hatched box. The circles give the reference number

where the corresponding values can be found.
Our estimate v=0. 6289+0.0008 is in excellent agree-

ment with recent MCRG results of Blote and co-
workers, ' as well as older MCRG work from Pawley
and co-workers. The agreement with the histogram
Monte Carlo results of Alves, Berg, and Villanova' is
also good. Our value is also consistent with the
expansion result of LeGuillou and Zinn-Justin and the
series expansion results of Nickel and Rehr and Adler.
Transfer matrix Monte Carlo results by Nightingale and
Blote yield v=0. 631 with errors of either 0.006 or 0.002
depending on the range of sizes considered in the
analysis. Novotny has recently determined a numerical
lower bound on v in a transfer matrix study of the d =3
Ising model. His lower bound, v=0. 6302, lies outside of
our estimated error bars, but falls within 2o. of our result.
However, our estimate appears to be inconsistent with
the Liu and Fisher series expansion results. The esti-
mate for K, determined in our analysis,
K, =0.2216595+0.0000026, agrees very well with the
results of Pawley and co-workers, 0.221654+0.000006
and Blote and co-workers, ' 0.221 652+0.000006 as well
as the estimate from Adler 0.221655+0.000005. Our
value for K, appears, however, to be inconsistent with
the estimate from Alves, Berg, and Villanova, '

0.221 57+0.000 03 and those of Liu and Fisher,
0.221 620+0.00 006 and 0.221 637+0.000 006.

Above we expressed some concern for the validity of
the results for ~m~. In fact, the value of E, estimated
from the maximum slope of ~m

~
differs substantially from

that obtained from the other quantities, although it does
agree within 2 standard deviation units. If we remove the

~
m

~
result from the analysis, our estimate for K, drops to

0.2216576+0.0000022 which is in even better agree-
ment with the other estimates presented above.

V. CQNCIUSj:ONS

0.636

0.632

0.628

0.624
0.22 1 57 0.22 162 0.22 167

FIG. 8. High-resolution estimates for K, and v obtained us-

ing different methods. The arrows at the top show values for v
obtained from renormalization group and e-expansion calcula-
tions which do not yield estimates for K, .

The combination of high-statistics MC simulations of
large systems, careful selection of measured quantities,
and judicious use of histogram techniques can already
produce results comparable to, or better than, those ob-
tained by MCRG and series and e expansion. Correc-
tions to scaling can be included in the fits to help improve
the accuracy in determining the dominant singularity but
the data are not yet sufficiently accurate to allow us to
study the corrections themselves. All of the analysis
techniques used here are applicable if yet higher quality
data are obtained, and should lead to results of truly
unprecedented accuracy. It should be possible to obtain
such data using recently developed techniques which
avoid critical slowing down at least to a substantial ex-
tent. In order to improve upon our present analysis it
will be necessary to obtain substantially better data for
some of the large lattice sizes considered and to obtain
high-quality data for substantially larger lattices. In ad-
dition, since difFerent thermodynamic derivatives have
peaks at difFerent temperatures, multiple simulations are
needed for each lattice size if we are to carry out an op-
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timal extrapolation of effective critical temperatures to
the thermodynamic limit for more than one quantity.
Such calculations will be quite demanding of both com-
puter memory as well as CPU time and are thus not trivi-
al in scope.
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