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Magnetic-field distributions at interstitial sites in nondilute alloys
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Monte Carlo simulations are presented of the instantaneous, dipole magnetic-field probability distribu-

tion at an interstitial site in the paramagnetic state of a polycrystalline material involving random alloy-

ing of magnetic and nonmagnetic ions on a site, for magnetic concentrations from 1.0 down to 0.03, with

particular reference to zero-field (ZF) muon spin relaxation (pSR) in such alloys. In the polycrystalline

case, the distribution of local-field magnitudes is more directly related to the ZF pSR than the distribu-

tion of field-component values usually discussed. For magnetic-ion concentrations less than about 0.3,
the field-magnitude distribution develops a two-site form, and the two types of site are shown to be those

with at least one magnetic ion in the nearest-neighbor shell ("high field" ), and those with zero magnetic

ions in the nearest-neighbor shell ("low field" ). Correspondingly, directly simulated static ZF pSR
asymmetry spectra develop a two-minimum (two-site) form for the same concentrations. While an ap-

proximately Lorentzian component distribution is known to occur in the extreme dilute limit, the ap-

proach to that limit from finite concentrations will not be in a simple manner. The high-field distribu-

tion must approach that due to a single isolated magnetic moment as concentration decreases, and the

low-field distribution evolves from a Gaussian (Maxwellian) shape at its high-concentration (near 0.3)

limit toward a more Lorentzian shape. Probability distributions part way between Gaussian and

Lorentzian limits are discussed in terms of the Pearson type-VII line shape.

I. INTRODUCTION

Spin-glass behavior has been observed in a wide variety
of crystalline alloys in which magnetic ions are randomly
distributed on some of the lattice sites (while the rest of
the lattice sites are occupied by nonmagnetic ions). '
Positive muon spin relaxation has made notable contribu-
tions to the understanding of dilute-alloy spin glasses, us-
ing extreme-dilute-limit approximations, such as the as-
sumption that the local-field distribution at the muon po-
sition is Lorentzian, when averaged over a11 sites in the
sample. Spin-glass behavior is not restricted to dilute
alloys, however, and recently data have been collected of
muon spin relaxation (@SR) in "diluted magnetic semi-
conductors" (DMS's), in which the alloyed magnetic ions
cannot be considered to be in the dilute limit.
Analysis of these data has been hampered by the lack of
knowledge of what the field distributions at the muons
should be, even in principle, even above the freezing tem-
perature T„when the magnetic-ion concentration is nei-
ther very dilute nor near1y stoichiometric.

Muon spins interacting magnetically with localized
moments in a solid material are usually treated in an
effective-local-field approximation, in which the moments
in the material are considered to cause a magnetic field at
the muon site, about which the muon spin Larmor
precesses (for a review of the elementary concepts of
zero-field (ZF) @SR, see Ref. 11). When the local mo-
ments are not in a long-range magnetically ordered state,
the local fields at all the muon sites in the sample can be
represented by a random local-field probability distribu-
tion P(H). Clearly this can be thought of as a joint prob-
ability of field magnitude and direction, or as a joint
probability of three field components with respect to

coordinate axes. In a single crystal, this distribution is
likely to be anisotropic with respect to the crystal sym-

metry axes. but the vast majority of pSR experiments are
performed on polycrystalline samples, in which only
averages over anisotropies in properties can be measured.
The work presented in this article concerns only this

poly crystalline case. In such a sample, the single-
crystal-field distribution for the material becomes "poly-
crystal averaged, " becoming a field-magnitude distribu-
tion P( H~ ) (multiplied by a constant orientation proba-
bility distribution), or the joint probability of field com-
ponents in three equivalent orthogonal directions. It is
often assumed that this joint component probability fac-
tors into the product of three identical component distri-
butions P (8, ), but this is not always the case.

From the probability distribution, the (ZF) muon spin
relaxation function, usually labeled G„(t), which is pro-
portional to the muon ensemble polarization as a func-
tion of time (measured from the moment each muon
stops at its site), can in principle be calculated. In the
case of a stationary muon and static moments, the calcu-
lation is the averaging of the Larmor precession at every
possible field over the probability distribution. When the
muon moves from site to site, or when the moments
themselves are Auctuating, the relaxation function also
depends on the details of the fiuctuation process(es),
which this article is not concerned with. Since there is a
one to one correspondence between field distribution and
static relaxation function, it is instructive to see the effect
of a change in the former on the latter. Unfortunately,
there are only two accepted "realistic" random-local-field
distributions and associated static relaxation functions
that are analytically specified: the Gaussian distribution
expected to occur when there is a dense array of essen-
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tially equivalent moments, and the Lorentzian mentioned
above in the extreme dilute moment limit. "' Both of
these are idealizations in that they take no account of the
lattice periodicity of crystalline solids, representing mo-
ment distances from the muon site by a continuum in-
stead. The associated "Kubo-Toyabe" relaxation func-
tions, ' ' ' with elaborations representing the effects of
fluctuations, have been remarkably versatile in their abili-
ty to reproduce observed ZF pSR data in magnetically
disordered states, but there is a question of when devia-
tions from the idealizations might be detectable. ' In the
case of alloying magnetic ions with nonmagnetic ones in
a material, if the complete concentration range is al-
lowed, the local-field distribution can at best take on the
two limit cases at the two limits of concentration, and
must evolve from one to the other as a function of mag-
netic concentration between the two limits. This evolu-
tion has not previously been studied.

To properly include effects of lattice periodicity, it is
usually necessary to consider particular crystal structures
individually, although results may then become material
specific. When looking for corrections to the effective-
field approach by a completely quantum calculation, fcc
copper metal was the experimentally motivated choice,
but only a small number of copper ions nearest the muon
site could be handled. ' ' Since in that case the effective-
local-field concept was explicitly abandoned, the ZF re-
laxation function was calculated directly from the micro-
scopic interaction of muon spin with a small cluster of
ion spins. Meanwhile, if the local-field approximation is
retained, it has been shown that, given any particular
random-field distribution, the associated relaxation func-
tion can be well simulated by a Monte Carlo procedure. '

In the same spirit, given a crystal structure [with
identified muon site(s)] and a particular eS'ective-field
mechanism (an expression for calculating the field at the
muon site due to a lattice moment), the random-field dis-
tribution for the magnetically disordered state can also be
simulated by Monte Carlo. '

This paper presents results of Monte Carlo modeling of
polycrystal-averaged dipole-field distributions, averaged
over all sites in a sample, for the octahedral interstitial
site in the fcc (e.g., copper) lattice, as a function of the
concentration of randomly alloyed magnetic ions (e.g.,
manganese), treated as classical dipole moments, from
3% to 100%, with no orientational correlation between
moments. This distribution should apply to the paramag-
netic state (where there will be rapid fiuctuations), and
also to the low-temperature frozen spin-glass state,
should it occur with no moment-moment correlations.
The fcc lattice, with consideration of only one crystallo-
graphic muon site, and the restriction to dipole coupling
of the moments to the muon, provide relative computa-
tional simplicity and some contact with experiment at
low concentration. In the true Cu(Mn) system, band
magnetism efFects [such as the Ruderman-Kittel-Kasya-
Yosida (RKKY) interaction] clearly act between man-
ganese moments, and at high concentrations cause long-
range magnetic order, but it is believed that muon spin
relaxation is dominated by dipole coupling at low concen-
trations. In the DMS that originally motivated this

work, the crystal structure requires that there be at least
two distinct muon sites, ' and there may be superex-
change bond polarization effects at the muon site. Pure
dipole coupling may apply to insulator spin glasses, but
again these have more complicated crystal structures.

In Sec. II, ways of parametrizing random-field distribu-
tions relative to the two idealizations are discussed. In
Sec. III, the computational method is described and the
calculated field distributions are presented. In Sec. IV,
possible physical interpretation of the Monte Carlo re-
sults will be developed. Section V presents conclusions.

II. CHARACTERIZATION OF FIELD
DISTRIBUTIONS

It has been found that in almost all cases where the ZF
bare muon (not muonium) spin-relaxation signal has been
resolved in a static system of concentrated, but not mag-
netically ordered, moments (typically polycrystalline me-
tallic samples containing only nuclear moments), it has
conformed closely to the "static Gaussian Kubo-Toyabe"
relaxation function ' (the notable exception occurs in
coupling to fiuorine moments ' ). The interpretation of
this is that the moments generate an effective classical
magnetic field at each muon site, where each of the three
field components is randomly (and independently) chosen
from a Gaussian probability distribution. For a polycrys-
talline solid, with Cartesian axes defined with respect to
the muon beam polarization direction (not the local crys-
tallite axes), or in a single crystal if there happens to be
no anisotropy,

1P'(H, )= exp
&2mo

H
l =x,y, z

20

where o is the root-mean-square (rms) field component.
This corresponds to a Maxwellian distribution of field
magnitudes:

P (~H~)= — exp
'7l O 20

L

(2)

The Larmor precession of each muon spin around its lo-
cal field then generates the static zero-applied-field
Gaussian Kubo-Toyabe "relaxation" of the muon ensem-
ble polarization (by dephasing, also called inhomogene-
ous broadening):

G„(t)= ,'+ ,
' JP( Hi)cos(y„—H—it)dHi, (3)

where y„=2'(1.355X10 s 'Oe ') is the magnetogyric
ratio of the muon. For the Gaussian case

g 2t2
G„(t)=—,'+ —', (1—6 t )exp (4)

where 6=y„o..
For infinitely dilute local moment impurities in a host,

on the other hand, it has been shown' that the local-field
distribution at a site should be Lorentzian:

P (H, )= 1 1
& =xyz~~ (1+H, /W )
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FIG. 1. Comparison of Gaussian (solid lines) and Lorentzian
(dashed lines) (a) component probability distributions, (b)
vector-magnitude probability distribution, and (c) static zero-
field Kubo-Toyabe spin relaxation functions.

1rw $y (1+ IHI /P'2)2

where 8 is the component distribution half width at half
maximum (HWHM). To distinguish between P (H; ) and
P ( IH I ) in words, the latter may be called "the magni-
tude Lorentzian. " In the same manner as Eq. (4), this
distribution generates the static "Lorentzian Kubo-
Toyabe" ZF relaxation function:

G„(t)=—,'+ —,'(1—at)exp( —at),
where a =y„8'. The Gaussian and Lorentzian cases are
compared in Fig. 1. Whereas the primary characteriza-
tion of component distributions is in terms of widths,
vector-magnitude distributions have variable most prob-
able fields, H*, as their foremost feature. Therefore, the
component distributions [Fig. 1(a)] have been drawn with
equal widths at half maximum (W=&21n20 =1), but
the magnitude distributions [Fig. 1(b)] with equal peak
positions ( W =v'20 = 1), and the static ZF relaxation
functions [Fig. 1(c)] with the same parameters as the
magnitude distributions.

& IHI") =I
diverge for all n )0 (Ref. 25) [hence there is no rms field
to use in the definition, Eqs. (5) and (6)], while all the mo-
ments of the Gaussian distribution are finite. This is in
fact due to the continuum approximation: there is no
upper bound on the field at the site, which in terms of the
physical model of fixed-magnitude moments means that
there is no lower bound on the distance between the
muon and a moment. In reality, the positive Inuon will
not get closer to an ion than the chemical ionic radius (or
sometimes a bond radius, depending on the chemical in-
teractions). For each particular muon site in a crystalline
lattice, this distance can be called the nearest-neighbor
(NN) distance. Both the Gaussian and the Lorentzian
distributions allow arbitrarily large local fields to occur.
But the exponential high-field decay of the Gaussian
probability keeps the moments of the distribution finite
and reasonable. It is possible to modify the Lorentzian to
induce it to have finite moments, by cutting off the proba-
bility at some field value H, corresponding to the effect of
moments in the NN shell (and setting the probability to
zero for all larger fields), for example, but then the finite
moments that result are all explicitly dependent on the
value of the cutoff field, which becomes a new parameter
of the theory. Other methods of modifying the Lorentzi-
an to make it more physically reasonable are also possi-
ble. The difference in predicted relaxation function
caused by somehow reducing the high-field probability to
get finite moments is known to be primarily in the very
early part of the relaxation [times of order I/(y„H, )]. In
particular, the static Lorentzian Kubo-Toyabe function
has negative slope at t =0, whereas a realistic field distri-
bution should cause a static relaxation function with zero
slope at t =0.' If data are taken at time resolution much
more coarse than I/(y„H, ), however, the only clearly es-
tablished problem caused by fitting the pure Lorentzian
Kubo-Toyabe to real data is a systematic overestimate of
the initial asymmetry (of the polarized muon decay posi-
tron (parity-violating) direction).

The evaluation of moments of a numerically generated
probability distribution is straightforward, and involves
no modeling beyond that which generated the distribu-
tion. When the calculation uses a finite cluster of mag-
netic moments, however, the distribution moments de-
duced will be consistently less than the true values for the
material, and some estimate of the size of the systematic
error should be made, usually by noting the effect of
changing cluster size. For comparison to the numerical
simulation moments, the Gaussian distribution s (well-
known) moments are

((H;) ) =(2m —I)!!a.

(IHI ')G=(2j+1)!!0', n =2j (even)

(10)

The pure Lorentzian distribution is known to be some-
what pathological, in that the nontrivial moments of the
distribution

((H;) ) =I (H; ) P(H; )dH;, n =2m (even)
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( ~H~2j+1)
1/2

2(1+i)( ~ +1)( (2j+1)

n =2j+1 (odd) . (12)

Note that if the three selections of component field
value (to make a complete specification of H) from the
component distributions are statistically independent,
then ( ~H~ ) will equal 3((H, ) ). If the three selections
are not independent, those two values need not even ap-
proximate each other. As an extreme example of this,
consider the field distribution in which the magnitude of
the local field is constant at value Ho, but its orientation
is isotropically random (this is the simplest possible case
of ZF pSR in a polycrystal ferromagnet when the sample
has no net magnetization). It is easy to see that the com-
ponent field distribution is ellipsoidal,

1/2

P (H, )= 1— (13)
Ho

while the magnitude distribution, P (~H~), is a 5 func-
tion. Then 3((H;) ) =3HO/8 while (~H~ ) =Ho. The
corresponding muon polarization function does not relax
at all, it is a cosine in time with frequency y„Ho, which is
clearly derivable from P ( ~H~ ), but not so directly from
P (H;).

—Ho +H, ~Ho

III. THE MONTE CARLO CALCULATION

Calculations were performed on a cluster of 490 ions in
the fcc structure, centered on the octahedral interstitial
site (the most likely muon site in copper). The cluster is
spherical in the sense that it includes all ions inside a ra-
dius slightly more than three cubic unit-cell axis lengths,
corresponding to about 11 A in pure copper at room tem-
perature (and no ions outside that). For each magnetic
ion concentration chosen from the range 0.03 (x ~ 1, for
each iteration (evaluation of the total field at the center),
that proportion of fixed-magnitude (Mn +, 5.0ps) mag-
netic moments was distributed by a pseudorandom num-
ber routine over the ion positions of the cluster, and the
orientation of each moment was chosen pseudorandomly.
Additionally, the orientation of the crystal axes of the
cluster with respect to the external laboratory coordi-
nates was chosen pseudorandomly (this is the polycrystal
averaging), in each iteration. The sum over the cluster of
the dipole field at the center was evaluated, and its three
components with respect to laboratory Cartesian coordi-
nates and its magnitude were stored in histograms with
up to 200 bins across the range of field value encountered
(an early version of this program was described in Ref.
15). Typically several tens of thousands of iterations
were performed for each value of x. The lowest nontrivi-
al moments of the field distributions were evaluated by
summing over the histograms.

For a selection of concentrations, the summed magnet-
ic field at the site was used to explicitly precess a classical
dipole muon spin fram t =0 (painting along the laborato-
ry z axis) until decay, and the spin component along the z
axis at decay was recorded in a time histogram, to build
up a direct numerical simulation of the static zero-field
muon spin relaxation function that would be observed in

experiment (the basic numerical @SR relaxation function
Monte Carlo program used was originally written by
Brewer' ). This direct simulation is computationally very
slow, and so was only done in a couple of test cases, at
lower statistics than the field distribution simulations.
Thus claims made about relaxation functions based on
analysis of the field distributions calculated were testable
by comparison to a small number of complete simulations
of the relaxation that did not interrupt the microscopic
process in its middle to deduce the field distributions.

Note that, with a cluster of this size, concentrations
below a value between x =0.02 and 0.03 cannot be han-
dled because the moment assignment procedure then be-
gins to assign zero magnetic moments to the cluster in a
significant fraction of the iterations. No attempt was
made to directly include the effect of ions outside the
cluster. These may well affect the overall scale of the dis-
tributions, and may have increasing proportional effect as
x decreases, but they are unlikely to affect the qualitative
phenomenology presented below, which was found to de-
pend primarily on the detailed magnetic occupancy of the
nearest-neighbor shell.

The calculated field-magnitude distributions for a
selection of concentrations are shown in Fig. 2 and the
corresponding directly simulated static muon polariza-
tion relaxation functions are shown in Fig. 3. The corre-
sponding component distribution at each x from 1.0
down to near 0.5 was well fit by a single Gaussian with
rms field component decreasing as concentration de-
creases. Below x =O. S the field-component distribution
developed wings that could only be fit by a more compli-
cated function, such as the sum of two Gaussians (both
centered on field-component value zero) with di8'erent
widths. When the total field distribution is the sum of
two distinct terms, the relaxation function should be the
sum of the relaxation functions due to the two terms sep-
arately. Prediction from such fits then that the relaxation
function would develop a two-minimum form at concen-
trations up to nearly 0.5 were not confirmed by the direct
simulations, so it appears dificult to relate the com-
ponent distribution to the true relaxation function. The
magnitude distribution had form fairly well fit by a single
Maxwellian down to at least x =0.4, but at x =0.3 had
developed a shoulder on the low-field side of the main
peak, and clearly became a two-peak distribution by
x =0.25 (see Fig. 2). The directly simulated relaxation
functions correspondingly did develop a two-minimum
form between x =0.3 and x =0.2. Thus the deduced
field-magnitude distribution is at least qualitatively corre-
lated with the relaxation function, but the component
distribution is not (and this is why the component distri-
butions have not been presented in figures). This
discrepancy may be due to lack of statistical indepen-
dence in the random selection of the three component
values, but since the value of 3 ((H, ) ) as a function of x
only deviated from ( ~H~ ) by a maximum of 5/o (and
the numerical uncertainty in the values is of order 2%), it
is not completely clear that this is the problem. Note
that in Fig. 3, the solid lines were generated at late times
by smoothing over statistical jitter, using the knowledge
that G„must settle down to the value —,

' at late times.
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moments tabulated were found to decrease smoothly as a
concentration decreases. They must decrease because
magnetic moments are being removed from the material,
and they must become zero as concentration goes to zero,
as long as the muon does not preferentially trap near
magnetic ions as it stops in the material. The Monte Car-
lo distribution moments cannot approach the pure
Lorentzian's divergent moments because the latter are ar-
tifacts of the continuum approximation as discussed
above. The mean-square field magnitude ( ~H~ ) is essen-
tially linear in x, which means that it is simply propor-
tional to magnetic moment per unit volume.

It is also possible to compute ratios of different-order
characteristic fields for a distribution and compare them
to those of other distributions. Figure 6 shows that the
ratio of rms to average Monte Carlo alloy field magni-
tudes is roughly linear in 1/x, over the range of concen-
tration studied. The value of this ratio for the Maxwelli-
an distribution is &3m /8, a value which the Monte Carlo
distributions remain near for 0.5 ~x ~ 1. Meanwhile,
since each successive Lorentzian moment diverges more
strongly than the one before it, the ratio of any higher-
order —to —lower-order characteristic field also diverges
for the magnitude-Lorentzian distribution. Since the ra-
tio shown in Fig. 6 increases as x decreases and could
conceivably diverge as x tends to zero, the distribution
moments may be approaching those of the Lorentzian in
this sense.

It is also interesting to consider how the relaxation
functions themselves approach the Lorentzian Kubo-
Toyabe form as concentration goes to zero. Figure 7
shows the directly simulated zero-field muon relaxation
function for x =0.05 (solid line), and the least-squares fit
of a Lorentzian Kubo-Toyabe to the simulation for times
greater than 7 ns (dotted line), which has been extrapolat-
ed back to zero time to show the overestimate of initial
asymmetry mentioned above. All time differential pSR
data exhibit gaps between the muon stop (r =0 by
definition) and the earliest good data bins, for instrumen-
tal reasons. A 7-ns "dead time" is near the minimum
achieved in typical experiments (see, for example, Ref.
26). With the first minimum of the relaxation function

lost in such a dead time, the detectable part is fit reason-
ably well by the Lorentzian Kubo- Toyabe. Low-
amplitude high-frequency oscillations due to the high-
field site s narrow field distribution, visible in Fig. 7, may
be an artifact of the semiclassical approximation used, as
a full quantum treatment is likely to result in more com-
plicated relaxation behavior for the high-field site. To fit
the complete relaxation function from t =0, generally the
high-field site effect must be represented as a coherent, re-
laxing, oscillation. A high-field Gaussian Kubo-Toyabe
summed with either a low-field Gaussian Kubo-Yoyabe
or a low-field Lorentzian Kubo-Toyabe results in a much
poorer fit to x =0.05 (the same is true for x =0.1).

As a simple test of the error caused by using a finite
cluster, Monte Carlo runs were repeated using only the
central core of the cluster, out to a radius of —,

' the full
cluster radius (thus —,

' of the volume, in this case contain-
ing 68 ions), for concentrations for which the numerical
calculation will not assign zero ions to the cluster a
significant number of times (this requires x larger than
some number between O. l and 0.15). The resulting field
distributions were nearly indistinguishable by eye from
those shown in Fig. 2, and the low-order distribution mo-
ments evaluated by summing were smaller by typically
1% for the same cluster than for the large. Thus the core
of half the radius of the full cluster used is essentially re-
sponsible for the distributions calculated, and the outer —',
of the cluster causes 1% changes, until the concentration
falls too low to be accurately represented by the core
alone.

IV. DISCUSSION

The development of two distinct, comparably popu-
lated sites for 0.3 ~x ~0. 1 is a feature of the results not
predicted beforehand. It indicates that the information
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FIG. 6. The ratio of the rms to average Monte Carlo Geld
magnitude in fcc Cu, „Mn„vs 1/x. The straight line is a guide
to the eye.

FIG. 7. Monte Carlo static ZF muon spin (polarization) re-
laxation function generated by the random dipole field distribu-
tion at the octahedral interstitial in fcc Cuo 95Mno 05 (solid line),
and the least-squares fit of the Lorentzian Kubo-Toyabe relaxa-
tion function to the Monte Carlo for times greater than 7 ns
(dotted line), as discussed in the text.
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lost by use of the continuum approximation can extend
beyond the effects of the nearest-neighbor (NN) distance
between magnetic moments in solids to nontrivial effects
in the next-nearest-neighbor (NNN) distance relative to
the first. The two-site alloy effect seems unlikely to be
unique to the pure dipolar interaction, because it is the
longest-range magnetic interaction, and thus makes a
minimum distinction between different distances.
Shorter-range interactions will make greater distinction
between NN and NNN shell, so the effect may then be
enhanced, but the extreme short-range limit is a NN-only
interaction, for which the NNN ions, and all further
away, are ignored, so the two-site effect must disappear in
this limit. The particular example alloy used here may
nearly maximize the possible effect for long-range in-
teractions, however, because of the imposed restriction to
only one operating interaction and the high crystallo-
graphic symmetry. Simultaneous action of two different
interactions that both create effective local magnetic
fields, or the existence of crystallographically distinct
muon sites in the material, are both likely to reduce the
effect by filling in the gap between the high- and low-field
peaks of the probability distribution. Reduction of the
crystallographic symmetry of the muon site should prob-
ably be assessed on a case by case basis. The indicative
parameter should be a ratio of NNN distance to NN dis-
tance, which should be large to generate a large two-site
effect, but in some cases the operative NN shell may in-
volve some range of radius from the muon site.

In terms of generating relaxation functions, it would be
most convenient if the Monte Carlo field-magnitude dis-
tributions could be fit with sums of Maxwellian and mag-
nitude Lorentzians, for then the corresponding static re-
laxation functions would be known analytically, and the
effects of fluctuations could be considered analytically,
much of the time. The Maxwellian does fit the Monte
Carlo distributions moderately well for concentrations
from x =1.0 (see top frame of Fig. 2) down to the point
where the low-field shoulder begins to be seen, so in that
concentration range, G„(t) should be close to the Gauss-
ian Kubo-Toyabe. In the two-site range, the high-field
part always has non-Maxwellian shape, and evolves as
concentration decreases toward the single-classical-dipole
limit discussed above. The static relaxation function for
that limit has been shown by Monte Carlo' to execute
beating oscillations within a relaxing "envelope" around
the t~ ~ limit value —,'. Meanwhile, the low-field part of
the magnitude distribution, when it initially emerges near
x =0.3, is well fit by a Maxwellian, and then an x de-
creases, seems to evolve in the direction of a more
magnitude-Lorentzian shape.

To model line shapes that seem to be between Gaussian
and Lorentzian, and quantify relative positions in that
range, the Pearson type-VII function is often used. For
vector-magnitude probability distributions between
Maxwellian and magnitude Lorentzian in shape, a corre-
sponding "magnitude-Pearson" function would be

T

p(~ ~)
I (b) ~H~ 1

&err(b ——', )W 8' (1+ H~ /w )

b &2 (15)

where the b =2 limit is clearly magnitude Lorentzian,
and the b —+~ limit is in fact Maxwellian. 8' here is
&b —1H'. Note that P (~H~) is a phenomenological
form with no known physical justification. The moments
(

~

H
~

") of this distribution are finite for n less than b, but
diverge for n ~ b. This functional form fits the low-field
distributions well for concentrations down to at least
x =0.15, with b decreasing from a very large value at
x =0.3 (i.e., indistinguishable from Gaussian) to b =9.7
at x =0.15. At x =0. 1 (b =7.5), the fit is only fair, and
at x =0.05 the fit [shown in Fig. 4(a) for b near 3.5] is
poor, so the magnitude-Pearson form fails to reproduce
the shape as concentration goes to zero. Meanwhile, the
fit value of H* is also a decreasing function of x. The
practical utility of fitting a phenomenological form is
greatest if the corresponding static relaxation function is
known analytically (not so, here), but no other function
was found to fit the low-field-magnitude distribution over
its entire concentration range as well as the magnitude
Pearson does.

Another way the magnetic alloy situation might be an-
alyzed, motivated by the separation of the effect of the
NN shell seen by Monte Carlo, is by studying the effect of
fixed-radius shells separately, not just the first (NN), but
also second (NNN), third, fourth, etc. out to some radius
large enough to apply a continuum approximation
beyond that. ' This possibility has not been investigated
in detail.

A real conducting material with such concentrated
magnetic moments as modeled here is unlikely to have
them both static (on the tens of p time scale sampled by
@SR) and without at the very least short-range order. It
may be possible to construct such a system using nuclear
moments, and then actually observe the relaxation func-
tions of Fig. 3. Somewhat similar ZF pSR has in fact
been observed in Y9Co7, a material of bizarre crystal
structure and poorly understood weak magnetism coex-
istent with superconductivity at low temperature. ' ' In
that material, the observed variation in the relative inten-
sity of the two signals as a function of temperature is
diScult to reconcile with the model of this paper.

V. CONCLUSIONS

Monte Carlo simulation has shown that in polycrystal-
line alloys involving randomly substituted magnetic ions
at concentrations below about 0.3, but not yet in the di-
lute limit, the field-magnitude probability distribution at
a crystallographically unique interstitial (positive muon)
site in the magnetically completely disordered state has
the form of a two-site distribution. Those sites which
have at least one magnetic NN ion generate a high-field
peak in the distribution, while those with a completely
nonmagnetic NN ion shell generate a distinct low-field
peak. Paramagnetic fluctuations of ionic moments would
be seen by muons in the two sites as fluctuations within
the site-separated distributions shown in the site-
separated distributions shown in Figs. 2 and 4. For each
particular material, the size of the two-site effect is likely
to depend on the crystallographic uniqueness of the
muon site, the detailed structure of the NN and NNN
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ion shells around it, and on the dominance of a single
magnetic interaction between muon and ions, which must
have range extending at least into the NNN shell. How
the finite concentration distributions evolve, as concen-
tration decreases, toward anything like the Lorentzian
normally used in the extreme dilute limit, is unclear, part-
ly because the limit distribution, subject to finite ion mo-
ments and nonzero minimum separation, is itself not fully
understood.

ACKNOWLEDGMENTS

Helpful suggestions were made at various stages of this
project by E. J. Ansaldo, J. H. Brewer, M. Celio, S. A.
Dodds, and T. M. Riseman. The work was partially sup-
ported by the Natural Sciences and Engineering Research
Council of Canada, the National Research Council of
Canada (via its support of TRIUMF), and Atomic Ener-

gy of Canada, Ltd.

For a review, see C. Y. Huang, J. Magn. Magn. Mater. 51, 1

(1985).
~For a review, see J. A. Mydosh, Hyperfine Interact. 31, 347

(1986).
Y. J. Uemura, T. Yamazaki, R. S. Hayano, R. Nakai, and C. Y.

Huang, Phys. Rev. Lett. 45, 583 (1980).
4Y. J. Uemura, D. R. Harshman, M. Senba, E. J. Ansaldo, and

A. P. Murani, Phys. Rev. B 30, 1066 (1984).
5Y. J. Uemura, T. Yamazaki, D. R. Harshman, M. Senba, and

E. J. Ansaldo, Phys. Rev. B 31, 546 {1985).
D. E. MacLaughlin, L. C. Gupta, D. W. Cooke, R. H. Heffner,

M. Leon, and M. Schillaci, Phys. Rev. Lett. 51, 927 (1983).
7For a review, see J. K. Furdyna and N. Samarth, J. Appl. Phys.

61, 3526 (1987).
A. Golnick, E. Albert, M. Hanna, E. Westhauser, A. Weid-

inger, and E. Recknagel, Hyperfine Interact. 31, 375 (1986).
E. J. Ansaldo, D. R. Noakes, R. Keitel, S. R. Kreitzman, J. H.

Brewer, and J. K. Furdyna, Phys. Lett. A 120, 483 (1987).
E. J. Ansaldo, D. R. Noakes, J. H. Brewer, S. R. Kreitzman,
and J. K. Furdyna, Phys. Rev. B 38, 1183 (1988).
J. Chappert, in Muons and I'ions in Materials Research, edited
by J. Chappert and R. I. Grynszpan (North-Holland, Amster-
dam, 1984), pp. 35-62.
L. R. Walker and R. E. Walstedt, Phys. Rev. B 22, 3816
(1980).
R. Kubo and T. Toyabe, in Magnetic Resonance and Relaxa-
tion, edited by R. Blinc (North-Holland, Amsterdam, 1967),
pp. 810-823.
R. Kubo, Hyperfine Interact. 8, 731 (1981).
D. R. Noakes, Hyperfine Interact. 31, 47 (1986).
E. Holschuh and P. F. Meier, Phys. Rev. B 29, 1129 (1984).

M. Celio, Phys. Rev. Lett. 56, 2720 (1986).
~~J. H. Brewer (private communication).

R. E. Walstedt and L. R. Walker, Phys. Rev. B 9, 4857 (1974).
~ Y. J.. Uemura and T. Yamazaki, Physica B 109-110, 1915

(1982).
2 R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T.

Yamazaki, and R. Kubo, Phys. Rev. B 20, 850 (1979).
R. Kadono, J. Imazato, K. Nishiyama, K. Nagamine, T.
Yamazaki, D. Richter, and J. M. Welter, Phys. Lett. 107A,
279 (1985).
J. H. Brewer, S. R. Kreitzman, D. R. Noakes, E. J. Ansaldo,
D. R. Harshman, and R. Keitel, Phys. Rev. B 33, 7813 (1986)~

J. H. Brewer, D. R. Harshman, R. Keitel, S. R. Kreitzman, G.
M. Luke, D. R. Noakes, and R. E. Turner, Hyperfine In-
teract. 32, 677 (1986).
M. Gulacsi and Z. Gulacsi, Phys. Rev. B 33, 3483 (1986).
D. R. Noakes, E. J. Ansaldo, J. H. Brewer, D. R. Harshman,
C. Y. Huang, M. S. Torikachvili, S. E. Lambert, and M. B.
Maple, J. Appl. Phys. 57, 3197 (1985).
M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Win-
chell, J. Appl. Cryst. 10, 66 (1977).

28E. J. Ansaldo, D. R. Noakes, J. H. Brewer, R. Keitel, D. R.
Harshman, M. Senba, C. Y. Huang, and B. V. B. Sarkissian,
Solid State Commun. 55, 193 (1985).
K. Yvon, H. F. Braun, and E. Gratz, J. Phys. F 13, L131
(1983).
B.V.B.Sarkissian, J. Appl. Phys. 53, 8070 (1982).

3'B. V. B. Sarkissian, in Superconductivity in d and fband Me-t-
ais, edited by W. . Buchel and M. Weber (KFZ, Karlsruhe,
1982), p. 311.


