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Quantum corrections to the longitudinal spin-correlation function and the spin-stiffness constant are
calculated up to 1/(25)? in a two-dimensional Heisenberg antiferromagnet at zero temperature by using
the Holstein-Primakoff transformation. The equal-time longitudinal spin-correlation function is found
to compensate almost entirely the reduction caused by the second-order correction in the transverse
spin-correlation function, making the spherically averaged correlation function very close to the value
given by linear spin-wave theory. In the spin-stiffness constant, a partial cancellation is found between
the “paramagnetic” and “‘diamagnetic’ terms, leading to a small second-order correction.

I. INTRODUCTION

The discovery of high-temperature superconductors
has greatly increased the theoretical interest in the phys-
ics of quantum antiferromagnets, since undoped com-
pounds are known to be well described by the spin-1
Heisenberg model.! It is now widely accepted that the
spin-1 Heisenberg antiferromagnet exhibits Néel long-
range order at zero temperature in two dimensions, al-
though the quantum fluctuation considerably reduces the
order parameter.2” 10

One way to attack systematically the problem of such a
large quantum fluctuation is to use an expansion with
respect to the power of 1/2S, where S is the length of
spins, from the classical limit. The Holstein-Primakoff
transformation'! is useful to carry out this expansion.
The leading order of the expansion leads to linear spin-
wave (LSW) theory.!? The first-order correction to LSW
theory was studied by Oguchi several decades ago.!* The
perpendicular susceptibility was calculated to order
1/(2S)? in three dimensions (3D) by Itoh and Kanamori
for studying its temperature dependence.!* The damping
of spin waves has been studied in three dimensions by
several authors.!>!6 Recently, we have calculated the
quantum corrections to the spin-wave velocity, the sub-
lattice magnetization, and the perpendicular susceptibili-
ty, up to terms of order 1/(25)? at zero temperature for
D =2.17 The second-order corrections to these quantities
were not so large, indicating that the 1/2S expansion
works well. We have also calculated the second-order
correction to the dynamical transverse spin-correlation
function (TSCF) whose spectral function is found to be
strongly modified, showing the sideband structure of the
three-magnon excitations. The equal-time TSCF is small-
er compared to the value given by LSW theory.

On the other hand, we did not calculate the longitudi-
nal spin-correlation function (LSCF) in Ref. 17. Thus it
is quite natural to ask how the LSCF behaves within the
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1/2S expansion. The purpose of this paper is to answer
this question along the same line as in Ref. 17. Since the
leading term in the LSCF is one order higher than the
TSCF with respect to 1/2S, accounting for the first-order
correction caused by spin-wave interactions is sufficient
for our purpose. We find that the spectral function is
composed of the continuum of two-magnon excitations as
a function of energy. The second-order correction does
not give rise to sideband structure in the spectral func-
tion, in contrast to the case of the TSCF. The interesting
finding is that the equal-time LSCF compensates almost
entirely the reduction caused by the second-order correc-
tion in the TSCEF, for § = 1.

In Ref. 17 we have evaluated the spin-stiffness constant
p, by using a hydrodynamic relation p, =c?2y,, where c is
the spin-wave velocity and Y, is the perpendicular suscep-
tibility. In this paper we formulate p; in terms of the
response to the twist of the order parameter and apply
the 1/28 expansion. (Such attempt to calculate p; direct-
ly has been done by Singh and Huse, who used the expan-
sion method introducing the Ising anisotropy.!®) The
treatment of the response to the twist naturally leads to
the presence of two kinds of contributions to p;, which
may be called ‘“paramagnetic”’ and ‘‘diamagnetic,” by
analogy with the electrical conductivity.!® We find that a
partial cancellation is occurring between the two terms of
the order of 1/(25)?%, which makes the remaining correc-
tion small.

In Sec. II the Hamiltonian is described in the
Holstein-Primakoff formalism. In Sec. III the longitudi-
nal spin-correlation function is calculated. In Sec. IV the
spin-stiffness constant is calculated. Section V is devoted
to the concluding remarks.

II. HAMILTONIAN

The antiferromagnetic Heisenberg model is described
by a Hamiltonian
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H=J 2 Si.sj ’
(i,j?

2.1

where (i,j) indicates a sum over pairs of nearest neigh-
bors. We consider a square lattice with N spins. In the
following we use the same notation as in Ref. 17.

We use the Holstein-Primakoff transformation for spin
operators!! given by

Siz=S—a,-Ta,v > (2.2)
SH=(8")=v2S f,(S)a; , 2.3)
i t
Si=—S+b]b; (2.4)
S;T=(57)'=v28b]f(5), 2.5)
with
172
(8)= |1——L
S 25
L EREL R
—yr 1
1722578 |2 2.6

The indices i and j refer to sites on the a (up) and b
J
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FIG. 1. Coordinate frames used in this paper. The momen-
tum axes are tilted 7 /4 from the conventional crystal axes. The
open circles and crosses represent the spins in the @ and b sub-
lattices, respectively.

(down) sublattices, respectively, with n,=a,~*a,-(l =i) or
n,=b;rbj(l =j). The a; and b; are boson annihilation
operators, whose Fourier transforms are defined as

172 172
2 . 2 .
%= |y Zaiexp(—zkmi) , by= N ijexp(—zk-rj) . (2.7)
i J
Then we introduce the Bogoliubov transformation defined by
ai=lkal+mk3_k , (2.8)
b_y=mual+LB_,, 2.9)
with
(e 172 B (1—¢p) 1/2_ 1 o0
k 2%, | ™ 26, =—xily -10)
g =(1—y})'"?, y,=cos(k, /2)cos(k,/2) , 2.11)

where k,,k, are in units of 1/( V2a), with a being the nearest-neighbor distance (see Fig. 1). Hereafter, we call the
quasiparticles described by a,,8; “magnons.” In this magnon language the Hamiltonian is expressed as

H=Hy+H+ -,
Hy=JSz S (e, —1)+JSz S e (afa, +BiB)
k k

H,= 12%5 A %sk(alak+ﬁlﬁk)
+ % 3 801+2-3=4), 1314
X[alalosa,B Y +BL 8L B_1B_,B
+2alB_,az0,B\8 +2B8" B_ B
where

2
— 1—¢g,)=0.158 ,
N %( €k) 1

(2.12)
(2.13)
2hs +4alBl BB,
o3B3, +alalpl B B, +H.c.)], (2.14)
(2.15)
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B =YootV i-3X1%pX3%4 T Y X1 X TV 1 4X3X,4

=3 (y1x3 T yaxa Ty ax Ty aXa TV XXX, T Yox 1 X0X3 TV X0 X3X, Ty ax 1 X3%,) (2.16)
B =72 4%3x3H V2 X 1 X4t V2 3% X4 F Y5 3% 1%

=3 (¥ 1X1X3% 4 F Y X X3X 4 TV 3X 1 X0X3 Ty X1 X%, TV X HY X Fy X TYaxs) . 2.17)

The explicit expressions for B'", B B and B‘® are omitted here, since they are not used in the following calcula-
tion (see Ref. 17 for these expressions). We use the abbreviations a, =ay b_, =b_k2, Y1-27 Vi, —k,» ©tc- The H, gives

the spin-wave energy in the zeroth order (LSW theory). The H,; describes the perturbation in the first order of 1/28S;
the first term arises from setting the second term representing the spin-wave interaction in normal product form.

III. LONGITUDINAL SPIN-CORRELATION FUNCTIONS

We concentrate our attention to the LSCF, since the TSCF has already been studied in detail in Ref. 17. In this sec-
tion the energy and frequency are measured in units of JSz.
For the “staggered” and “total’ spins,

07(k)=S2(k)—Si(k) , 3.1

S4k)=S(k)+Si(k) , (3.2)
where

172
0= |2 3 Sipexp(—ikerip) (3.3)

and the LSCF is defined by

PE(k,1)=([Q%k,1)—(Q*k))][Q%(—k,0)—(Q%—k))]), 3.4)

PZ(k,t)=(S%k,t)S* —k,0)) , (3.5)
where { - - - ) denotes the average over the ground state.

We first express the staggered and total spins in the magnon picture by applying the Bogoliubov transformation, Egs.
(2.8) and (2.9) to Egs. (2.2) and (2.4). The results are

172
Q’(k)=R+(k)+2(S—AS)—J2\i 8(k) (3.6)
SAk)=R_(k) , (3.7
where
2 172
Rok)=— || 3 [UplpraEmymy ) ogayEBl p iBp)+(pmppytmyly o NalBl (2B oy )] . (3.8)
P

The AS in Eq. (3.6) represents the well-known reduction factor of magnetization,

AS=2 S m2=0.197. (3.9)
N k

This arises from setting the rest of the terms into normal product form. Next, we introduce the two-particle Green
function in a matrix form:

(WK, 1)]1p 15 = —i{ TIB_p(Day i (D) 1 (0B (0)]) , (3.10)
[W (K, )]1p 29 = —i{ T [B_p(1)p 41 (B 1 (0)yy(0)]) (3.11)
[W(k,0]pp 1p=—i{ T[a}(t)BL ,_y(t)a].  (0)BL ,(0)]) , (3.12)
(W (K, ]pp 0p=—i{ T} ()BL ,_ o ()B_ —1(0)a,(0)]) (3.13)

where 7 is the time-ordering operator. Then the spectral function of the correlation function is related to the temporal
Fourier transform of the Green function (for o > 0) as follows:
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"‘F 2 l mp+k+mplp+k)(lpr+kmp'+mp!+klp')
pp’
X _—ﬂ_—l ]Im{[W(k,a))]lp’lp:"‘[W(k,CO)]lp,zp"‘}'[W(k,a))]zp,lp'_i"[W(k,(l))]zpyzp'} ’ (3.14)
2z —2
PS (k,ﬂ))—ﬁ 2, (lpmp+k‘_mplp+k )(lpl+kmp'_mpl+klp’)
p,p
X | | — [ W (K, 0) ]y, 1+ [ (k@) 11 20+ [ (K ) T3, 10— [ WKy @) T3, 200} - (3.15)

Note that the leading-order term in the LSCF is one order higher than that in the TSCF. Thus taking account of the
first-order correction by the spin-wave interaction is sufficient to obtain the correction up to 1/(28)2.
The lowest-order (the first order in 1/2S) arises from the diagram shown in Fig. 2(a). The imaginary part for @ >0 is
simply given by
Im[W(k,0)]p, 1= —78(@—¢, 1 —¢p) (3.16)
and the other components are zero. The next-order corrections arise from the diagrams shown in Figs. 2(b) and 2(c).
The imaginary parts for o > 0 are estimated as

Im[W(k,co)]lp,lP,=—7r[8(a)—ep+k—ap)—ﬁ(a)—spr+k-sp:)]leylp,(k)(sp+k+sp——epl+k—£p,)“l , (3.17)
Im[ W (k,0)]p 2p =Im[ W(k,0) ]y 1,
=780 €p i —€p)Vip 2p (KN Ep i HE, T ey HEy) ! (3.18)
where
Vipip (K) =V 00 (k) =— —11\7 25 Mooty sxlpBrlcp,prip » (3.19)
V ip2pr ()= Vg, 1K) = — "JIV %411,“1],,IP'HIPB;,a’k,p,,p,H,p . (3.20)

We have included a factor of 4 in Eq. (3.20) by using the relation, B{$}, =B}, =B 54; =B%);. Since the spin-wave en-

ergy is modified by the first term of Eq. (2.14) in the first order of 1/2S, this shift should be included in Eq. (3.16) to cal-
culate the second-order correction. Inserting Egs. (3.16)—(3.18) into Egs. (3.14) and (3.15), we get the spectral function.
The spectrum is composed of the continuum of the two-magnon excitations as a function of energy. (The explicit shape
has not been evaluated in this paper.) Note that the spectral function of the TSCF is composed of the 8-function-like

spike of the one-magnon excitation and the sideband of the three-magnon excitations.

17

The equal-time correlation function is obtained from integrating the spectral function with respect to . For the

staggered spins, it becomes
PE f d o P§(k,0)

2
:N 2 (Ipmp+k+mplp+k)2
P

4

- z (lpmp+k+mplp+k)(lp;mp:+k+mp;lp:+k)le’zp:(k)(8p+k+8p+spl+k+£pl)_1 .

N 5

The first and second terms in Eq. (3.21) represent the
first- and second-order corrections in 1/2S, respectively.
The terms coming from Eq. (3.17) vanish after summing
over p and p’. (For the total spins, the discussion is quite
similar.) We evaluate numerically Eq. (3.21) by summing
up 6400 points of p and 6400 points of p’ in the first Bril-
louin zone. Figure 3 shows the calculated PF(k) as a
function of k along a line of k,=k,. Note that the
second-order correction is negative.

It may be interesting to consider the spherically aver-

(3.21)

aged correlation function for the staggered spins,
(Q(k)-Q(—k)), since finite-size calculations can give
only this correlation function due to the lack of the bro-
ken symmetry. Using the TSCF calculated in Ref. 17, to-
gether with Pg(k) calculated above, we obtain
(Q(k)-Q(—k)). Flgure 4 shows the function thus evalu-
ated for S =1 as a function of k. [The TSCF’s up to
1/(2S)? are also shown.] The reduction caused by the
second-order correction in the TSCF is mostly compen-
sated by the LSCF, thereby making the spherically aver-
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(a) a o+w’ B»JE
Bw' p

(b) a o+’ B+T€ a o+to” B'+¥
Bo P B p’

(c) a o+’ B+i aw”p
Bw p B w+w” I)’+ig
a o' 6 a o+t B+E

B w+w' p'+k B w" f;

FIG. 2. Diagrams for the two-particle Green function
W(k,w): (a) the first-order contribution to [W(k,®)]p,1p, (b)
the second-order contribution to [W(k,w)]ip 1p» and (c) the
second-order contribution to [ W(k,®)],p, 2 and [ W(k,®)]5p 1p-
The solid lines represent the unperturbed single-particle Green
functions, (0 —g,+i8)"! for a,w,k, and (—w—g,+i8)"! for
B,w,k, with 801, The Green functions are integrated over
the frequencies ' and . The solid circle in (b) represents the
interaction V', 1,+(k), and the solid circles in (c) are Vi, 5, (k)
and V2p',1p(k)‘

20
10 1st Order
=
N
NGO
a /2 kx (zky) =
0 -_‘—4—”’:—/%’__;
2nd Order
-10

FIG. 3. Equal-time longitudinal spin-correlation function for
the staggered spins, as a function of k along a line k, =k,. The
curve with “lIst order” is the contribution of the first term in
Eq. (3.21), and the curve with “2nd order” is the contribution of
the last term in Eq. (3.21). §=1.
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FIG. 4. Spherically averaged spin-correlation function for
the staggered spins, {Q(k)-Q(—k)), as a function of k along a
line k, =k,. The curve with “LSW” represents the lowest-order
result (given by LSW theory). The curve with “2nd order”
represents the transverse spin-correlation function calculated up
to 1/(25)* (Ref. 17). S=1.

aged correlation function very close to the value given by
LSW theory. Our finding is consistent with Horsch and
von der Linden,® who obtained a good agreement with
the lowest-order value in the spherically averaged func-
tion for S =1 by using a variational method and an exact
diagonalization in finite systems. Note that the good
compensation is only possible for S =1, since the com-
pensation takes place between the first-order correction
in the LSCF and the second-order correction in the
TSCF.

IV. SPIN-STIFFNESS CONSTANT

Let the order parameter be twisted by an angle 6 per
lattice constant along the y direction. Then we can define
the stiffness constant p; through the increase of the
ground-state energy:

AE=1Np 6°+0(6) . 4.1)

In this section we use a coordinate frame whose x and y
axes are along the crystal axes (see Fig. 1).

In order to calculate the increase of the ground-state
energy, following Singh and Huse,'® we express the Ham-
iltonian in terms of the spin variables in the local coordi-
nate frame, which is rotated by an angle 6 per lattice con-
stant along the y axis in spin space. The expression is

H=J 3 8§;:8;+J60 3 (S7S/1, —S/Sip)
ij) i
—J10? 3 (S7SF, +S7S7,)+0(6), (4.2)

1

where i runs over all lattice sites, and i +b indicates the
nearest neighbor to the ith site in the positive y direction.
The Holstein-Primakoff transformation is applied to
spins in this local coordinate frame in which the spins are
aligned in the =*z directions. To the change of the
ground-state energy within the order 62, there are two
kinds of contribution: One term is the contribution of
the second-order perturbation energy coming from the
second term in Eq. (4.2), which we call “paramagnetic,”
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and another term is the contribution of the third term in
Eq. (4.2) averaged over the ground state, which we call
“diamagnetic,” i.e., p, = pPar2 4 pdia. 19

Let us first consider the diamagnetic term. From Egs.
(4.1) and (4.2), it is expressed as

piie=—— 2 (S7S7 v +SiSF1p) - 4.3)

Rewriting the spin operators in terms of the magnon
operators, we obtain

2
4 2 2
dla_Js2 T = + 2 l +2m m2+l m l m —aq)
Ps 28 N% Ve Mp | T gy 5( mpm g7y a¥p—q
=JS? L [4(ASP+2(AS) A + 42 (4.4)
28)
where
k,+k
Fe=2cos |[— 5 g (4.5)
Let us next consider the paramagnetic term. In the magnon language, the second term of Eq. (4.2) is expressed as
2 172
Jez FSPe —SiST )= =T 0 Lvas $8(1—2—3)m3(alayby+ala,b’ ;—ayblb, —a' 3b1b,)
123
5 172
=—Jo L35 ¥ S [8(1—2+3)Iymymy—m L13m_salBl ol
123

+8(1—=2=3)(1ym, 1y —m Lmy)malBl Bl +Hoe ]+ -+,

where
k,+k,

> 4.7

N = —2i sin

The conventional second-order perturbation theory con-
cerning the perturbation given by Eq. (4.6) gives

J |M (p,q)|?
part= — —— TES ESF , 4.8
s 2z 2 palp g €ptrqTEpTEq (4.8)
where
M(p,@Q)=nN_o(Xp1qXqtxp) TN _p(Xp1qxp,+xq) . (4.9)

We evaluate numerically Eq. (4.8) by dividing the first
Brillouin zone into a finite number of meshes,
N,,=80X80, 100X 100, and 120X 120, and extrapolate
the sum to NV,, — « (see Fig. 5). The result is

s gara

para — SZ
Ps (25)?

, sBE~0.29 . (4.10)

Thus the sum of the diamagnetic and paramagnetic terms
becomes

0.236 52

1_
28 (28)?

p,=JS? , §,=0.05. (4.11)

The second-order correction is small due to a partial can-
cellation between the diamagnetic and paramagnetic
terms. Our previous estimate!” of 5, based on the hydro-
dynamic relation is a little larger than the present value
(of course, the first-order correction is the same), prob-
ably due to a rough estimate of the spin-wave velocity in
Ref. 17. Our value for p, /(JS?) at S =1 is 0.714, which
is compared with other theoretical estimates, 0.738,%
0.73,'® 0.88,2° 0.636,2! and 0.796.2% (The last three values
are the estimates by Monte Carlo calculations.)

0.30
_____ .,
para [
52 |
0.25 |-
1 l 1
0 1 x100% 2

1/Nm

FIG. 5. Numerical estimates of s§** as a function of the in-
verse of the mesh number N, ..
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V. CONCLUDING REMARKS

We have calculated the dynamical LSCF up to terms
of order 1/(2S)? by using the Holstein-Primakoff trans-
formation. The spectral function is composed of the con-
tinuum of two-magnon excitations as a function of ener-
gy. The equal-time LSCF is evaluated through the spec-
tral function. Comparing the equal-time LSCF with the
equal-time TSCF, which has been calculated up to terms
of order 1/(25)? in Ref. 17, we have found an interesting
cancellation between the LSCF and the second-order
correction to the TSCF for § =, which makes the
spherically averaged correlation function very close to
the value of LSW theory.

We have also calculated the spin-stiffness constant up
to 1/(2S)? by formulating it in terms of the response to
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the twist of the order parameter. We have found a par-
tial cancellation between the “diamagnetic” and
“paramagnetic”’ terms, which makes the remaining
second-order correction small.

The second-order corrections to the above quantities
are small due to cancellation . The second-order correc-
tions to other quantities are not large.!” This happens in
spite of the absence of the obvious cancellation, indicat-
ing that the 1/2S expansion works well and has quantita-
tive meaning.
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