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Correlated-squeezed-state approach for phonon coupling in a tunneling system
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A variational study of a tunneling particle coupled to phonons is presented. The trial wave function
has built in the correlation between di6'erent modes and thereby goes beyond earlier variational treat-
ments. This leads to a significant improvement of the energy and therefore a better representation of the
ground state. The condition for the localization-delocalization transition of the tunneling particle is
modified in the correlated squeezed state compared to previous studies.

In recent years much attention has been paid to the
study of quantum tunneling effects of a two-state system
coupled linearly to a boson field (phonons). ' This rather
simple two-level model has long been a research area of
considerable interest because of its extensive applicability
in various fields of physics, such as molecular and solid-
state physics, quantum optics, quantum dissipation, and
quantum chaos. For instance, the model has been used to
study the physics of polaron formation, molecular pola-
rons, atoms in a cavity with a radiating field, defects in
insulators, exciton motion, chaos in quantum systems,
paraelastic defects in solids, diffusion of impurities, spin-
phonon relaxation, sound attenuation in glasses, Kondo
effect in metallic alloys, etc. Despite the relatively large
amount of work found in the literature, no exact solution
to the problem is yet available. Even for the simplest
form of the model, namely, a two-state system coupled to
a single mode, the eigenstates and eigenvalues are not
known analytically in general. There do exist, however,
analytic treatments of the model based on the variational
principle. So far, each of the variational trial wave
functions for the ground state of the two-state system is
uncorrelated and takes into account the nonlinear in-
teraction between phonons in different modes within the
framework of the Hartree approximation only. It is
therefore the purpose of this paper to present a simple
variational study based on a correlated trial wave func-
tion for the ground state of the two-level model. For the
sake of simplicity, we treat here a two-state system cou-
pled to two phonon modes only. This is the simplest,
nontrivial model that includes the nonlinear interaction
between phonons, not only in the same mode, but also in
different modes. Generalization to coupling with many
phonons is straightforward and will be published else-
where. We show that our variational wave function leads
to a better ground-state energy than the earlier treat-
ments based on a variational formulation.

The two-state system coupled linearly to two phonons
is described by the Hamiltonian

2 2
H= —b.oo. + g %co;b;b;+ g g;(b; +b;)o„

where b; and b; are boson annihilation and creation

operators, and o. and o., are usual Pauli matrices. In
this Hamiltonian, 50 represents the bare tunneling matrix
element and g; the coupling constant to the ith phonon
mode. When ho=0, the system consists of two oscilla-
tors, displaced in one direction when the tunneling sys-
tem is in one of the two levels and displaced in the other
direction when the tunneling system is in the other of the
two levels. Thus there is a twofold-degenerate localized
ground state with energy E = —g; g; (fico; ) '. On the
other hand, when g; =0, the eigenstates of the system are
the symmetric and antisymmetric combinations of the
spin states with energies E =+60. Thus this two state
system exhibits a competition between the localization in-
herent in the interaction with the phonons and the delo-
calization inherent in the tunneling. In the intermediate
regime, the effect of the phonons is to modify the tunnel-
ing matrix element and thus damp the oscillations.
Motivated by these facts, Tanaka and Sakurai as well as,
separately, Silbey and Harris suggested a two-mode
coherent state as the trial ground-state wave function for
the Hamiltonian H:

IG) =exp o, g (b; b) Ivac)—I»+ Ii. &
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X exp g y;(b, b, b;b; ) Ivac)—I»+ I ~)
i=1 2

where y& and y2 are the variational parameters. The
squeezed state is a nonclassical state characterized by a
reduction in one of the two quadrature components of
the phonon mode, when compared with the coherent

where
I
vac ) is the vacuum state of modes l and 2, and f,

and f2 are the variational parameters. Recently, to ac-
count for the anharmonicity of each phonon mode, Chen,
Zhang, and Wu proposed a modification of the above an-
satz by replacing the coherent state of each mode by a
squeezed state, i.e.,

2 g.
IG) = exp o, g — (b,t b,)—.
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state. Both of these trial wave functions are within the
Hartree approximation and thus uncorrelated. To go
beyond the Hartree approximation, we propose here the
following simple correlated trial wave function for the
ground state of H:

2

~G &= exp cr, g (bt b—)
i=1 i

2

Xexp g y, (b, bt .b, b,—)

Xexp[a(b, b2 b, b—2)] vac&
1&+ i&

2
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—b,oexp I
—

—,
' [ ( 3,+ A 2 )cosh 2a

—2 A, A 2sinh 2a ]I,

where f;, y;, and a are the variational parameters. The
unitary two-mode squeeze operator

~12 xp[a(b lb2 blb2)l (5)

when applied to the vacuum state, generates a two-mode
squeezed vacuum state for the two phonon modes. The
two-mode squeezed state is a highly correlated state of
the two phonon modes that exhibits reduced quadrature
noise in linear combinations of variables of both modes;
however, squeezing is not observed in the fluctuations of
individual modes. Thus the two-mode squeeze operator
is introduced here in order to account for the strong
correlation and anharmonicity of the interaction between
the two phonon modes. This correlated squeezed-state
approach has been applied earlier to the linear E-e
Jahn-Teller effect, in which an electronic doublet in-
teracts with a doubly degenerate vibration. The expecta-
tion value E of H in the correlated trial ground state of
(4) is given by

5'+2f; g,E = g + —g iiico;(cosh 4y;cosh2a 1)—
Pleo 2
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the energy is E= —2g, whereas when Ao is large, the en-
ergy is simply E= —Ao. In these two extreme cases, we
expect neither the squeezing (controlled by y) nor the
correlation (controlled by a) to play any role. For all pa-
rameters we see a transition between the two extreme
limits at 2g =50, where all three terms in (7) are of the
same magnitude. This is the interesting, nontrivial region
which has been studied the most in the literature.

In Fig. 2 we show the effect of taking the correlation
into account for two cases: (a) g = 1 and (b) g = 10. For
every value of a, the two remaining parameters f and y
are varied so as to minimize the energy. We clearly see
that keeping a finite e lowers the energy in both cases
and that the reduction is as much as 10% for g =10.
Thus the correlation does play a significant role and has
to be accounted for to obtain a good estimate of the
ground-state energy.

In Fig. 3 we show how important the various terms in
the trial wave function are. We have done the calculation
for three cases: First, we consider the displacement only
and put both a and y equal to zero. This corresponds to
the case with the trial wave function given by Eq. (2) and
necessarily gives the poorest estimate of the energy.
Second, we put a equal to zero and vary both f and y.
This lowers the energy. And as shown in Fig. 2, the ener-

with 3;=2f;exp( —2y;)/%co;. The optimum values of
f;, y; and a are determined by the variational approach,
that is, when E arrives at its stable minimum.

To illustrate the correlation effect between the phonon
modes, we shall confine ourselves to the special case in
which the tunneling system is coupled to two identical
phonon modes (A'co, =fico& and g, =gz). Thus we are left
with only three variational parameters f, a, and y. The
total energy E in (6) can then be written as

E = 2f (f +2g)+(cosh 4y cosh 2a —1)
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where we set the phonon energy equal to unity. We now
minimize the energy with respect to the three variational
parameters.

In Fig. I we show the minimum energy for two cases:
In (a) we consider the coupling g to values 0.01, 1, and
100, and let the 50 vary. In (b) we let g vary, while b,o is
fixed. If b,o is small, the first term in (7) dominates and
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FICx. 1. Minimum energy vs (a) b0 for g at the values of 0.1,
1, and 10, and (b) 2g for 60 at the values of 0.01, 1, and 100.
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FIG. 2. Minimum energy vs a for (a) g =1 and {b) g = 10 at
the transition 60=2g .

FIG. 3. (a) Minimum energy E and (b) reduction factor Z in
the transition region. Solid line represents our result. Dashed
line refers to the case y =0 (i.e., no correlation) and dotted line
to the case a=y =0 (i.e., only displacement) (g=1).

gy improves further when all three parameters are al-
lowed to vary. Note that the improvement by taking
proper care of the correlation is as large as the improve-
ment obtained when squeezing was introduced. There-
fore, the correlation is not just a marginal effect and can-
not be neglected. In Fig. 3(b) we have plotted the tunnel-
ing reduction factor Z =exp[ —4f exp( —4y —2a)] for
the same three cases. Note the sudden jump in the reduc-
tion factor for the variational wave function consisting
only of displacement. This was also pointed out by Tana-
ka and Sakurai (see Fig. l in Ref. 2). However, as shown
in Fig. 3(b), this abrupt jump is just an artifact due to the
inadequacy of the trial wave function to represent the
true ground state. This is improved upon by introducing
the squeezing, which smears the transition. Our results
show an even smoother transition from the localized re-
gime to the delocalized (tunneling) regime.

In conclusion, we have studied the effects of squeezing
and correlation in the case of a quantum-mechanical
two-level system coupled to phonons. The correlation
among the phonons leads to a significant improvement of
the energy and thereby a better representation of the
ground state. Hence the condition for the localization-
delocalization transition of the tunneling particle is
modified in the correlated squeezed state compared with
previous studies.
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