
PHYSICAL REVIEW B VOLUME 44, NUMBER 10 1 SEPTEMBER 1991-II

Scattering of transverse-magnetic waves with a nonlinear film:
Formal field solutions in quadratures
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An exact analytical study of the field solution involved in the scattering of a plane transverse-magnetic
electromagnetic wave with a film having an intensity-dependent nonlinearity is presented here. By
finding exact integrating factors, a formal solution expressed in terms of simple quadratures is derived.
An explicit result for the reAection coefficient as a function of the incident intensity is presented for a
Kerr medium.

I. INTRODUCTION

The interaction of electromagnetic waves with non-
linear dielectric media has been the subject of intense
theoretical and experimental investigation in recent
years. ' A substantial amount of work has been reported
in particular on guided waves. However, in contrast,
there is relatively little work on scattered waves since the
pioneering work by Kaplan on semi-infinite nonlinear
medium. This is because of the extra mathematical com-
plexity associated with scattered waves whose field solu-
tion has an amplitude and a nontrivial phase factor, both
of which are intrinsically coupled together nonlinearly
through Maxwell's equations. In comparison, the guided
wave solution, in general, can be represented by rather
trivial phase factors. As a result, it was only quite recent-
ly that exact analytical solutions have been obtained for
the scattering of plane transverse-electric waves with
nonlinear thin films, bilayers and superlattices.

In the case of transverse-magnetic waves, the problem
of finding the field solution is even more difficult. This
comes about because, for transverse magnetic waves, the
natural variable to study is the magnetic field, but the
nonlinear dielectric constant may be simple, under the
usual assumptions, only if it is expressed in terms of the
electric field components. When it is expressed in terms
of the magnetic field, one generally finds that it contains
terms involving not only the magnetic field, but also spa-
tial derivatives of the magnetic field, and the dielectric
constant itself. In the case of guided waves, however,
there has been considerable progress in recent years. Ex-
act dispersion relations at a linear-nonlinear interface
have been obtained either based on a first-order
differential equation ' developed by Berkhoer and Za-
kharov, " or by means of a conservation law' that is ob-
tained by generalizing a procedure developed by Liu and
Joseph. ' However, to our knowledge, the corresponding
results for scattered waves are currently not available,
and as a result theoretical studies have been mostly nu-
merical in nature.

In this paper we report some exact analytical results
for the scattering of a plane transverse-magnetic (TM)
wave of a single frequency with a nonlinear thin film.

The nonlinearity is assumed to depend only on the inten-
sity. This dependence need not be Kerr-like, and can be
completely arbitrary. We show that Maxwell's equations
can be solved exactly and the solution can be found in
quadratures. This is accomplished by finding integrating
factors for the various nonlinear ordinary differential
equations encountered in our calculation. The general
solution is found to contain a total of four integration
constants. These constants can be uniquely determined
from the required electromagnetic boundary conditions
that must be imposed on the solution at each of the sur-
faces of the film. It turns out that one of these constants
represents the energy Aux across the film, and by setting
this constant to zero, one recovers our previous solution
for guided TM waves. ' This is at least conceptually very
satisfying because waves in a thin film, irrespective of
whether linear or nonlinear, can always be considered as
either guiding or propagating. Thus our solution offers
the opportunity to treat them on an equal footing. With
this solution one then calculates the internal field as well
as the reAection and transmission coefficients. We then
make use of our analytical results to calculate specifically
for a Kerr medium the reAection coefficient, and we find
that it exhibits optical bistable behavior as a function of
the incident intensity.

Besides its fundamental importance, and its potential
function as a mirrorless optical switch and other non-
linear optics applications, our work on the scattering of
EM waves with finite NL films can also be of use in devel-
oping methods for studying NL prism couplers. And be-
cause the general results here are valid independent of the
form of the dependence of the dielectric constant on the
intensity, they can be used to study effects associated with
the saturation of the nonlinearity. '

II. REDUCTION OF THE PROBLEM
TO QUADRATURES

Let us consider here a single nonlinear film which oc-
cupies region (2) between z =0 and d. It is assumed that
the nonlinear material can be characterized by a dielec-
tric function which depends on the instantaneous value of
the local electric field intensity, i.e.,
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e=e(lE(r)
I

) (1) find B (g), we begin by representing it in polar form:

B(r)=yB~(z)e (2)

Regions (1) and (3), which correspond to z (0 and z )d,
respectively, are taken to be linear, with dielectric con-
stants e& and e3. The interest here is in the mono-
chromatic transverse-magnetic wave which has the form
of a plane wave along x and a time dependence of the
form e ' '. Therefore e has no time dependence, and de-
pends on z only through its dependence on lE(r)l . Thus
one writes, suppressing a time dependent factor, All (Pl)2A

E'

e'A'
g2

(12)

where A (g) and g(g) are unknown real functions to be
determined. Inserting this form for B in Eq. (9), assum-
ing e is real, and separating the result into real and imagi-
nary parts yields the following two equations:

2g' A '+ g" A g'e' A

E g2
(13)

E(r) = [xE,(z)+zE, (z)]e (3)

(4)

Using Eqs. (2) and (3) in Maxwell's equations we find the
following equations for the field components:

Equation (13) can be integrated once if it is multiplied by
an integrating factor A. The result can be written as

C)E

A
(14)

The existence of the constant c
&

is a direct consequence
of the conservation of energy in the z direction. To see
this, we calculate the Poynting vector:

B,E„—ik E, = B
C

(6) S= ReEXH* .
8vr

(15)

We choose to eliminate E and E, in favor of B . Thus
we find

Lc 1~B
COP E'

Using Eqs. (7), (8), (11), and (14), we find

i)A (g)
e(g)

(16)

E, = —k B
—c 1

COP

and B obeys the equation

—1 B,
E'

where

(8)

(9)

This confirms our interpretation of the integration con-
stant c&. In the case of guided waves, c& must be zero.
This then implies that g'=0, and so g must be a con-
stant. This constant is of no significance for guided
waves, and is usually set to zero.

We will use Eq. (14) to eliminate g' from all our equa-
tions. Thus we obtain from Eq. (12) a single equation for

BIE'= 6
E

2

(10)
A tl 2 e'A' —1 A .

A e
(17)

In Eq. (9) we have dropped the subscript on B, have
defined ko =co&@/c, i) =k /ko, a dimensionless length in
the z direction, g=koz, and have used the prime to
denote differentiation with respect to g. The mathemati-
cal problem now is to find B from Eq. (9) where e is given
by Eq. (10). As opposed to the case of guided waves, we
must look for complex solutions. It turns out that despite
the complexity of these equations, B can be found in
quadratures irrespective of the form of the dependence of
the nonlinear dielectric constant on the intensity.

Before we start we should point out the fact that, be-
cause of gauge invariance, the solution to Eq. (9) can only
be determined up to the multiplication with a constant of
unit magnitude. In other words, if B is a solution then so
is Be,where $0 is an arbitrary constant. This constant,
however, is important to determine the actual fields
within the film, and the reAection coefficient. Its value
can be determined from boundary conditions. Now, to

From Eqs. (10), (11),and (14) we find
2

6'=E + +A

A

2-

(18)

A' gA=I (e eo)—ci
A

(19)

What we have accomplished so far is to uncouple P
and A. Our next problem is to solve Eq. (17) for A with
e obeying Eq. (18). It should be noted that even in the
case of a Kerr medium in which the nonlinear part of the
dielectric constant is simply proportional to the intensity,
the dielectric constant is an exceedingly complicated
function of A and A '. To proceed further, we separate
out from e a linear part, eo, and a nonlinear part, e2,
where ez(I) —+0 as I~O. We also assume that e2(I) is a
monotonic function of I, and so has a unique inverse
function I (e eo) From Eq—. (18.) we now can write

2 2 2



SCATTERING OF TRANSVERSE-MAGNETIC WAVES WITH A. . . 5009

We then differentiate this equation with respect to g, and
use Eq. (17) to eliminate the factor (A'/e)' from the re-
sulting equation. This yields the following equation:

2g AA
2

AA' 2A 2~r 6 dI
2 dE

This equation can be integrated if it is multiplied by e.
The result is

~-~o
A =eI(e ez—) f— du I(u)+c2,

E' 0
(21)

( A
'

) =e I ( e et, ) (g A—) ——CiE

A
(22)

and consider Eq. (21), not as a first integral, but as an

equation giving A as a function of e. Thus we write

A'(e) = e'I(e e, ) ej— d—u I(u)+c2e (2„—e)

(23)
Because A ' =e'd A ( e ) /d e, Eq. (22) can be rewritten as

—,'(e') + V(e)=0,

where the "potential" is given by
—2

(24)

1 dA (e)
2 de

e I(e e()) [gA (e)—]—
2

where c2 is another integration constant. This is a first
integral of Eq. (17), because it involves no higher than a
first-order derivative of A.

Now in order to find A as a function of g, we need a
second integral. It is rather hopeless if we try to proceed
directly with this equation, because it is an extremely
complicated first-order nonlinear differential equation in

A way to get around this problem is to make a
change of dependent variable from A to e. Physically,
since the field A behaves only according to the effective
value of e that it sees, a more appropriate dependent vari-
able is e, and not A. Instead of trying to solve the
differential equation in Eq. (21) we use Eq. (19) to write

2

incident on the z =0 surface we find it convenient to
write

0(0)= f, d 0 q'(0)+ No

and so we have

0'(g)=c, e/A (g) .

(27)

(28)

This last constant, QD is the one we expect to be present
because of gauge invariance.

Our complete solution for B (g) involves a total of four
real integration constants. These can be uniquely deter-
mined by imposing the required electromagnetic bound-
ary conditions on the solution.

B=yB~(e "t+re 't)e (29)

whele B0 is a real constant and r is the complex reAection
coefficient. Within the film we let

B=yA(g)exp i f dg%(g) e 'e
0

and for z )d we let

(30)

B=ytBDe " " exp i f dg%(g} e 'e, (31)
0

where gd =k~d and t is the complex transmission
coefficient.

At z =0, continuity of the tangential field components,
E and B, implies

III. IMPOSING BOUNDARY CONDITIONS

Now we consider the boundary conditions on the
fields, again suppressing the time dependent factor e
in our equations. We consider a TM plane wave incident
at an angle 0 from the z (0 region. We let k, =k~Qe;,
k,- =k,.sinO, k;, =k;cosO, where i =1 or 3. We also use
dimensionless parameters g;„=Qe;sin8 and

ri; =Q ec so8. Here e, 3 are assumed to be positive.
For z &0 we let

Ci E'

A (e)
(25) r)„(1—r)B~e(0)=e, [%(0)A (0) i A'(0)]e— (32)

where A (e) is given by Eq. (23). With g as the "time"
and e as the "position, " we can interpret this equation as
the conservation of "energy" equation for a classical par-
ticle moving in a one-dimensional "potential" V, with
zero total mechanical energy. This equation can easily be
integrated to give

and

(1+r)B()= A (0)e (33)

respectively. Similarly, by applying the boundary condi-
tions at z =d, we obtain

~(g) d e
'~&o~ &—2V(e}

(26)
e3[%(gd )A (g ) diA (gd )—] r)3, tB~e(gd )— (34)

where g~ is the third integration constant. Now, invert-
ing this equation gives e(g), which then gives A (g) when
Eq. (23) is used. Therefore A (g) can be found for any
ez(I) by performing two integrations, one in Eq. (23) and
one in Eq. (26). The phase function, g(g), can then be
found from Eq. (14) by an additional integration. This
will introduce a fourth integration constant. For a wave

and

A (gd)=tB() . (35)

We therefore have four complex equations, Eqs.
(32)—(35), for the determination of eight real quantities,
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namely, the real and imaginary parts of r and t, and $0,
ci, C2, aild 'I/jo.

To determine these quantities we start with Eq. (33) to
find

[ii),&(0)+e,q(0)A (0) —i e, A'(0)]e '=2e(0)g„80 .

(37)

A (0) iso
e '—1.

Bo

Substituting r in Eq. (32) gives the result

(36)
Next, we take the square of the absolute value of this
equation, get rid of qI using Eq. (28) and A' using Eq.
(22), and express A in terms of e using Eq. (23) to arrive
at the result

1
O'Qlz80 =2 Ilzclel+ = 'Ply2il„—e 0

'Qx &i e(0)—eo
e (0)I (0) e(—0)f du I(u)+c2e(0) +e,I(0),

e (0) 0
(38)

where I(0)=I[e(0)—eo] is the intensity at z =0. It
should be noted that the intensity is not continuous at the
two surfaces of the film. We also eliminate t between
Eqs. (34) and (35) to get

e3[%(g„)A (gd ) —i A (gd )]=q„A (gd )e(g„) . (39)

Equating the real and imaginary parts yields the results

e3%(gd ) =g3, e(gd )

r/'=1-
ni. &o

(45)

ciE3t2=
2n].&o

Equations (45) and (46) combine to yield

(46)

From Eq. (35) it is clear that t is real. Moreover, with the
help of Eqs. (28) and (35) we find

e (1 —lr I') =e t ' . (47)
A'(g„)=0 .

By eliminating 4 with Eq. (28), Eq. (40) gives

n3. A'(4)
C) =

(41)

(42)

This is clearly the equation for the conservation of Aux in
the z direction.

IV. PARAMETRIZATION AND COMPUTATION
OF PHYSICAL QUANTITIKS

c)ei+il), A (0)
cosi/to =

2a,q„A (0)
(43)

e, A'(0)
sinlf 0=

280ili, A (0)
(44)

The reflectivity can then be obtained from Eqs. (36) and
(43) as

The main results are contained in three real algebraic
equations, Eqs. (38), (41), and (42). From Eqs. (25) and
(23), it is clear that V(e) depends on parameters c, and
c2, and so e(g), A (g), and I(g) depend on the three real
parameters, go, c„and c2. These parameters can be
determined at a given incident angle and intensity, i.e., a
given value of 0 and Bo, by solving the set of three equa-
tions, Eqs. (38), (41), and (42).

Once these parameters have been determined, we can
calculate the internal field distribution, and the effective
dielectric constant within the film. The fourth integra-
tion constant, the phase constant $0, can be calculated
from Eq. (37). The result gives

Because of the apparent complexity of the above de-
rived results, we will describe in detail here how these re-
sults can be used to compute physical quantities of in-
terest. As we have pointed out before in our work on the
corresponding TE problem, computation can be made
relatively easier if one chooses an appropriate parameter.
For TE waves, the best choice for the parameter is the
value of the electric field at the film-substrate interface.
For TM waves here, we find that the best choice is to use
the value of the dielectric function, e(gd ), as g ap-
proaches the film-substrate interface from within the film.

With this value we can calculate A(gd ) from Eq. (23).
The two integration constants, ci and cz are then deter-
mined, respectively, from Eqs. (42) and (21) by setting

The form of the potential in Eq. (25) is then com-
pletely known. By integrating Eq. (26) with the choice
go=gd we obtain e(g), which then yields the magnetic
field within the film from Eq. (23). By integrating up to
/=0, we can also get e(0) and A(0). The incident mag-
netic field that gives rise to this internal field is then ob-
tained from Eq. (38). The reflection coefficient can be
computed as a function of the incident intensity using Eq.
(45).
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V. REFLECTION COEFFICIENT FOR KERR MEDIUM

a=co++I .

The first integral in Eq. (21) then becomes

E( E Eo) + 2CKCp6

2a(2i)' —e )
(49)

Using this result we can easily derive the potential func-
tion using Eq. (25). In order to make the resulting ex-
pression appear less complicated, we introduce new vari-
ables and parameters. The new variable x, defined so that

@=co(1+x), (5O)

We will apply our analytical results to a Kerr medium
in which the dielectric function is given by

2a=~
E0

(51)

The two integration constants, c, and c2, are replaced by
p and q so that

2cKc i

0

20!c2
2

60
(52)

In these definitions we have assumed that e0 is positive.
In addition, if we redefine g as pl+co then the potential
function can be expressed as

measures the deviation of the dielectric function from the
linear value. A parameter a, which measures the angle of
the incident wave, is defined by

V(x) = —(2a —1 —x) (1+x)i 2x (1+x)(2a —1 —x)[(1+x) —1+q]—a [(1+x) —1+q] —p (2a —1 —x)
2[3a (1+x) —(1+x) —a (1—q)]

(53)

In Fig. 1 we show the result for the re Aection
coefficient as a function of the incident field intensity.
The parameters we have chosen are e, =@3=3.0, @0=2.5,
d/X=2, and an incident angle such that a =1.59. The
incident intensity is normalized to the value of the non-
linear coefficient a, which we have taken to be positive.
The reAection coefficient clearly shows optical bistable
behavior as the incident field intensity is varied.

VI. LINEAR REGIME

It is interesting to see how the classical Fresnel
coefficients can be obtained within our present frame-

work in the linear limit. In this limit x is small. Clearly,

p and q are of the same order as x. For the potential we
only need it up to second order in x. The result from Eq.
(53) is

V= —
—,'(a —1)x +qx —aq —p (2a —1) (54)

With V only quadratic in x, Eq. (54) can easily be in-
tegrated analytically. We consider the case where a (1,
which means that we are not in the total internal
reAection regime. The solution is

x = t(2a —1)Pcos[2&1—a (g —gd)] 'j, (55)
4(1 —a)

where

0.9-

2 1/2

P=— 1 —4(1—a) (56)

0.8-
a) 0.7-
O

0.6-
O" 0.5-
C0

0.4-
Q)

0.3-
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0.2-
0.1-

'0 2 3 4 5
incident field intensity

7x10

From Eq. (49) the magnetic field within the film is found
to be given by

IPcos[2&1 —a (g —gd)]I .
4a(1 —a )

(57)

The constant, p, can be calculated using the above equa-
tion and Eq. (56). The result is

@0k3,
—e3k2,2 2 2 2

~0k 3z +63k 2z

Using this result we can write

FIG. 1. The reflection coefficient for TM plane wave incident
on a film with a positive Kerr nonlinearity. The parameters
chosen are: e&=@3=3.0, @0=2.5, d/A, =2, and a =1.59. The
incident intensity is normalized to the value of the nonlinear
coefFicient a.

qE'063k3z k2z

/0k 3z +g3 k 2z
2 2 2

(59)

The incident magnetic field can be calculated using Eq.
(38). The result, to the lowest nontrivial order is
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4k 1.&o =
2(epk 3, +E3k z, )

(60)

X 2epE~E3k~ k3
& [Epk2 (63k] +E~k3 )+(Epk~ E&k2 )(E'pk3 63k2 )sin (&1—a gd)]

Eok2,
(61)

Finally, using Eqs. (45), (59), and (60), we obtain the classical Fresnel formula

Irl'=1—
+ +

EO E1 E3 E2
1

k1, k3,
4

k2,
2

Ep

k2,
2

Ep

k3,
2
3

2k,
sin (Vl —a gd )

Eo

(62)

The corresponding result for the reAection coefficient in
the total internal reAection regime can also be derived.

VII. SUMMARY AND CONCLUSION

We have shown that the problem of the scattering of
TM plane waves with a nonlinear film having an intensity
dependent dielectric constant can be solved in quadra-
tures, without even having to specify the precise form of
the dependency. The integration constants can all be
determined unambiguously through the boundary condi-
tion. Results for the internal field distribution, the

reAectivity, and other interesting quantities, can then be
calculated. The computation is especially easy if all the
physical variables are parametrized in terms of e(gd).
Application of our derived results to the case of a Kerr
medium is also presented.
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