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Molecular-dynamics study of lattice vibrations in the mixed crystal Ko 5Rbo 5C1
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We have performed molecular-dynamics simulations on a system of 512 ions arranged on a sodium
chloride lattice, consisting of 256 chlorine ions, and a random mixture of 128 potassium ions and 128 ru-

bidium ions, interacting through Coulombic and short-range rigid-ion potentials. Results are presented
for the scattering function S(Q, cv) for a range of wave vectors, and for the Fourier-transformed
velocity-velocity autocorrelation function. Peaks in the scattering function for the mixture are broader
than those of pure KC1 and are in some cases split.

I. INTRODUCTION

The vibrational properties of mixed crystals of alkali
halides have been widely studied experimentally by both
optical methods' and neutron inelastic scattering.
The optical measurements give results primarily for the
long-wavelength modes of vibrations. The results for a
large number of alkali halides and other diatomic materi-
als have led to a classification of the compounds into one-
and two-mode materials. In the one-mode case the sys-
tem appears to show a single infrared absorption mode,
whose frequency changes smoothly as the proportions of
the mixture change, from the value appropriate to one
pure substance to the value measured for the other pure
substance. In two-mode materials there appear to be two
resonance frequencies, at frequencies close to those of the
two pure materials. Neutron-scattering measurements
can explore the whole Brillouin zone, but the results
currently available are more limited. A preliminary
study on potassium-rubidium bromide was remarkable
mainly for a strong resonance in one of the acoustic
branches. The present calculation shows a somewhat
similar behavior. More complete data are now available
for potassium-rubidium iodide, potassium-rubidium
chloride, and potassium-chloride bromide. Interesting-
ly, in the last work, the authors found qualitatively simi-
lar results for a11 materials, even though potassium-
rubidium chloride is classified optically as a one-mode
material, while potassium-rubidium iodide is two mode.
In all cases many of the peaks in the scattered neutron in-
tensity were split into two. It should be noted though
that they were also broadened and of low intensity so that
they were not well defined. In our results we find a small
number of peaks which are clearly double, but many
which are extremely broad and deformed.

The theoretical analysis of the long-wavelength optical
modes has been mainly through empirical models, espe-
cially the modified random-element isodisplacement mod-
el. ' Several criteria have been proposed to predict
whether a material should show one- or two-mode behav-

ior. These calculations are not capable of giving de-
tailed predictions of line shapes or of dispersion relations.
Taylor has applied the coherent-potential approximation
to the alkali halides. This is, in principle, a more funda-
mental and complete approach, but so far numbers have
been obtained only for the long-wavelength modes and
including only mass disorder.

The molecular-dynamics technique is ideally suited to
the study of disordered crystals, since the method makes
no use of the periodicity of the perfect structure. The
calculation for a discorded crystal is no more demanding
than that for an ordered crystal. It is also the only tech-
nique which yields results for the scattering function
S (Q, co) which are exact within the, admittedly large, nu-
merical uncertainties. Jacucci, Klein, and Taylor' have
used the method to study an alloy of potassium in rubidi-
um metal, and there have been studies of structural trans-
formations in mixed cyanides" and of the glass transition
in potassium-calcium nitrates. ' We apply the technique
here to a rigid-ion model of Ko 5Rbo 5C1, which is one of
the crystals studied by Beg and Kobbelt. Because of the
use of the rigid-ion model, the calculated frequencies can-
not be expected to agree well with experiment. Neverthe-
less, our results will show the type of behavior to be ex-
pected of a generic mixed alkali halide, and this should be
of value to future experimental investigations.

II. DETAILS GF THE MODEL

In setting up the computer program, we wished to use
a model which could be applied to a variety of mixed al-
kali halide crystals. There have been several attempts to
derive families of interatomic potentials, notable by Fumi
and Tosi, ' Sangster and Dixon, ' and Catlow, Diller,
and Norgett. ' The latter two investigations obtained
shell parameters for the polarizable ions, but in the work
of Cat1ow, Diller, and Norgett the interatomic potentials
were determined first, from the structural and elastic
properties, and the shell-model parameters then chosen
to fit the optical and dielectric properties. In the present
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FICx. 1. Dispersion relations in the [100] and [111]directions
for pure KC1. Dashed lines are experimental results, solid lines
are quasiharmonic calculations for the rigid ion model, and dots
are the center of peaks in S(Q, co).

work we have used only a rigid-ion formalism, though we
aim to extend the calculations to a shell model in the near
future. For the interactions between like ions, and be-
tween alkali and halogen ions, we have used model 2 of
Catlow, Diller, and Norgett. In this model the interac-
tions between positive and negative ions are written in
the Born-Mayer form, while the interactions between like
ions are exponential at short distances and 1/r at large
distances, with two regions represented by polynomials in
between. The formal ionic charges of +e were used. We
can expect this model to give a good description of the
elastic properties, but the optical frequencies are left to
fall where the rigid-ion model leaves them. Typically,
this means that the longitudinal-optic branches are too
high, and in pure KC1 the LA branch in the [100] direc-
tion does not have the correct shape. The quasiharmonic
dispersion curves for the model of pure KC1 are shown as
solid lines in Fig. 1 for the two principal symmetry direc-
tions. Also shown are the experimental curves' as
dashed lines and, as dots, the centers of the peaks in
S(Q, co) found in the molecular-dynamics calculation,
which was at 300 K. It can be seen that for the acoustic
branches and transverse-optic branch the frequencies are
barely shifted at room temperature from the quasihar-
monic values. For the longitudinal-optic branch, the
shifts are noticeable, and as will be shown later, the peaks
are also broadened.

For the mixed crystal we also require potentials be-
tween ions of different species on the same sublattice, that
is, between the potassium and rubidium ions in the
present case. In the rigid-ion approximation the
Coulomb interactions between both species of positive
ion are the same, but for the short-range terms we have
to resort to general ideas regarding such mixed interac-
tions. ' The parameters A and C of the interaction are
approximated by the geometric average of the interac-
tions for the two separate ions, and the parameters
p, r„rb, and r are approximated by algebraic means.
This type of approximation has not worked well in situa-

tions where it has been carefully tested, ' ' but it seems
to be the best we can do at the present. In the present ap-
plication the largest second-neighbor interaction is in the
chlorine sublattice, which is not disordered, and the un-
certainty in the potassium-rubidium interaction is unlike-
ly to matter.

III. MOLECULAR-DYNAMICS TECHNIQUE

The general features of the molecular-dynamics
method have been described by Allen and Tildesley.
We performed molecular-dynamics runs for two systems,
each consisting of a cube of 512 ions, as well as a number
of runs with smaller samples. One system was a crystal
of pure KC1 with nearest-neighbor distance ro, of 3.116A.
The other had equal numbers of potassium and rubidium
ions randomly positioned on the positive-ion sublattice,

0
with a nearest-neighbor distance of 3.1875A, which is the
mean of the values for pure KC1 and pure RbC1. The
ions were initially at their equilibrium positions in the
pure crystal, with a distribution of velocity components
such that the center of mass was stationary and the sum
of the kinetic energies was equal to the expected internal
energy of the crystal at the desired temperature of 300 K.
For the alkali halides this is very close to the equiparti-
tion value so that only one adjustment of the energy was
required in each case. The equations of motion for the
sample were integrated using the velocity-Verlet algo-
rithm with a time step of 0.01 ps. The first 500 time
steps were discarded. The kinetic and potential energies
and pressure had stabilized by this time. For both sam-
ples the pressure was zero within the statistical uncertain-
ty. The equations of motion were then integrated for a
further 10000 time steps, while the positions and veloci-
ties were recorded every other time step for later analysis.
The temperatures of the two samples over the complete
runs were 299.0 and 299.4 K, respectively. During the
equilibrating period, the ions also adjust their average po-
sitions to correspond to the disordered material. The cal-
culation of the forces, including the Coulomb contribu-
tions, is carried out exactly for the actual positions of the
ions.

The short-range forces were included for all neighbors
with equilibrium separations up to 3Io and the electro-
static forces were evaluated using the Ewald technique.
It now seems established ' that the well-known expres-
sion for the electrostatic energy as sums over neighbors in
real space and over reciprocal lattice vectors is complete
only if the surface of the sample is covered with a con-
ducting layer. For a specimen in vacuum there is an ad-
ditional term, depending on the instantaneous dipole mo-
ment of the specimen and the shape-dependent depolari-
zation factors. In an earlier molecular-dynamics simula-
tion of pure sodium chloride, we omitted this term and,
as a consequence, obtained a triply degenerate optical fre-
quency at q =0 corresponding to the transverse-optic
mode. It is known that, for wavelengths which are
small compared with the size of the specimen and com-
pared with the wavelength of light of the same frequency,
the longitudinal-optic branch has a frequency which is
substantially raised above that of the transverse-optic
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and in Figure 5(b) for the longitudinal modes„at a wave
vector of (6,6,6). In each case there is a double peak. A
complication is that the separation of the acoustic and
optical frequencies is very small in pure KC1. However,
we can clarify the theoretical results by repeating the cal-
culations with the chlorine scattering length set to zero.
These results are shown by the dashed lines in the figure.
It appears that the double peaks are chlorine vibrations
to be associated with the optical modes, while the acous-
tic modes have been degraded into a low, broad max-
imum in the transverse case, and there is no identifiable
peak for the longitudinal-acoustic mode.

The optical modes at the zone center are also especially
interesting since they are accessible by optical measure-
ments. Figures 6(a) and 6(b) show the transverse- and
longitudinal-optic modes for pure KCI, and Figs. 6(c) and
6(d) show the results for the mixed crystal. In all cases
the one-phonon approximation is used. The transverse
peak in the mixed crystal shows some evidence of split-
ting, while the corresponding peak for the pure crystal is
well shaped. The LO mode at the zone center is the
highest-frequency mode in the crystal and is also the
mode most strongly affected by anharmonicity. Our re-
sult for the pure crystal is unusual. The secondary peaks
at frequencies below the main peak are not a result of the
damping procedure used. We have tried a variety of
damping and truncation techniques and find that these
peaks persist. They may, however, be a consequence of
the small sample size used. In the mixed crystal the peak
shows the additional broadening due to disorder.

The neutron-scattering study on Ko ~Rbo 5Cl showed a
double peak for the TO mode, while it is observed opti-
cally to be single. ' In an attempt to resolve this question,
we also calculated the Fourier transform of. the auto-
correlation function of the dipole moment of the sample.
This is, in fact, very similar to the calculation of S(g, co)
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in the one-phonon approximation, except that the ionic
displacements are weighted by the charges instead of by
the scattering lengths. The resulting curve for the mixed
crystal, shown in Fig. 7, is quite similar to the neutron-
scattering peak in Fig. 6(c). It shows a considerable
width and some suggestion of splitting. Whether this
would be interpreted as one- or two-mode behavior is not
clear.

Because of the restricted set of wave vectors accessible
to us, we cannot make a detailed comparison with many
of the neutron groups shown by Beg and Kobbelt. They
do give a well-defined result for the transverse-optic mode
at a reduced wave vector (m/ro)(0. 7,0.7, 0), and we can
get close to this. Figure 8(a) shows the experimental re-
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FIG. 7. Fourier transform of the autocorrelation function of
the sample dipole moment.
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FICx. 6. S(Q, co) for zone-center optical modes. (a) and (b)
are TO and LO modes for the pure crystal; Ic) and (d) are for
the mixed crystal. A one-phonon approximation was used.

FIG. 8. Comparison of the experimental TO neutron group
at a reduced wave vector of (vr/ro)(0. 7,0.7,0) with S(g, co) cal-
culated for a reduced wave vector of (n/ro)(0. 75,0.75,0).
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suit, and Fig. 8(b) shows the calculate curve at a wave
vector (13,19,0), which corresponds to a reduced wave
vector of (m/ro. )(0.75,0.75,0). The calculated peak is
centered on too high a frequency, most likely as a conse-
quence of the rigid-ion approximation. The overall width
of the peak is in quite good agreement with the measured
peak, which contains additional broadening from the in-
strumental resolution. The calculated peak does not
display the dip in the center which Beg and Kobbelt
show, but we note that this dip is, in fact, based on a sin-
gle point and may not actually be so sharp as the line
drawn through the points indicates.

Finally, we show in Fig. 9 the results for the frequency
distribution function g(to) calculated from Eq. (1). Fig-
ures 9(b) and 9(c) show the Fourier transforms of the
mass-weighted velocity-velocity autocorrelation functions
for the ordered and disordered crystals, respectively. To
the extent that anharmonic effects are small, these should
be close to the distributions of normal-mode frequencies
for the two samples. To check this, Fig 9(a) shows a dis-
tribution calculated from the quasiharmonic frequencies
of the pure sample. To eliminate any differences arising
from the smoothing procedure used in the Fourier trans-
forms, each 5-function contribution to the distribution
function has been similarly smoothed. It can be seen that
the two results for the pure crystal are very similar, ex-
cept in the highest-frequency range corresponding to the

100-

50-

longitudinal-optic branches. Anharmonicity is not negli-
gible in this range. The result [Fig. 9(c)] for the disor-
dered crystal shows a general displacement to lower fre-
quencies, as is to be expected, but also has a rather struc-
tureless appearance. We suspect that this is characteris-
tic of a disordered material. An experimental measure-
ment which shows qualitatively similar behavior is the
early measurement of incoherent scattering from a Mn-
Co alloy by Stewart and Brockhouse.

V. DISCUSSION

As a summary of our results and in an attempt to un-
derstand them, we plot in Figs. 10 and 11 the central fre-
quencies of the calculated peaks together with bars show-
ing the half-height limits of the peaks. For clarity the
transverse and longitudinal modes are shown in separate
figures. The dashed lines are the dispersion curves in
pure KC1 and for pure RbC1, both calculated using the
rigid-ion model, at the lattice spacing used for the disor-
dered crystal. For the optical modes the difference be-
tween the two curves is quite comparable with the width
of the peaks in the disordered crystal, but most of the
acoustic modes are sharper than this criterion would in-
dicate. The solid lines are a quasiharmonic virtual crys-
tal calculation, using the averages of the force constants
and masses for the two pure crystals. The lines are close
to the centers of the peaks in the scattering function with
the exception of the longitudinal-optic branch, which has
a large upward anharmonic shift, and the longitudinal-
acoustic modes in the vicinity of the resonance in the
[100]direction.

As far as the distinction between one- and two-mode
materials is concerned, our results do make clear that all
the optical modes in the disordered material have consid-
erable width. But it seems unlikely to us that a material

a

50- [~ oo]

50-

0
0 2 3 4

u) (1013 sec —1)

FIG. 9. (a) Density of states calculated or the rigid-ion model
of pure KC1. The curve has been convoluted with a gaussian
function corresponding to a decay time of 2 ps. (b) Fourier
transform of the mass-weighted velocity-velocity autocorrela-
tion function for the pure KC1 crystal. (c) Fourier transform of
the mass-weighted veolicty-velocity autocorrelation function for
the mixed crystal.
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FICx. 10. Frequencies of transverse modes in the two princi-
pal symmetry directions. Dots show center of peaks in S(g, co),
and error bars show half-height limits. Solid lines are a
quasiharmonic virtual crystal calculation, and dashed lines are
quasiharmonic frequencies for the two pure crystals.
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division into one- and two-mode materials may be too
oversimplified to be useful.

Our calculations were carried out for a sample of 512
ions. This is quite small, and as we indicated earlier, the
result for the long-wavelength LO mode in the pure sam-
ple may be affected by the small number of modes. How-
ever, in most respects our results are qualitatively similar
to those we obtained with an even smaller sample, of 216
ions, and are thus a legitimate demonstration of what can
be expected of real materials.

In summary, we have used molecular-dynamics calcu-
lations to probe the values of dynamical response in
mixed alkali halide crystals. Peaks in S(Q, co) are broad,
even at room temperature, with indications of a structure
more complex than with just two or one peaks.

FIG. 11. As in Fig. 10, but for longitudinal modes.
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