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A three-dimensional Landau-Ginzburg model has been constructed to describe the tetragonal twin
structures resulting from a first-order O,-C,, proper ferroelectric phase transition in perovskites. The
model takes into account the nonlinear and nonlocal characteristics of the polarization (order parame-
ter) as well as the electromechanical coupling. Quasi-one-dimensional (Q1D) analytic solutions for the
space profiles of the order parameter are obtained for a 180° twin and for a charge-neutral 90" twin with
a special choice of parameters. Without the presence of interfacial defects, such as dislocations, the Q1D
solutions require the support of inhomogeneous mechanical constraints. Elastic deformation and dimen-
sional changes associated with the twin structures, and their implications on the piezoelectric effect in

ferroelectric ceramics, are also addressed.

I. INTRODUCTION
Many important ferroelectric materials, such as
PbTiO,;, BaTiO;, (Pb,_,Zr,)TiO; [PZT], etc., have
perovskite structure ( ABX;).! The prototype phase is
cubic with symmetry group O,, which transforms to a
ferroelectric tetragonal (C,,) or rhombohedral (Cj,)
structure upon cooling. In certain materials there are
several low-temperature ferroelectric phases, so that the
stable structure of a material depends on the given tem-
perature range.

These thermally induced structural phase transitions
are usually displacive, and there are several low-
temperature variants associated with each phase transi-
tion. For instance, there are six and eight variants in the
tetragonal and rhombohedral phases, respectively, upon
transforming from cubic. These variants are energetical-
ly equivalent; therefore, twinning between these variants
is a common phenomenon under natural conditions. For
single crystals with free boundary conditions, twinning
may be eliminated through (electric or mechanical) field-
induced domain switching between these low-
temperature variants. However, twinning cannot be el-
iminated for a confined system, such as grains in a ceram-
ic, because unit-cell distortions are usually associated
with these ferroelectric transitions, domain switching
could generate large elastic energy. Although, for some
materials, a single phase may be achieved under a very
large electric field, twinning will reappear when the exter-
nal field is removed in order to release some of the elastic
strain so as to minimize the total system energy. For oth-
er materials, twinning cannot be driven out by the elec-
tric field before the solid is shattered.

The existence of these twinning structures often
changes the mechanical and electrical properties of a fer-
roelectric material substantially. There are considerable
experimental studies being carried out in this regard®3
and some phenomenological theories were also
developed.*"® However, in order to understand the
physical process associated with the twinning
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phenomenon, one has to go down to the microscopic lev-
el to see how the lattices move in forming a twin struc-
ture and how they interact with each other. To this end,
it is essential to know the structure of a twin boundary,
including its stable space profile, energy density, and as-
sociated elastic distortions. In this paper, we will calcu-
late these physical properties for a ferroelectric twin
boundary by using a Landau-Ginzburg type of continu-
um theory. The problem we are dealing with is a first-
order cubic to tetragonal proper ferroelectric transition,
which appears in systems such as BaTiO;, PbTiO;, and
some PZT compositions.

There are six tetragonal variants upon transforming
from cubic; they can form three different kinds of twin-
ning structures: (1) 180° twins, for which the polariza-
tions in the two domains have the same magnitude but in
opposite directions, (2) 90° twin with a charge-neutral
domain wall, for which the polarizations in the two
domains are (almost) perpendicular to each other with
head to tail configuration, and (3) 90° twin with a charged
domain wall, for which the polarizations in the two
domains are perpendicular to each other and with either
head-to-head or tail-to-tail configurations. It has been
verified that the third kind of twin structure is unstable
and will transform into the second kind with a zigzag
twin boundary.’

Several authors® ~1° have attempted to model the struc-
ture of ferroelectric domain walls by using the Landau-
Ginzburg theory; however, those models are either one
dimensional or three dimensional with gradient terms in
the free-energy expansion not obeying the symmetry re-
quirement. Moreover, the focusing point was on the first
kind (180°) of twins only. It has been pointed out that a

. one-dimensional model is not adequate for describing a

three-dimensional solid.!! A  quasi-one-dimensional
(Q1D) solution can be obtained only under certain con-
straints when unit-cell distortions are involved. We have
taken all of these points into account in our three-
dimensional model described in this paper, which can
give a full description of both the first and the second
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kind of domain walls mentioned above. Analytic expres-
sions of the order-parameter profiles for a 180° twin and a
90° twin were derived, although special parameters were
chosen in order to get the 90° twin solution. The bound-
ary conditions and the associated shape change were also
addressed in our model. The expansion coefficients in the
free-energy equation (2.1) can be determined experimen-
tally, which enables one to apply the present model to a
real system.'?

This paper is divided into six sections. We introduce
the theoretical model in Sec. II. Sections III-V are the
solutions for the tetragonal phase with a homogeneous
structure, 180° twin, and 90° twin, respectively. Section
VI contains the summary and conclusions.

&

II. THEORETICAL MODEL

The order parameter for describing the O,-C,, proper
ferroelectric phase transition is the polarization vector P.
The free-energy density, which is invariant under O,
symmetry, can be written as

F(Pi’Pi,j’nkl):FL(Pi)+FeI(nkl)

+Fc(Pi’nkl)+FG(P[,j) . (2.1)

We should emphasize here that P is the material measure
of polarization which ensures the invariant nature of the
free energy.!® The first term in Eq. (2.1) is the Landau-
Devonshire free energy:

F (P)=a;(P}+P}+P})+a, (P} +P+P3)2+a,,(PP3+PiP: +P2P3)+a,,(PS+PS+PS)

+a;,[P}(P2+P3)+P5(P3+P%)+PY(P?+P3)]+a,,,PiPiP?

(2.2)

where a,; is negative for describing a first-order transition. The second term in Eq. (2.1) is the elastic energy of the sys-

tem,

Cll

Fy(n)= )

(77%1 +77%2+77§3H‘ C12(7711"722+’7117733+77227733)+2C44(77%2+’7%3+77%3) .

(2.3)

N =3 U Hug ) (k,1=1,2,3) is the linear elastic strain tensor which serves as a secondary order parameter here, u;
is the component of elastic displacement, C;; are the second-order elastic constants. The third term in Eq. (2.1)
represents the coupling between the primary and the secondary order parameters:

Fc(Pi:nkl):_QII(WIIP%+7722P%+7733P§)_qlz[nll(P%+P%)+n22(P%+P§)+7733(P%+P%)]

—2G44(12P1 Py +113P 1 Py +1y3P, Py)

g;; are the electrostrictive constants. The fourth term in
Eq. (2.1) is the gradient energy of the lowest-order com-
patible with the cubic symmetry, which has the invariant
form

Fg(P, ;)=1g, (P}, +P3},+P3;)
+81(Py 1 Pyyt Py P33+ P, 5P 3)

g
+"2ﬁ[(P1,2+P2,1)2+(P1,3+P3,1)2

+(Py3+P3,)] . (2.5)
All the expansion coefficients in Egs. (2.2)—(2.5) are as-
sumed to be independent of temperature except a; in Eq.
(2.2), which signifies that the transition is proper fer-
roelectric.

For convenience we define the following new constants:

¢, =C,+2Cy,, (2.62)
Cn=C,—Cyy, (2.6b)
41=911 129, » (2.7a)
9»=911— 412 - (2.7b)

(2.4)

f

They are the bulk and shear elastic constants and elec-
trostrictive constants, respectively.

III. STATIC EQUILIBRIUM CONDITIONS
AND THE HOMOGENEOUS SOLUTIONS

The static equilibrium conditions can be derived from
the total energy expansion by using variational method,
which gives rise to the Euler equations for the primary
and secondary order parameters:

d oF oF

W ap | Tap 0 L= 3.1
ax, |ap,, | ap, O (HITL2Y, (3.1)
totzi JF _ C

" 3x, | an, 0 (i,j=1,2,3). (3.2)

The Cauchy stress tensor 0" includes contributions from

the pure elastic response and the electrostrictive effect.

In order to avoid the complication of defects, we only
consider the case for which no dislocations and disclina-
tions are generated in the structural phase transition,
which means that the following compatibility relations!*
must also be satisfied:

eiklejmnnln’k"':O (i,j,k,l,m,n=l,2,3) , (3.3)



44 THEORY OF TETRAGONAL TWIN STRUCTURESIN . .. 7

where €;;, is the permutation symbol (or Levi-Civita den-
sity).

For a homogeneous system, all physical quantities are
uniform in space, hence, Eq. (3.3) becomes trivial and
Egs. (3.1) and (3.2) reduce to the following simple equa-
tions:

oF

I — 34
aP, 0, (3.4)
o' =const=0 . (3.5)

ij
We have set the constant in Eq. (3.5) to zero, assuming
that the system being studied is free of external stresses.

Equations (3.4) and (3.5) can be easily solved, there are
four different temperature ranges which we will discuss
separately. It is customary to assume that o; depends
linearly on temperature, i.e., a;=ay(T —T,), where « is
positive definite, then the solutions for the homogeneous
system are the following.

(i) For T > T'| where

v 2

an
Tw=Ty+——,
3apayy
2 2
A, q11 9%
an=an— 5~ ’
6C,, 3C,,

P,=0, 7;=0 (i,j=1,2,3), (3.6)

only the cubic phase exists.
(i) For T,>T>T,, where T,=T,+a};>/4aya,
there are two solutions:

(a) P,=0, ;=0 (i,j=1,2,3) 3.7
and
(b) P=(=£P,,0,0),(0,%P,,0),(0,0,%P,) (3.8)
with
—aj +ah 2= 3ayay) 2 |
P, = 11 11 12111 ’ (3.9)
3oty
P} [@11 2g,, J
U + s (3.10)
3 6n é22
P} n 9» ]
nw=—\l=—=1, (3.11)
3 é11 é22
7, =0 (i%j). (3.12)

Here 1, and n, are the normal strain components in the
directions parallel and perpendicular to the tetragonal
axis in each of the three tetragonal states, respectively.
Solution (a) represents a thermodynamically stable cu-
bic phase and (b) indicates that an additional tetragonal
metastable phase also exists in this temperature region.
This metastable phase can be stabilized to become the
ferroelectric phase with further cooling. T, is the phase-
transition temperature at which the free energies of the

cubic and tetragonal phases are equal.

(iii) For T, =T > T,, solutions (a) and (b) in (ii) exist,
but in this temperature region the tetragonal phase be-
comes thermodynamically stable and the cubic phase be-
comes metastable.

(iv) For T < T,, only the tetragonal phase exists [solu-

tions (b) in (ii)].

IV. 180° TWIN SOLUTION

Twinning exists because of the coexistence of several
energetically degenerate variants in the low-temperature
phase. The domain wall represents a transition region be-
tween two tetragonal variants, where the lattice structure
is distorted, so that the formation of domain walls intro-
duces inhomogeneity to the system. The 180° twins
represent one kind of inhomogeneous structure, which
consists of two variants whose polarizations are 180° out
of phase. The tetragonal axes of these two domains are
the same. A continuous space profile of a 180° twin can
be obtained by solving Egs. (3.1)—(3.3) under specified
boundary conditions. Taking, for example, the two vari-
ants (0,0,%=P;) to form a [100] 180° twin, the boundary
conditions are

lim Py(x,)=+P, , @.1)
xl—»ioo

lim oi(x)=0 for ij=11,22,33, (4.2)
xl—-»_oo
U}?t(xl)z() for ij=23,13,12 . (4.3)

Here Eq. (4.1) states that the polarization component
P;(x) should match one of the two values corresponding
to the two variants far from the domain wall; Egs. (4.2)
and (4.3) represent, respectively, that the system is free
from mechanical stresses in the homogeneous region
(|x1|—> oo ) and there are no shear stresses in the entire
system.

We assume a Q1D solution exists and make the follow-
ing ansatz for the primary and secondary order parame-
ters,

P=(0,0,P;(x,)), (4.4)

nij:’f],-j(x,) . 4.5)

Substituting Egs. (4.4) and (4.5) into Egs. (3.1)-(3.3) gen-
erates a second-order nonlinear differential equation for
P(xl )

2a1+P3+4a1+1P§+6amP§—g“P3,“=O (4.6)
with
C C
+_ 22 12
oy =ay— | —qpmt |gn——=—4q |7|, &7
1 1 C“ 1271 11 C” 12 1
2
q
a1+1:a11 12 (4.8)

e,

Equation (4.6) has a kink solution!® which satisfies the
boundary condition (4.1)



Pysinh(x /& g0)
Pylx)= 4.9)
[ A +sinh (xl /§130)]
where sinh(y) is the hyperbolic sine function and
Veu
= , (4.10a)
Siso Py(6a,,, P2 +2aj;)!"?
(3a; Pi+aih)
A=—112 U (4.10b)

(2a;; P3+ai))

The elastic strain field associated with the 180° twin solu-
tion can be derived from Egs. (3.2) and (3.3) together with
the Q1D solution (4.9),

MN2="M1 > (4.11a)
N33=" » (4.11b)
P2
n“zm_g—li 1+ 4 —‘s,im;(x1 JE1xo) (@.11c)
112=0, (4.11d)
713=0, 4.11e)
1723 =0 . @.11f)

The kink solution (4.9) gives the continuous space profile
of polarization for a 180° twin in the tetragonal phase. A
planar domain wall which bridges the (0,0, —P,) and
(0,0, P,) states is located at x; =0 in our coordinate sys-
tem. Note that the strain components Egs.
(4.11a)—(4.11f) were derived under the assumption that
the twin structure is free of defects, i.e., the distortion
caused by the presence of a domain wall is purely displa-
cive, no atoms are lost or gained in forming the twin. It
can be seen from Egs. (4.11a)-(4.11f) that all the strain
components of a twin structure are the same as those for
a single domain tetragonal system except 7;; [Eq.
(4.11¢)]. In other words, the distortion caused by the
Q1D domain wall is only in the x; direction. The dis-
placement u with respect to the cubic structure can be
easily integrated from Eqgs. (4.11a)-(4.11d),

n,x,+Au
u= |1,x, (4.12)
mX3
with
_ 412 _, 1
Au=———P§& g€ arctanh | —tanh(x, /&5 | , (4.13)
Cu 3
11
a1+1 /2
&= |3+ 5 (4.14)
a, Py

Since the electrostrictive constant g, is usually negative,
there is an expansion in the x; dimension associated with
J

172 + 172 +2
(23} an

ap
—P
5 1o

3P+

g
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_aif-
day;

4
the 180° wall, with the amount of
q
AL1=-2i§1§|80arctanh 1 . (4.15)
Cu &1

It was proved!! that the dimensional changes are corre-
lated under the elastic compatibility constraints, Eq.
(3.3). Therefore, in order to sustain the displacive change
in the x; direction without affecting the other two dimen-
sions, we need to apply inhomogeneous stresses on the la-
teral surfaces; these required stresses are

(@22/C11)412P(2)
1+A“lsinh2(x1/§180) ’
[411_(C12/C11)‘112]P(2)
1+ 4 ~lsinh®(x, /£&,50)

tot —
0=

(4.16)

tot —
033 =

(4.17)

It is interesting to compare the 180° twin solution here
with the antiphase solution obtained in Ref. 16. Al-
though the forms representing the coupling between the
order parameter and the elastic strain were taken to be
identical (determined by the cubic symmetry) in the two
cases, the underlying physics is different. For the anti-
phase solution, the rotation axes of the octahedra are the
same in the two domains divided by an antiphase bound-
ary, which implies that the tetragonal axis must be per-
pendicular to the antiphase boundary plane; but, for the
180° ferroelectric twin discussed here, charge neutrality is
a prerequisite to ensure a stable static configuration,
which means that the polarization vectors and, hence, the
tetragonal axes of the two domains are parallel to the
twin boundary plane. As a consequence of this
difference, the normal-surface stresses required in the two
lateral directions for supporting the Q1D solutions be-
come distinct for the 180° ferroelectric twin but are the
same for the antiphase solution. Another obvious
difference between the two cases is the functional form of
the order-parameter profile: a ¢*-type kink (second-order
phase transition) in Ref. 16 but a ¢°-type kink (first-order
phase transition) in this paper. In addition, since the
coupling constants ¢;; and g, (B, and B, in Ref. 16)
have opposite sign, the antiphase boundary induces
shrinkage but the 180° twin boundary causes expansion in
the dimension along the twin (antiphase) boundary nor-
mal.

There is a certain amount of energy stored in the 180°
domain wall. We define the energy density per unit area
for a single domain wall to be E gy, which is a function of
temperature only and is given by

Ege= [~ (F—Fydx, . 4.18)
Here F is the energy density of a homogeneous system at
a given temperature. The integration of Eq. (4.18) can be
carried out by substituting the solutions (4.9)-(4.11)
into Eq. (2.1). After some algebra, a closed form can be
obtained,

P,
(2P3+af; /o )?

arcsinh (4.19)
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FIG. 1. 180° twin solution. (a) Illustration of polarization

and unit-cell distortion in a 180° twin structure represented by a
continuum solution. (b) Space profile of normalized polariza-
tion P/P, (curve 1) and normalized inhomogeneous com-
ponents of strain —(Cy,/q,P3)(n;;—7.), and stresses
(C“/@nan%)a‘Z‘;‘ and [qy —(C,/C1)q1, 17 'Py 0y (curve
2).

For T<T,, E3 is positive definite (see arguments
below), so that a twin structure has higher energy com-
pared to a single domain structure. As mentioned above,
external constraints are needed to stabilize base twin
solution; these are often provided by surface stresses or
intergranular interaction in a polycrystal (or ceramic)
system. It should be pointed out that defects play a very
important role in stabilizing the twin structures in a real
system, but it is beyond the scope of this paper.

In Fig. 1(b) are plots of polarization, strain, and stress
profiles in dimensionless form, each physical quantity has
been rescaled with a different scaling factor. The polar-
ization and unit-cell distortion represented by the solu-
tions are illustrated in Fig. 1(a).

a
Foy =a,(P}+P?)+a, (P2 +P2)*+ %(PE—P,Z)2+am(P3+P,2)3+

GSS
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V. 90° TWIN SOLUTION

The other type of stable twin structure in the tetrago-
nal phase besides the 180° twin is the 90° twin, which con-
sists of two domains whose tetragonal axes (or polariza-
tions) are (almost) perpendicular to each other. Since the
twin structure with charged twin boundary (with polar-
izations head-to-head or tail-to-tail) has additional
Coulomb energy, only the twin structure with charge
neutral boundary (head-to-tail configuration) is a stable
configuration for the 90° twin.

We consider a twin structure of the two following vari-
ants: P,=(P,,0,0) and P,=(0,P,,0), with the twin
boundary oriented in [110]. It is convenient to work in a
new coordinate system (s,7,x;) which is a 45° rotation of
the x,-x, plane around x;. The two coordinate systems,
the structure and the polarization configurations, are
shown in Fig. 2. We choose a system with its dimension
along the s coordinate much larger than the other dimen-
sions in order to set up the boundary conditions
(Lg~ o >>L,,Ly), and assume that the space profile of
the polarization vector of the system is quasi-one-
dimensional, i.e., it depends on the space variable s only.
Our goal is to seek solution of the kind
P=[P,(s),P,(s),0] for the 90° twin structure, which
satisfies the boundary conditions

lim P=(P,,0,0)

§—>— 0

and

lim P=(0,P,,0) .

s—+ o0

In order to use this Q1D nature to our advantage, we
will convert all quantities into the new coordinate system,
the polarization becomes P=[P(s),P,(s),0], and the free
energy of this 90° twin can be written as

app—3ay

2 (P{—P/)(P?—P})

+ 2 Psz,s+ 2rs Prz,s+Fe](77kl)+Fc(Ps’Pr777kl) (k,l=r,s,x3) ’ (5.1)
[
where lim 7, = lim 7, (5.3¢)
s—>t+ oo s—>t oo
G =(g11+81212844)/2, (5.22) =(m+n)/2, (5.3d)
Gr=(g11~812)/2 , (5.25) lim 7, =%(n,—n,)/2 . (5.3¢)

F,(n) and F.(P,P,,1) are the elastic and coupling
energies [Egs. (2.3) and (2.4)], respectively, in the new
coordinate system.

The boundary conditions as s — 1 oo are, for the polar-
ization and strain components, respectively,

I 0
lim P,=—+, 5.3
Sﬂlrjr:loc $ \/5 ( a)
1 0
1 _..+ .
s—-»hrilooPr - \/5 ’ (5.3b)

s—too

In addition, there should be no mechanical constraints in
the single domain states (s — =+ o) and no shear stress in
the x; direction. These arguments lead to the mechani-
cal boundary conditions

SErEwa};?‘(s)=O (i,j=r,s,x3), (5.4)
Us3=0r3=0 . (55)

The compatibility relations (3.3) give three nontrivial
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ri1101
X, [010]
= [
P. <]
[o]
/ SC1101]
X, [1001

FIG. 2. (001) cross section of a 90° twin crystal with a twin
boundary at s=0. The orientation of the new and old axes are
shown in the figure, and the directions of the polarizations in
the two domains are also indicated.

constraints for the twin solution. They are, in the new
coordinate system,

nrr,ss :O ’ (5.63)
M33,5 =0, (5.6b)
Nps,ss =0 - (5.6¢)

These equations (5.6a)—(5.6c) together with the boundary
conditions (5.3) and (5.5), can determine four of the six
independent strain components; they are

M3=n:3=0, (5.7a)
Ny =3(n+mn1), (5.7b)
N33="M, - (5.7¢)

These four components are constants in space since the
quantities 77, and 7, are functions of temperature only.
The other two of the six independent strain components
are inhomogeneous and strongly coupled to the primary
order parameter. From Eq. (3.2) and the boundary con-
ditions (5.4), we have

N =22 /Cy)PP, , (5.8)
Mes =51+ 1)
1
_ﬁ{(‘lu +¢1,)[P§—(P}+P})]
—qu(PZ—P})} , (5.9a)
where

By using these strain solutions and the definitions of 7,
and 7,, we can explicitly write the equilibrium conditions
(3.1) in the rotated coordinate system:

4“4
GssPs,xs =2a51PS +4ai1Ps3+4aSIrIPsPr2
+%(a111+a112)P55+(15‘1111_a112)Ps3Pr2
+1(15ay,—a,,)P, P}, (5.10a)
G, P, =2a}P,+4a},P}+4af,P,P?
“‘%(0‘111*‘05112)1)5"‘(15‘1111_51112)Pr3ps2
+1(15ayy,—a,,)P, P}, (5.10b)
where
2 2
1 91 1 9%
aj=a;— | +—>=—
3 611 6 é22
(g111t912)(q11 g1+ q4s)
- pP3, 5.11
ac, 0 (5.112)
2 2
1 9% 1 9%
3 é11 6 Cy,
(g11 912111912 G4s)
- P2, 5.11b
4C,, 0 ( )
(230 (411+412+444)2
R _+____ .
an=ap 2 8C., ) (5.11¢)
A (Q11+412—Q44)2
r = _+_____ .
ap—ap 4 8C, , (5.114d)
a (g1 1+q 2—q?2
o =ay, G2 411 T91) " das 92 (5.11e)

4 8C,, 26,

In general, Egs. (5.10a) and (5.10b) have to be solved nu-
merically. All the coefficients may be determined from
dielectric, electrostrictive, and elastic measurements, and
from phonon dispersion curves for a given system. We
will show this numerical procedure elsewhere.?

Putting the quantitative individual characters of each
specific system aside in the following, we will abstract the
common features of a 90° twin solution by choosing some
of the parameters to special values. For instance, if

=0, (5.12)
150, =a;12 » (5.13)

then we can obtain analytic solutions for P; and P, from
Egs. (5.10a) and (5.10b),

1
PS_—‘/E Py, (5.14a)
sinh(s /&)

P,=—p, - S0 —, (5.14b)

V2 7 [B+sinh’(s /&4) ]!
where

Eor= 1 G |7 (5.15a)

* Py 60y, Py tai, '
6a,, P3+a

= _ 1170 I (5.15b)

2 r°
4a;, Py taj;
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The two inhomogeneous strain components, Egs. (5.8)
and (5.9), now become

sinh(s /&qq)
o P2 , (5.16a)
Mrs =(422/2Cp %[ B +sinh(s /£qy) ]! ’
nssz%(n\|+nl)
PE ) 1
ac, InTInTdu 1+B ~Isinh(s /&g)
(5.16b)

Equation (5.16a) describes the shape change (or bending)
caused by the 90° twinning and Eq. (5.16b) indicates a di-
mensional change in the s direction with the total amount
of

§90P(2>
ALsz_ﬁ(qll+q12—q44)
B 1/2
X |—=——| Im(VB+VvVB—-1). (517
B—1
]
172 1/2
| Gx ayPo 2 ayy a%l
Ey= 3P;+
2a4y; 4 2ayy; 16cyy,

For a static configuration, Eq; >0, which may not be
obvious from Eq. (5.19) but can be proved to be true for
more general cases. According to definition we can write
the energy density of the 90° domain wall as

Egp= f ww[F(Pi,Pi,j)—FL(PO)]dS

=2f°°w[FL(P,~)-—FL(P0)]ds . (5.20)
Here Eqgs. (5.10a) and (5.10b) have been used, F; (P;) is
the Landau energy which has a minimum value F; (P,)
for T<T,,ie., F (P;)>F(P,) for P;#P,, therefore the
integral in Eq. (5.20) is a positive value, hence, Eq; > 0.
The same argument also applies to E g, obtained in Sec.
Iv.

Figure 3(a) illustrates the 90° ferroelectric twin struc-
ture and the associated elastic distortion. In the twin
boundary region, not only the rotation of polarization
vector occurs, the magnitude of the polarization also
changes in space as shown in Fig. 3(b). For the special
choice of parameters, Egs. (5.12) and (5.13), the magni-
tude of polarization is

(B /2)+sinh(s /&qy) |
.B +Sinh(s /§90)

|P|=P, <P,, (5.21)

which is less or equal to the polarization in the single-
phase region. For other choices of the parameters, or in
real system, Eq. (5.21) may not be true.

Note the mathematical forms of Eqgs. (4.15) and (5.17) are
interconvertible. The two position-dependent normal
strain components, which are required to support the
Q1D solution, are given by

2

P
o= : [2C (g1 +912) +(Cy; +C13)944]
4C
X N 1 , (5.18a)
1+ B ~'sinh?(s /&q)
P}
o= [—Caa(gq11—q4a) T (Cy; +2Ch4)q45]
4C,,
: (5.18b)

X )
1+ B ~sinh?(s /&y,)

Similar to Eqgs. (3.18) and (3.19), the energy density stored
in this 90° domain wall can be obtained from the analytic
solution, (5.14a) and (5.14b),

Py
(2P§+ai /2ay)"?

—af |arcsinh (5.19)

VI. SUMMARY AND CONCLUSIONS

Based on Landau-Ginzburg theory, a continuum model
has been developed for the twin structure in tetragonal

(a)

E (b)

Polarization

FIG. 3. 90° twin solution. (a) Illustration of the polarization
variation and unit-cell distortion. (b) Space profiles of the nor-
malized polarization components P, P,, and the magnitude P,
the parameters have been set to satisfy Eqgs. (5.12) and (5.13).
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ferroelectric perovskites, which is a three-dimensional ¢°
model with the primary order parameter chosen to be the
material measure of polarization. Under the assumption
of a coherent interface, the model can describe the O -
C,, first-order proper ferroelectric phase transition and
gives rise to the space profiles of a 180° twin and a 90°
twin with charge-neutral twin boundary.

The ferroelectric phase transitions are often accom-
panied by unit-cell distortions (in certain cases the distor-
tions could be very large); therefore, a proper ferroelec-
tric is usually an improper ferroelastic. The second-order
improper ferroelastic phase transition has been addressed
in Ref. 16; that model can also describe a second-order
ferroelectric phase transition with proper physical con-
straints, such as the orientational relationship between
tetragonal axes of domains and the twin boundary. For
the same reason, the ferroelectric ¢® model developed in
this paper may also be generalized to describe other im-
proper ferroelastic systems.

It is interesting to see that the coupling of the order pa-
rameter to strain has different effects in the case of
second-order and first-order phase transitions.!""!” The
transition temperature is the same for the former, but will
be shifted for the latter resulting from this coupling and
the imposed boundary conditions.

Due to the nonlocal coupling of the polarization, the
domain walls acquire finite width. In addition, as shown
in Fig. 3(a), the crystallographic symmetry is lower in the
90° domain-wall region. At the domain-wall center, the
structure is quasiorthorhombic, which implies that the
90° domain walls are natural nucleation sites for the
tetragonal-orthorhombic transition if the orthorhombic
phase happens to be the next low-temperature thermo-
dynamically stable phase.

We have also proved in Sec. V that both 180° and 90°
domain walls contain positive energy, so that the ex-
istence of a stable Q1D twin structure must be supported
by either inhomogeneous (internal or external) stress dis-
tribution or by defects. In a ceramic system the stresses
are provided by intergranular coupling. This implies that
the stress concentration at the grain boundaries is inho-

mogeneous.

An important application of any ferroelectric material
is based on its piezoelectric effect. Strictly speaking, the
macroscopic piezoelectric effect comes from two different
origins: For a single domain single crystal, the induced
strain is due to the direct coupling of the polarization to
the unit-cell distortion, which, in our case, is proportion-
al to the square of polarization. Therefore, the intrinsic
piezoelectric constants are proportional to the product of
the electrostrictive constants and the components of
spontaneous polarization. For a multidomain system,
such as a ceramic, there are additional contributions
from the motion of 90° domain walls, which can be un-
derstood from Fig. 3(a). We can clearly see a shape
change associated with the misalignment of polarization
vectors in the two domains. A lattice movement of an
entire domain in the direction parallel to the twin bound-
ary plane can be generated by the motion of a 90° domain
wall along its normal direction. We define this additional
piezoelectric effect as the “orientational effect,” it is ex-
trinsic in nature. The strength of this effect is determined
by the degree of unit-cell distortion (relative to the cubic
structure) and the maximum distance which a domain
wall can move without breaking the atomic coherency.
Except in a single domain single crystal, these two effects
exist simultaneously and interact with each other. In or-
der to analyze this complicated process, one must know
the detailed structure in the domain-wall region, which is
one of the achievements of the present work. We will
show in a forthcoming paper!? how to determine those
expansion coefficients from experiments so as to quantify
the atomic displacements in a ferroelectric twin structure
for a specific system.
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