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Nonlinearly coupled vibrational modes and self-trapped states:
Quantum Langevin theory and the single-vibron-oscillator case
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Very great difhculties face a full quantum-theoretical understanding of the problem posed by two non-
linearly interacting vibrational systems at finite temperature. Partial solutions have been obtained in
some cases by oversimplification of the defining Hamiltonian or by limiting the Hilbert space of the solu-
tion. In this paper we develop an approach to molecular-time-scale generalized-Langevin-equation
theory which avoids these approximations. The theory is then applied to the problem of a single-vibron
oscillator nonlinearly coupled to a linear chain of coupled molecules. The time correlation function
j'(t) =Re( [ c(t), c(0)]) is obtained and its valid time domain determined by comparison with an exact
solution of the problem. The valid time domain is shown to be long enough to determine accurate values
for the red shift and exponential decay of g(t) for a wide range of values of parameters including temper-
ature and strength of the nonlinear interaction. An unexpected result is that the exact solution exhibits a
slow power-law decay at very low temperatures.

I. INTRODUCTION

An important question in the physics of long chain
molecules and pseudo-one-dimensional solids is whether
self-consistent symmetry breaking can lead to the forma-
tion of localized states, and whether such states are stable
against quantum and thermal fluctuations, or at least
have a reasonable lifetime that is experimentaHy
significant. The possibility of such localized states was
brought into prominence by Davydov in several pa-
pers' where he proposed that such states might exist
on one-dimensional molecular chains such as the cz-helix
because of the nonlinear interaction of the intramolecular
carbon-oxygen amide-I stretching modes with low fre-
quency acoustic phonons. We will note later that low-
lying optical phonons encountered in molecular crystals
such as I-alanine can also lead to localized states through
nonlinear interactions with acoustic phonons. In the fol-
lowing discussion therefore we will more generally refer
to these amide-I stretching modes and low-lying optical
phonons as vibron modes.

Davydov proceeded from a simplified Hamiltonian,
H =H( phonon) +H(amide-I) +H(interaction), now gen-
erally known as the Davydov Hamiltonian, although a
similar Hamiltonian was introduced earlier by Frohlich.
In one approach Davydov solved this Hamiltonian sys-
tem approximately by introducing a product wave func-
tion generally known as the Davydov ansatz between a
sum of vibron states and a coherent state for the phonons
and examining equations of motion derived from the ex-
pectation value of the Hamiltonian taken with this wave
function. Within appropriate ranges of the parameters
defining the acoustic and optical excitations and the non-
linear interaction, Davydov found self-trapping of the

carbon-oxygen stretching mode energy by distortion of
the lattice. These self-trapped states are generally re-
ferred to as solitons though they may not have all the
properties of solitary waves.

The assumptions implicit in the Davydov Hamiltonian,
Davydov ansatz, the use of the Hamiltonian expectation
value, and the conclusions drawn from them have subse-
quently been challenged from several directions. The first
of these has been the introduction of an improved Hamil-
tonian by Takeno that more accurately describes the
physics of the vibron excitations and their interaction
with the phonons. In particular, it removes a restriction
implicit in the Davydov Hamiltonian that the number of
quanta contained in the vibron excitations is conserved.
Several papers have been written by Takeno and by
Wang, Brown, and Lindenberg that make various ap-
proximations, some more serious than others, to examine
localized state formation under the dynamics imposed by
the Takeno Hamiltonian. The general conclusion of
these papers is that solitons governed by the Takeno
Hamiltonian are more stable than those governed by the
Davydov Hamiltonian.

Davydov's results have also been challenged because of
his use of the product wave function mentioned above.
An extensive critique of this assumption has been given
in a series of papers by Brown, Lindenberg, and West '

who show that the product wave function cannot be a
solution of the Schrodinger equation, and that the
Davydov ansatz disagrees with exact results that can be
obtained in the immobile-exciton limit of the Davydov
Hamiltonian. Mechtly and Shaw avoid objections to the
Davydov ansatz by a method of solution based on a
time-dependent unitary transformation of the
Schrodinger equation. Their solution is of limited appli-
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cability because it is based on the Davydov Hamiltonian
and is restricted to one-phonon states. Another approach
by Wagner and Kongeter' is also limited by its use of the
Davydov Hamiltonian. A paper by Rhodes and Ni-
cholls" uses coordinate displacement operators to avoid
the Davydov ansatz and claims to show unequivocally
that solitons do not move coherently in the a-helix be-
cause vibron dispersion dominates the motion. This re-
sult is based on an optical phonon Davydov Hamiltonian
in which there is no dispersion in phonon modes, and it is
not clear the method used can be extended either to the
full Davydov Hamitonian with dispersion or to the Tak-
eno Hamiltonian. Moreover it appears to be concerned
with the dynamical motion of a single vibron excitation
and not the dynamics and lifetime of an extended soliton.

Another problem with the Davydov-Kislukla treat-
ment of solitons on the a-helix is its limitation to one-
quantum vibron states. ' An attempt at removing this
limitation has been made by Kerr and Lomdahl based on
a suggestion by Clogston. ' This may be an important
forward step in the theory because of the possibility that
multiquanta solitons are considerably more stable than
one-quantum solitons. ' ' This work has not yet been ex-
tended to the Takeno Hamiltonian.

Most of the work referenced above has been concerned
with systems at zero degree Kelvin and has not focused
on the problem of local state formation and decay at
elevated temperatures. Davydov made a calculation of
the e6'ects of temperature using a thermally averaged
Hamiltonian with results that suggest localized states
should continue to exist at temperatures near 300 K.'
Lomdahl and Kerr have used a finite-temperature molec-
ular dynamics approach to study high-temperature soli-
ton dynamics using the Davydov Hamiltonian. ' Their
general conclusion is that solitons formed in the e-helix
system have a very short lifetime of the order of a few pi-
coseconds at 300 K. This result is limited to the parame-
ters appropriate to the a-helix and is not necessarily
representative of localized state stability in other coupled
vibrational systems, particularly for reasons mentioned in
Table I. The calculation also makes use of the Davydov
ansatz and may not be representative for that reason.
Kerr and Lomdahl have also carried out numerical simu-
lations using the Takeno Hamiltonian and found, con-
sistent with earlier theoretical work, that solitons in this
case are more stable than Davydov solitons. ' In addi-
tion Kerr and Lomdahl' have performed a molecular dy-
namics calculation of Davydov solitons for multiple
quanta in the vibron system. With their parameters the
soliton lifetime is extended from about 3 ps for 2 quanta
to 15 ps for 6 quanta, which may be experimentally
significant in some cases. These results, however, are
again limited by use of the Davydov Hamiltonian and the
Davydov ansatz. Alexander and Krumhansl' have used
a variational approach at finite temperature for cornput-
ing the states of the Davydov Hamiltonian and find a sol-
itonic solution which produces a spectral intensity whose
temperature behavior matches well with the experimental
results of Careri et aI. ' on acetanilide. Their procedure
however does not provide for calculation of the lifetime
of the soliton state which must be introduced as an arbi-

TABLE I. Parameter values.

K (dynes/cm)
M (arnu)'
A'cop (cm ')
Ace, (cm ')
J (cm ')

y (dynes)

y (cm ')"

a-helix (Ref. 14)

13X10'
115

1650
88
7.9
0.62 X 10

12.7

l-alanine (Ref. 22)

17X10'
89.1

49
114

5.7
10 7 to 10 6c

0.2 to 2.0

'1 arnu=1. 6605 X 10 "g.
See Eq. (12) of text.

'This value is uncertain. In principle it can be calculated from
the geometric parameters of the l-alanine molecule but this has
not yet been done. The value quoted in the table is based on an
estimate in Ref. 22 of the minimum possible width of a stable lo-
calized state. In this reference it is also shown that
J ( I

& lp )g where (l ] lp) measures the compression or exten-
sion of the hydrogen bond between adjacent molecules in the
chain from its neutral length. This is expected to be a small
fraction of a lattice constant and is therefore consistent with the
values given in the table for l-alanine. It also shows that in
some molecular crystals J could be very small while y remains
significantly large. In the table co, [see Eq. (10)] is the maximum
frequency of the phonon spectrum. A significant difference be-
tween the case of l-alanine and a-helix is that in the former case
cop & co, while in the latter cop & co, .

trary assumption into their spectral function. Therefore,
one cannot determine whether their solitonic state is
short-lived or not. Cruzeiro, Halding et al. have also
studied the eAect of temperature on the Davydov local-
ized states using methods similar to Davydov' but with
no approximations made beyond that of the Davydov an-
satz. They conclude similarly to Davydov' that local-
ized states should be stable at 300 K. Another calcula-
tion has been made of the lifetime of a Davydov soliton at
finite temperature by Cottingham and Schweitzer using a
method of partial diagonalization of the Hamiltonian
without recourse to the Davydov ansatz. This ap-
proach is once again limited by its use of the Davydov
Hamiltonian. Their results generally agree with the
finding of Kerr and Lomdahl that room temperature o.'-

helix solitons dissipate in picoseconds but seem again to
be concerned with a single vibron excitation and not an
extended soliton.

In view of all these uncertainties one purpose of this
paper is to introduce a simple model that can be solved
by quantum Langevin theory for all temperatures
without recourse to the Davydov ansatz and for either
the Davydov or full Takeno Hamiltonian. As described
below this model involves a single vibron coupled non-
linearly to a one-dimensional chain of nearest-neighbor
coupled molecules. The emphasis will be on the coupling
of the vibron to the phonon manifold and in particular on
the red-shift of the vibron frequency and the linewidth (or
lifetime) of the vibron peak.

It is well known that the interactions of the carbon-
oxygen stretching mode (amide-I vibration) with phonons
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along one chain of the o.-helix leads to the Takeno Hamil-
tonian which can be written in the form

H =H(phonon)+H(vibron)+H(interaction),

where

exp[2irikn /(2%+ 1)]Pn= V'2X+ 1

1/2
AMcok

(ak+a k)

and

H(phonon) =g p„+—(q„+,—q„)„+

H(vibron) =+[A'coo(c„c„+—,
'

)

+J(c„—c„)(c„+,—c„+,)], (3)

and

x 2M' I,

exp [(2irikn /(2X + 1)]
qn ='

&2X+ 1

1/2

(ak a —k)

H(interaction)= ——g(ct —c„) (q„+&—q„&) .
n

(4)

we obtain

H =gficok(akak+ ,' )+%coo—(cc+—,
'

)

Here p„and q„are the momentum and displacement
operators of the nth molecule, M is the mass of the chain
molecules, and K is the spring constant of the force be-
tween molecules. The operators c„and c„are creation
and destruction operators for excitations on the nth oscil-
lator and J is the coupling constant between oscillators.
The factor g is the nonlinear coupling constant between
phonons and vibrons and has the dimensions of a force.
If the coupling terms in Eqs. (3) and (4) are truncated so
that

(Cn Cn )(Cn+) Cn+i) (Cncn+i+Cncn+i )

where

2Z 2~k
M 2N+1

1/2

with
1/2

K
co =2

M

and

+(ct—c) gfio. k(ak+a„),

~k
2X+ I

(8)

(c„"—c„) ~—(ctc„+c„ct),
then the Takeno Hamiltonian in Eq. (1) reduces to the
Davydov Hamiltonian. '

It is probably less well known, but the nonlinear in-
teraction between acoustic phonons and low-lying optical
vibrons acting along the chains in pseudo-one-
dimensional molecular crystals such as l-alanine leads to
the same Takeno Hamiltonian that applies to the a-helix
but with significantly different parameters. ' To illustrate
these differences and to provide a range of parameter
values to be used later in Secs. IV and V, a set of values
representative of the a-helix and of l-alanine is given in
Table I.

The Hamiltonian describing a single vibron oscillator
nonlinearly coupled to a phonon manifold is obtained
when the Hamiltonian of Eq. (1) is specialized to a single
oscillator located at site n =0. The coupling constant J is
then equal to zero so that the Hamiltonian of the prob-
lem becomes

H=g p„+—(q„+&—q„) +ficoo(etc+ —,')

——(c —c) (q, —q, ),
where a subscript has been dropped on the vibron opera-
tors and the index n runs from —N to N with N large. If
we now introduce second-quantized variables for the pho-
nons by the usual transformations

2y ~k
2N+1

' 1/2
mk

2N+1
2N+1

with
' 1/2

(12)

N is the (large) number of molecules in the chain. We
note that o.

k has the dimensions of a frequency. If the in-
teraction term in Eq. (8) is truncated so as to drop terms
in cc and c~c, the Hamiltonian becomes

H =+A'cok(akak+ —,
' )+ficoo(c c+—,

'
)

k

—(c c+cc )QAo. k(ak+a„)
k

(13)

which is a form of the Davydov Hamiltonian adapted to
a single-vibron oscillator. This Hamiltonian is identical
in form to the Hamiltonian assumed by Brown, Linden-
berg, and West to discuss the dynamics of polaron forma-
tion in the immobile-exciton limit. ' The Hamiltonian
of Eq. (13) is exactly soluble' as will be discussed
below and in Sec. III.

It was mentioned above that one purpose of this paper
was to bring quantum Langevin theory to bear on the
problem of a single-vibron oscillator nonlinearly coupled
to a one-dimensional phonon manifold. To this end we
have found it necessary to develop a new approach to a
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molecular time scale generalized Langevin equation
(MTGLE) theory which has proved to be particular-
ly powerful and convenient for this class of problem. The
second purpose of this paper is to present the details of
this new approach which will be done in Sec. II. The
method will be applied first in this paper to the Davydov
Hamiltonian given by Eq. (13) since this problem can be
solved exactly and can be used to test the results of the
Langevin theory. In order to make this comparison we
have found it necessary to extend earlier work ' on the
single oscillator Davydov Hamiltonian, and these results
will be summarized in Sec. III. Presentation of results for
the red-shift of the vibron oscillator and its lifetime will
be given in Sec. IV. These computed quantities will be
shown as a function of the ratio of the frequency ~0 of
the vibron oscillator to the maximum frequency co, of the
phonon band, of the nonlinear coupling constant y, and
of temperature T. In Sec. V these results will be com-
pared with results of the exact theory. The final section
will summarize results and draw some conclusions

It is our intention to extend the present work with
three additional papers. The first will apply quantum
Langevin theory to the single-vibron oscillator coupled to
a phonon manifold by the full Takeno interaction term.
In this case there is no known exact theory with which to
compare, but there should be significant changes in relax-
ation times due to inclusion of the quantum nonconserv-
ing terms c~c~ and cc. For the second paper we plan to
examine the single oscillator Davydov and Takeno cases
for the parameter regime of a-helix systems; that is,
A@0&&~,. We expect qualitatively diferent behavior for
this case. In the third paper the theory will be extended
to the full Hamiltonian including ¹ oupled vibron oscil-
lators in order to calculate the red-shift and lifetime of a
self-trapped soliton state.

the interpretation of Eq. (14) as being the dipole spectrum
depends on one having the relationship p =mx. ' The
Takeno Hamiltonian in Eq. (8) satisfies this relationship.
From Eq. (17), y(0)=1 and we require that y(0)=0
without loss of generality. We also assume that

Physically speaking we interpret the correlation func-
tion in Eq. (17) and its spectral density in Eq. (16) in
terms of an excitation by the operator c on a canonical
ensemble of systems. For a simple oscillator the response
function reduces to cosset, where co is the frequency of the
oscillator, and the excitation has an infinite lifetime. For
more general condensed matter systems we generally ex-
pect the response function to behave as a damped oscilla-
tion with the form e ' coscot where ~ is a temperature
dependent lifetime. Clearly, we can make other choices
for the excitation operator in Eq. (17) and use MTGLE
theory to study the lifetimes and spectral line shapes of
rather general excitations of condensed matter systems.
This strategy will be employed in subsequent papers to
examine the stability of localized vibrations or solitons.
For the present we consider only the simple excitation c
in order to build up an understanding of the nonlinear
eFects from the Hamiltonian in Eq. (13).

A. General considerations

The computation of time correlation response func-
tions or their spectral densities by the MTGLE approach
is accomplished through the processing of short-time
derivatives of the function j'(t) defined in Eq. (17).
These derivatives (or moments) are given by

II. GENERALIZED LANGEVIN EQUATION THEORY
(n)

( 1 )n~ (2n)(0)

=
& [c'"'(o),c'"'"(o)]&

(18)

MTGLE theory is founded on the notion that
time correlation functions or their spectral density can be
built up from short-time or, as originally described by
Adelman, from molecular time-scale information. To
clarify this notion we recall from previous work that the
dipole spectral line shape of a harmonic oscillator cou-
pled to a bath of oscillators is given by

where

~ (2n)(0)

and

d
dt

2n

t=0
(20)

S(co)=fiexp())'iso)n(co)p(co)/2m',

where

n (co)= [exp(irt)(3') —1]
co

p(co) =—f dt's'(t)coscot,
7T 0

y(t) = ,' ( [c (t), c (0)]+[c(0),c (—t)] )

(14)

(15)

(16)

(„)( )
d c(t)

dt" q=0

If we invert Eq. (16) we have

g(t) = f de p(co)coscot
0

so that also

0'o —f de co p(io)

From Eq. (16) we have by partial integration

(21)

(22)

(23)

with the annihilation (creation) operator c ( t) [c ( t) ]
defined through Eq. (13). The parameter P is given by
(kT) ' where k is the Boltzmann constant and T is the
temperature. The brackets ( . . ) represent a quantum-
statistical canonical-ensemble average. As pointed out,

2'
p(~o) = f dt y(t)sincot .

7T 0
(24)

If the Laplace transform of y(t) is indicated by y(z), we
then have
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2$
Imp(ico) . (25)

B. Calculation of 8&(t) and p&(~)

The problem of finding the spectral line shape is thus
reduced to finding the Laplace transform of y(t) T. o this
end we define a hierarchy of heat-bath functions 8 (t) by
the equations [the constants co, and co, are defined

in Eq. (41)]

Using the Laplace transforms defined in Eqs. (26) and
(27), the moments defined in Eq. (29) can be calculated re-
cursively from the relation

n 2
(n) 2 (n —1) 4 ~ (j) (n —2 —j)m —1 ~e m —1 +~c ~ m m —1m —1 m j=0

y(z) = [z +co, —co, 8,(z) ] (26) where

8 (z)=[z +co, —co, 8 +,(z)] (27)
2 (1)~e m (4 la)

In analogy with Eqs. (16), (18), (22), (23), (24), and (25) we
have

and

4 — (2)
( ()))2

c +) m m (41b)

p (co)=—f dt 8 (t)coscot,
0

(2g) A new set of functions Q (t) is defined by the relations

and

(n) —
( 1)n8 (2n)(p)

8 (t)= f "dcop (co)coscot,
0

c7 —f dco co p (co)

2co
p (co)= dt 8 (t)sincot,

7T 0

2$
p (co) = — Im8 (ico) .

7T

From Eq. (26) we have immediately

(29)

(30)

(31)

(32)

(33)

Q)(t) =8)(t),

Q (t)=co, dr 8 (t —r)Q )(r), m )1,
m 0

from which it can be shown that

Q(t) = —MQ(t),

where

Q)(t)

Q, (t)
Q(t)=

(42a)

(42b)

(43)

(44)

g(i co) =

If we define

coe co co~ 8)(ico)
(34)

and M is the symmetric tridiagonal matrix

I(co)=co, Im8, (ico)

R(co)=co, Re8, (ico),

(35a)

(35b)

CO
e&

CO
2
C2

CO
2
C2

CO e2

CO
2
C3

0 0

CO
2

CO e3
(45)

then
2co I(co)

p(co) =-
[co, —co —R ( co ) ] + [I( co ) ]

(36)
Suppose that a transformation T is introduced that di-

agonalizes M so that

TMTT=M
To determine the position of the peak co,„ in Eq. (36) we
use the relation

(37)

where M D has the diagonal eigenvalues cu1, cop c03, . . . .
It can be shown that

0

If we assume that R (co)=R(co,„) and I(co,„) over the
region of the resonance, then

I(co,„)
and

8, ( t ) =g( T„,) cosco„t

p)(co)=g(T„))'&(co—co„) .

(47)

1
p(co) -— 2~max

I(co,„)
[co—co,„] +

2~max

for co )0 and one identifies the lifetime as

I (co,„)
2~max

(3&)

(39)

In principle the nested heat baths defined by Eqs. (27)
can be continued indefinitely so that the dimension N of
the matrix M is infinite and the sums in Eqs. (47) and (48)
are over an infinite set of eigenvalues co„. In practice,
computational dif6culties in calculating the Einstein and
coupling frequencies in Eqs. (41a) and (41b) limit the
number of moments cr()") that can be used in Eq. (40), and
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thereby limit the dimension of the matrix M and the
number of eigenvalues co„ that can be calculated. If n

moments are used, N=(n +1)/2 heat baths can be cal-
culated and the matrix M has dimensions XXX and N ei-
genvalues. A typical value for the present calculations is
n =13 which leads to a square matrix of dimension 7,
with 7 eigenvalues. As will be seen this limit places a cor-
responding limit on the time interval over which the
MTGLE calculation of the time-correlation function j'(t)
remains valid.

C. MTGLE representation of 0 (t)

We now turn to a difFerent representation of 8 (t)
We introduce first a set of functions Gk ( t ) which will be
called generalized Langevin equation (GLE) functions
and are defined by the integral equation

countered below, we have

Gk(z)=
~ k+, [z —Qz +2', ] "4

2coe

which will be recognized as the Laplace transform of

4k
J2k(&2~, t) .

COe t

(52)

COe

CO, t =k
COc

(53)

Thus the Gk(t) functions are a generalization of Bessel
functions and share some of their properties. As will be
shown, it is the time derivatives Gk(t) which are used to
fit correlation functions. An important aspect of Gk(t) is
that for large k its onset is delayed until a time given ap-
proximately by

r 2

Gk(t) =—I dx [cos(k —1)x —cos(k+1)x ]
7T 0 0

where

(49)

This relationship can be obtained directly from the
definition of Gk(t) in Eq. (49).

We next expand the heat-bath functions 8 (t) in the
generalized Langevin functions as follows:

0—Qcoe 2'~ cosx (50)

and co, and co, are constants to be determined later. The
Laplace transform of Gk(t) is easily shown to be

8 (t)= y a'„'G„(t)
k=1

so that

(54)

Gk(z)= [z +co, —Q(z +co, )
—4', ]= 1 1

CO 2CO

k

8(2n)(0) ~ (m)G (2n)(0)~&k k
k=1

(55)

(51)

In the special case co, =2co, which will be sometimes en-
I

The derivatives G P"'(0) can be obtained from Eq. (49)
and are given by

k oo CO

G (2n)(0) ( 1)n +k+1 t 2n yk 2 0 COe

'
21

(n —j)!

[1 ( 1)k+j]

j+k+1, j —k+1
2

'
2

(56)

It is easy to see that G P"'(0)=0 for k) n+1. Thus,
combining Eqs. (29), (55), and (56), the coefficients ak '

can be obtained recursively from the moments cr'"' in
such a way that n+1 coefficients are obtained from n

moments. It can then be shown that the Laplace trans-
forms

8 (z) = g ak 'Gk(z)
k=1

(57)

satisfy the heat-bath hierarchy Eqs. (27). Thus, if the
series in Eq. (54) for I =1 converges, its derivative is a
representation of 8,(t). Because computational
difBculties limit the number of a'k" coefficients that can be
accurately calculated, it is important that the series rep-
resentation of 8,(t) be as rapidly convergent as possible.
In the next section we will show how this can be achieved
by adjusting the parameters co, and co, .

Gnce co, and co, have been fixed we can carry out a se-
quence of computations in which successively larger
numbers of terms are included in the series expansion of

I

8,(t), or alternatively the Laplace transform 8,(z), which
can then be used in Eqs. (35a) and (35b) to calculate I (co)
and R (co) and thereby co,„and r from Eqs. (36), (37),
and (39). The end results are rapidly convergent series
with increasing k for co „and ~ which demonstrate that
an accurate representation of 8,(t) has been achieved. It
also suggests that the series representation of 8&(t)
remains a good approximation for very much larger
values of k, and this fact will be demonstrated by com-
parison with the exact theory in Sec. V.

To achieve the MTGLE representation of 8&(t) de-
scribed in this section, it is necessary that one compute
the moments o'1"'. As shown in Sec. II B, these moments
are computed recursively using Eq. (40) from the short-
tirne derivatives o 0"' of the time-correlation function y(t).
The explicit computation of the quantities o.0"' for the
Hamiltonian in Eq. (13) is presented in the Appendix.

D. Matching spectral density functions

From Eqs. (51) and (57) we have
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8i(ico) = g ak — [co, —co —Q(co2 —co2)2 —4co4]
CO k —

1 2CO

k

(58)

where the superscript on aj, has been dropped for convenience. Equation (58) can be put into the form

2 2 2 1
8,(ico)= g ak(coshkP —sinhkP); co ((co, —2co, ), cosh/= (co, —co ),

CO& k=1 2CO
(59a)

2 2 2 2 2 = 18,(ico)= g ak(coskP i s—ink/); (co, —2co, )(co ((co, +2co, ), cosP= (co2 —co2),
2CO

(59b)

k 2 2 2 = 18,(ico)=
2 g ak( —I)"(coshkg+sinhkP); co ) (co, +2co, ), cosh/= (co co—2) .

COc k=1 2CO
(59c)

These three equations determine I(co) and R(co) defined
in Eqs. (35a) and (35b). In particular p, (co) defined by Eq.
(33) is nonzero only for co in the range
(co, —2co, ) ( co ( ( co, +2co, ) and is given by

where

coo —Qcoe 2co~

and

(65a)

2CO
p, (co)= g aksinkP(co),

7TCO

(60) COe + 2CO&
2 2 (65b)

where

1cosP(co)= (co, —co ) .
2CO

It is easily confirmed from Eqs. (60) and (61) that

(61) N
8(2nj(0) —

( 1)n y (T )2 2n

m=1

Since 8i(0) = 1 this leads to the result

(66)

If the matrix M is limited to dimensions XXN, it can still
be proved that

d co p i ( co ) 1

For computational reasons discussed above the number
of terms in this series will be limited to k=2'. We
therefore define a spectral density function p", (co) by the
finite series

N

g (T„,) =1
n=1

which implies through Eq. (64) that

(67)

2N

p*, (co) = g aksinkg(co) .
7TCO

(62)

N

p, (co)= g (T„,) 6(co —co„) . (63)

From Eq. (63) (T„,) can then be obtained in the form
(co„+&+co„)/2

(T„,)'= f " "
dco p, (co), (64)

It is easy to show in the same way that p*, (co) also has the
property

f dco pi (co) =1 .

We next define a spectral density function p, (co) corre-
sponding to Eq. (48) but taking into account the finite di-
mension N of the matrix M:

f dco pi(co) = 1
0

The form of Eq. (64) suggests a procedure for defining
the parameters co, and co, which are used in the general-
ized Langevin functions, namely, we compute a trial
spectral weight depending on the undetermined constants
co, and co, by the integral

( „+I+ „)/2
(T„*, ) =f dcopi(co) . (68)

n n —1

In Eq. (64) we can choose any end points for the integral
which lie between the eigenfrequencies. On the other
hand the choice of end points in Eq. (68) affects the com-
puted results for the spectral weights (T„*,) . We have
chosen to use the midpoints in order to achieve a reason-
ably uniform histograming of the spectral density pi (co).
Substituting Eq. (62) into Eq. (68) yields after simple in-
tegration

2N P +I 1 2N

(T„*i) =—g ak f "
dPsinPsi kPn= —g ak

k=1

sin(k —1)P„+,
k —1

sin(k+1)P„+,
k+1

sin(k —1)g„sin(k+ 1)P„
k —1 k+1

(69)
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where
co, —[—,'(co„+co„,)]

P„=arccos 2' (70)

N

F(co„co,) = g [(T„))'—(T„*))'] .
n=1

(71)

We use the Levenberg-Marquardt method to achieve
minimization. We have found that the best fit often pro-
duces a spectral density p f (co) which is highly oscillatory.
To damp this down and produce a smooth fit, we con-
strain the end points in Eqs. (65), which in principle
should change as ~, and co, change, to have the values co&

and co& in Eq. (68). This additional constraint serves to
produce both a good fit and eliminate the oscillations. In
the final analysis, of course, it does not matter how one
obtains ~, and co, as long as the final choice produces
smooth convergence of co,„and the lifetime r as one in-
creases the number of generalized Langevin functions
used in Eq. (54) for 8,(t). We anticipate that fitting
methods other than the one used in Eq. (71) will also
work well.

To display graphically the fit which we achieve, it is
useful to rewrite the exact spectral density p, (co) given by
Eq. (48) for N indefinitely large in the form

p&(m) =f dm„(T„))~ $(co—co„)
n

We now fix the values of co, and cu, by minimizing the ob-
jective function

In part this good fit is because p&(co) has been con-
structed to have the same spectral moments as p, (co). In
addition, however, the spectral density p, (co) given by Eq.
(63) can be expanded in the Fourier sine series complete
in the range / =0 to m. as

2co
p, (co)= g ccksinkP(co)

&CO
(76)

analogous to Eq. (62), except that k runs from 1 to ao.
Then it is easy to prove using Eqs. (61) and (66) that
o, k =uk for k ~2%. Thus, whatever the assigned values
of co, and co„p*,(co) is always equal to the discrete spec-
tral density given by Eq. (62) when it is smoothed by
truncating the series in Eq. (76) at k=X. The spectral
density p*, (co) is therefore not only a smoothed version of
p, (co) but is also optimally smoothed by optimizing the
spectral weight assigned to each frequency interval
—,
' (co„+co„,) to —,

' (co„+,co„).
It is evident that p', (co) becomes a better approximation

to p&(co) as X increases. In that case, to the extent that
pf(co) remains a close fit to p', (co), p [(co) also approaches

p, (co) as X increases. This is shown convincingly in Fig.
24 where the solid line is a numerical calculation of p, (co)
from the exact theory. The superimposed dots are values
of p*, (co) calculated as described above using parameters
given in Sec. IV, Set 1. This remarkably close fit to the
exact p, (co), particularly around the important region
near m/coo=1, has been achieved using 15 moments of
X( t).

=(T„,)~2 de
dc'

(73)
III. EXACT SOLUTION OF THE SINGLE

VIBRON OSCILLATOR PROBLEM WITH A
DA VYDOV HAMILTONIAN

2
p)(co„)= ( T„))'

~n+i ~n —i
(74)

We find empirically that when our optimization fitting
procedure is used pf (co) gives a very close fit to p', (co„) at
co=co„. This is shown in Fig. 1 for a case which is de-
scribed in detail in Sec. IV. It is easy to see that this is to
be expected from Eq. (68) which leads to the following
approximate expression for ( T„",):

(T„"&) —=pf(co„) (75)

where (dn /dco) is the density of closely spaced eigenval-
ues at frequency co. For the case of a limited number of
eigenvalues X this suggests that we define an analogous
spectral density p', (co„)by the relation

As pointed out by Brown, Lindenberg, and West,
Hamiltonians of the single-vibron form given in Eq. (13)
can be diagonalized by a canonical transformation and
are therefore exactly soluble. In order to provide some
exact results which can be compared with results ob-
tained from the MTGLE theory developed in Sec. II, we
have obtained more explicit results than provided by
Brown et al. , ' particularly for the time-correlation
function y(t) and for elevated temperature. These results
will be published separately and will therefore only be
outlined briefly in this section. As seen below, a particu-
larly interesting result is that y(t) does not decrease ex-
ponentially with time at absolute zero but rather falls off
as a small power of time.

We have derived elsewhere that

2 2
e(t) ~k . k

y(t) = ge " (n + 1)cos [coo—8g(n + 1)]t+4g sincokt ncos (—coo 8gn )t —4g— sincokt
COk COk

(77)

where

E„=A' c(ono+') —fi(2n +1) g,

fiPco„e(t)=exp 4g (coscokt —1)coth
Q)k 2

2

(79)

(80)
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—PE„Q= e

numerator is easily found to be

co = coo —[2n ( cob ) + 1 ]8g . (88)

e (t) =exp 16'
g2 2

COa

co, Ap
' 0. 172 118+—ln 2'

2 27TI;+—ln 1 —exp

(82)

For 2vrt ))Ap this becomes

It should be noted that the partition function sum in Eq.
(81) must be truncated at some large value of n since the
energy E„eventually becomes large and negative. This is
an artifact of the simple polynomial potential energy ex-
pression used in Davydov-type models, but is of no prac-
tical effect up to temperatures of order 300 K. The ex-
pression in Eq. (77) is an exact analytic form for y(t). In
the Appendix this form is used for convenience to com-
pute the required MTGLE time derivatives in Eq. (18).

We have also shown elsewhere that the behavior of
y(t) following a short initial transient can be found exact-
ly from Eq. (77). When o k is given by Eq. (11) the behav-
ior of the exponential part e (t) for co, t )2m. is given by

We anticipate that the frequency in Eq. (88) will predict
the location of MTGLE peaks, co,„, since MTGLE is
based on a short-time approach. The correspondence of
r in Eq. (84) and co,„ in Eq. (88) with values calculated
from the MTGLE theory will be discussed in Secs. IV
and V.

The preceding discussion of the exact solution for the
time-correlation function j(t) 'brings out that there are
four time scales involved in the problem of a single vib-
ron coupled nonlinearly to a phonon lattice. The erst is
the period 2m/coo associated with the uncoupled frequen-
cy of the vibron. The second is a characteristic reaction
time of the phonon lattice 2'/co, which governs the
short-time transients of g(t). The third is the time tip/2m
which governs the transition from small power law to ex-
ponential decay of y(t) and which is generally recognized
as the time scale of decay of quantum fluctuations. It is
interesting that this time scale emerges in the current
problem but does not play a part in the decay of j'(t) for
the corresponding linearly coupled problem. Finally
there is the time scale associated with Eq. (86) which
determines when the frequency of oscillation of y(t)
diverges from the frequency given by Eq. (88). This is
also the time scale limiting the valid time domain of
MTGLE theory.

e (t) =exp — t—32''
co, A p

(83)
IV. RESULTS CALCULATED FROM

MTGLE THEORY

so that the exponential lifetime can be identified as

co, A p
32'' (84)

Therefore at very low temperatures there is an extended
range through which y(t) decreases as a small power of t

The long-time behavior of the prefactor in Eq. (77),
which contains a statistical average, has also been exam-
ined in detail elsewhere. In summary we find that the
prefactor, which we denote as p (t), for co, t )2n. behaves
essentially as

2 cos [coot —2 tan '[(2n (cob )+ 1)tan4gt ] jp(t)=
1+ [2n(cob )+1] + [1—[2n(cob )+1] ]cos8qt

For 2m t «A'p but t still sufficiently large to be beyond the
initial transient, the decay is no longer exponential and is
given approximately by

—32' /M co2 2.753 888/
f2 2

In this section we will present a selection of results for
the single-vibron case (specialized to the Davydov Hamil-
tonian) calculated from MTGLE theory. In most cases
these results include the spectral density function pt (co),
the red-shifted oscillation frequency co,„,and the relaxa-
tion time ~. Since the results depend on four parameters
~„coo,y, and T, the selection of results has necessarily to
be quite sparse, but has been chosen to be representative.
The red-shifted oscillation frequency is obtained from the
maximum of the spectral-density function p(co) given by
Eq. (36), although this is always equal to the positive root
of Eq. (37). The relaxation time r is calculated from Eq.
(39). The results presented below are grouped for con-
venience into nine di6'erent sets each intended to illus-
trate some features of the MTGLE calculations.

TABLE II. Eigenfrequencies and spectral weights of first
heat bath at fourth order. The parameters used are fico, =60
cm ', %coo=30 cm ', g=0.3 cm ', and T=50 K.

n /coo

6)b
—Q)o 4'g, (87)

and (en@ )bis given in Eq. (15). For times small enough
that

6 n(cob )(8gt ) ((1, the frequency of oscillation in the

0.802 141
1.554 953
2.215 438
2.739 373
3.217986
4.222 060
4.716044

0.066 794
0.238 288
0.389 135
0.297 269
0.008 337
0.000 163
0.000015
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Set 1:The set comprises three figures and one table and
is intended to show a typical set of results at moderate
temperature. The parameters chosen are Ac@, =60 cm
%coo=30 cm ', g=0. 3 cm ', and T=50 K. The results
are calculated to fourth order in the coupling constant.
Table II lists the 1V eigenfrequencies and spectral weights
obtained by diagonalization of the moment matrix M
given by Eq. (45). The fit of the spectral density function

p& (co) to the spectral density at the X eigenfrequencies is
shown in Fig. 1. This determines the parameters
(co, /coo ) = 11.429 and (co, /coo) =32.646. Figures 2 and
3 show the calculated values of co,„and ~ as a function
of the GLE expansion index k for the fixed values of co,
and co, given above. The important thing to note here is
the rapid convergence of these quantities as k increases.
The excellent fit in Figs. 2 and 3 of the converged values
to values predicted from the exact theory will be shown
in more detail in Sec. V.

Set 2: This set of results comprises three figures calcu-
lated using the same parameters as set 1, but calculated
to only second order in the coupling constant. The graph
of p*, (co) as shown in Fig. 4 is nearly identical to the
fourth-order result in Fig. 1. The main effect of the
fourth-order calculation has been to add some high-
frequency oscillations to pf(co) which are irrelevant to
the calculation of co „and ~. Correspondingly the con-
verged values of co „and ~ shown in Fig. 5 and 6 are
essentially identical whether calculated to second or
fourth order.

Set 3: This set of results is given in Table III which
shows values of co, and co, calculated for second,

N

fourth, and all orders in the coupling constant using re-
sults from the exact theory outlined in Sec. III. The
point of the table is to show that the Einstein frequencies
and coupling frequencies from Eqs. (41a) and (41b) show
very little change in going from fourth order to all orders

1.000

0.999

value predicted
from

exact theory

0.998

0.997
I

10

GLE Index k

20

FIG. 2. Red-shifted oscillator frequency co,„normalized to
coo as a function of the GLE expansion index k for fixed values
of the parameters ~, and co, . Parameters are given in the text
under set 1. Calculated to fourth order in the coupling con-
stant.

up to the highest bath index that can be calculated to all
orders. We therefore conclude based on agreement of re-
sults in sets 1 and 2 and the small changes in cu, and co,

N N

going from fourth to all orders that one need only com-
pute results through fourth order to get numerical con-
vergence for the current parameter regime.

Set 4: This set of results is included to show how p,*(co),
co „,and ~ vary for different values of the vibron oscilla-
tor frequency co0. The values of the parameters adopted

0.8
0.6

0.6
0.5

(OP Pl (I)
0.4

0.2

04

x (ns) 0 3

value predicted
from

exact theory

0.0

0.2

0.1

-0.2
0.0

I

10

GLE Index k

20

FIG. 1. Plot of the spectral density function p&*{co) showing
fit to the spectral density at the eigenfrequencies co& through ~&.
The spectral density is required to be zero at co=0. Parameters
are given in the text under set 1. Calculated to fourth order in
the coupling constant.

FIG. 3. Relaxation time ~ as a function of GLE expansion in-
dex k for fixed values of the parameters co, and co, . Parameters
are given in the text under set 1. Calculated to fourth order in
the coupling constant.
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0.8 0.3

0.6

z (ns)
0.2

value predicted
from

exact theory

0.2

0.0

0.1
I

10

GLE Index k

20

FIG. 4. Spectral density function p&*(co) showing fit to the
spectral density at the eigenfrequencies co& through ~&. Param-
eters are given in the text under set 2. Calculated to second or-
der in the coupling constant.

FIG. 6. Relaxation time ~ as a function of GLE expansion in-
dex k for fixed values of the parameters co, and co, . Parameters
are given in the text under set 2. Calculated to second order in
the coupling constant.

for this set are Ace, =60 cm ', y=0. 3 cm ', T=50 K
and Aco0=30, 60, and 90 cm '. The calculations are car-
ried out to fourth order in the coupling constant. The
three spectral density functions are compared in Fig. 7.
The important feature to note is that as the vibron oscil-
lator frequency passes from below to above the upper
limit co, of the phonon spectrum, the first bath spectral
density p((co) narrows and shifts to lower frequencies.
We interpret this to mean that the vibron is increasingly
decoupled from the phonon manifold, and increasingly

1.000

0.999
value predicted

from
exact theory

0.998

0.997
I

10 20

GLE Index k

FICx. 5. Red-shifted oscillator frequency co „normalized to
coo as a function of the GLE expansion index k for fixed values
of the parameters co, and co, . Parameters are given in the text
under set 2. Calculated to second order in the coupling con-
stant.

dominates the first bath spectral density. This matter will
be explored more fully in a subsequent paper which will
examine the single oscillator Davydov and Takeno cases
for the parameter regime of a-helix systems where
c00 ))co, . Figure 8 shows, as might be expected from the
point of view described above, that the frequency co „is
less red-shifted as co0 increases from below to above ~, .
Figure 9 shows what is at first sight a rather surprising
result. The converged relaxation time ~ shows very little
dependence on the vibron frequency, even though p& (co)
increases in the vicinity of co0 and must therefore be com-
pensated by a decrease in the coupling frequency cu, .

l

This somewhat counterintuitive effect is confirmed by the
exact theory discussed in Sec. III leading to Eq. (84) for ~
which is independent of cu0.

Set 5: At very low temperatures MTGLE theory leads
in some cases to the unexpected result that a band gap ex-
ists in the first bath spectral density extending from zero
frequency to just above the vibron oscillator frequency.
The vibron oscillator in such a case is predicted to have
zero linewidth and infinite lifetime. This result is shown
in Fig. 10 which is calculated to fourth order in the cou-
pling constant for Ace, =60 cm ', %~0=60 cm ', y=0. 3
cm ', and T=O K. At higher temperatures for these
same parameters, the lower band edge of the first heat
bath spectral density given by +co, —2', crosses below
the red-shifted vibron oscillator frequency co,„at about
1.6 K as shown in Fig. 11. Above this temperature the
vibron oscillator acquires a finite linewidth and lifetime,
but results below 10 K converge more slowly than at
higher temperatures.

For the parameter set where cop=co /2 the band gap
edge occurs below co0 so that the vibron has a finite width
and lifetime even at T=O K. Figure 12 shows the lower
band edge of the first heat-bath spectral density versus
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TABLE III. Comparison of second-order, fourth-order, and exact results for co, and co, . The pa-
N N

rameters used are Ac@, =60 cm ', %cop=60 cm ', y=0. 3 cm ', and T=O K.

Second order

0.999 685
2.704 267
2.561 617
2.539 516
2.539 829

CO
N

2
COp

Fourth order

0.999 685
2.703 511
2.580 306
3.116442
5.655 815

Exact

0.999 685
2.703 511
2.580 301
3.118803
5.697 940

Second order

CO
N

4
COp

Fourth order Exact

0.000 573
0.491 299
0.528 460
0.534 417

0.000 573
0.497 103
0.627 270
2.719056

0.000 573
0.497 101
0.627 413
2.740 082

temperature for Ace, =60 cm ', A'co0 =30 cm ', and
g=0. 3 cm ' calculated to fourth order in the coupling
constant.

We interpret these results as follows. In the case of
linear coupling the vibron will have zero width and
infinite lifetime if its frequency co0 lies above the upper
band edge co, of the phonon spectrum. In the nonlinear
case a related effect occurs even when the vibron frequen-
cy is at or just below co„and persists in its effects when

co0 is as small as —2'~, . This band gap effect is closely re-
lated to the anomalous time dependence of y(t) at low

temperatures calculated in Sec. III from the exact theory,
and will be examined more closely in Sec. V.

Set 6: Figures 13 and 14 are calculated to fourth order
in the coupling constant for the parameter set A~, =60
cm ', 6~0=30 cm ', and y=0. 3 cm ' and various tem-
peratures. Figure 13 shows the reciprocal lifetime 1/w as
a function of temperature. This reciprocal lifetime is
linear in temperature as predicted by the exact theory
and also agrees in magnitude with the exact theory as will
be shown in Sec. V. Figure 14 shows the red-shifted vib-
ron oscillator frequency co „as a function of tempera-

1.000

90 cm-&

90

0.999

60 cm-'

0
0.998 30 cm-&

0.997
I

10

GLE Index k

values predicted
from

exact theory

20

FIG. 7. Spectral density function p&*(co) for three different
values of the external oscillator frequency cop. The remaining
parameters are given in the text for set 4. Calculated to fourth
order in the coupling constant.

FIG. 8. Red-shifted oscillator frequency co,„normalized to
cop as a function of the GLE expansion index k for fixed values
of the parameters co, and co, . Results are shown for three values
of the vibron oscillator frequency cop. The remaining parame-
ters are given in the text under set 4. Calculated to fourth order
in the coupling constant.
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0.6

0.5
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0.4

0.3
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90 cm-&
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1.01

1.00

0.99
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I
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GLE Index k

value predicted
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exact theory

20

0.98

0.97

T (K)

FIG. 9. Relaxation time ~ as a function of GLE expansion in-
dex k for fixed values of the parameters co, and ~, . Results are
shown for three values of the vibron oscillator frequency coo.

The remaining parameters are given in the text under set 4.
Calculated to fourth order in the coupling constant.

FIG. 11. Lower band edge of the first heat-bath spectral den-
sity plotted as a function of temperature for the parameter set
fico, =60 cm ', Ac@0=60 cm ', and y=0. 3 cm '. Calculated to
fourth order in the coupling constant. The lower band edge
crosses the red-shifted vibron oscillator frequency co,„at about
1.6 K.

ture. In view of the expanded vertical scale, the red-
shifts are very small ranging up to 1%. Nevertheless the
temperature dependence of the red-shift given by
MTGLE theory is in close agreement with results pre-
dicted from the exact theory as will be seen in Sec. V.
The close agreement of lifetime and red-shift as a func-

tion of temperature with the exact theory is a very severe
test of the accuracy of MTGLE theory in the time regime
for which it is valid.

Set 7: Figure 15 presents a summary of results for re-
laxation time ~ as a function of temperature calculated to
fourth order in the coupling constant for the parameters

2,

cog —20)g

0
0.9

0,8

T (K)

FIG. 10. Plot of the spectral density function p& (co) at T=O
K for the parameter set %co, =60 cm ', @no=60 cm ', and
y=0. 3 cm ' calculated to fourth order in the coupling con-
stant. The lower band edge of the spectral density in this case
lies just above the vibron oscillatory frequency coo.

FIG. 12. Lower band edge of the first heat-bath spectral den-
sity plotted as a function of temperature for the parameter set
fico, =60 cm ', %coo=30 cm ', and y=0. 3 cm '. Calculated to
fourth order in the coupling constant. The lower band edge al-
ways lies below the red-shifted vibron oscillator frequency co,„.
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FIG. 13. Reciprocal 1/~ of the relaxation time ~ plotted as a
function of temperature for the parameters under set 4. Calcu-
lated to fourth order in the coupling constant.

%co, =60 crn ', g=0. 3 cm ' and Ac@0=30, 60, and 90
cm '. It will be noted that the relaxation time, except
for the lowest temperatures, is independent of the vibron
oscillator frequency co0 as predicted by the exact theory.

Set 8: Figure 16 presents a summary of results for the
red-shifted oscillator frequency m, „as a function of tem-
perature calculated to fourth order in the coupling con-
stant for the parameters A'co, =60 cm ', g=0. 3 cm
and A'co0=30, 60, and 90 cm '. As mentioned in connec-
tion with set 4, co „is less red-shifted as co0 increases
from below to above the upper limit of the phonon band
co„and this result holds for all temperatures. These re-
sults for co,„as a function of temperature for different

FIG. 15. Reciprocal 1/~ of the relaxation time ~ plotted as a
function of temperature for the parameters under set 7. Calcu-
lated to fourth order in the coupling constant. Except at the
lowest temperatures, the relaxation time is independent of the
vibron oscillator frequency mo.

values of co0 are also in excellent agreement with results
predicted from the exact theory for the time regime in
which MTGLE theory is valid.

Set 9: This final set of results, similar to set 1,
comprises three figures intended to show a typical set of
results at a larger nonlinear coupling constant y=1.0
cm '. The other parameters are equal to those in set 1,
Ace, =60 cm ', ficu0=30 cm ', T=50 K, and the calcu-
lation is done to fourth order in the coupling constant.
Since all nonlinear effects vary as y, nonlinear effects in
this set of results are more than 10 times greater than in
set 1, but well-converged results are still achieved. The
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0.996 0.996
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~ax
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FIG. 14. Red-shifted oscillator frequency co,„as a function
of temperature for the parameters given in the text under set 6.
Calculated to fourth order in the coupling constant.

FIG. 16. Red-shifted oscillator frequency co,„as a function
of temperature for the parameters given in the text under set 8.
Calculated to fourth order in the coupling constant.



4992 ALBERT M. CLOGSTON AND H. KEITH McDOWELL

TABLE IV. Eigenfrequencies and spectral weights of erst
heat bath at fourth order. The parameters used are Ace, =60
cm ', fico0=30 cm ', y=1.0 cm ', and T=50 K.

0.849 851
1.613 141
2.294 666
2.808 672
3.670 696
4.310 365
4.743 146

0.081 954
0.266 327
0.411 813
0.232 199
0.006 353
0.001 233
0.000 120

0.99

0.98

value predicted
from

exact theory

eigenfrequencies and spectral weights listed in Table IV
differ in detail from the corresponding quantities listed in
Table II. Nevertheless, remarkably enough, the first
heat-bath spectral densities shown in Figs. 1, 4, and 17
are nearly identical. This rejects the fact that the first
heat-bath spectral density is largely independent of the
strength of the nonlinear coupling parameter in the range
we have studied. The converged frequency of the exter-
nal oscillator shown in Fig. 18 is considerably more red-
shifted than the red-shifted frequency ~„„„shown in Fig.
2. The effect of increased nonlinear coupling on the re-
laxation time ~ should go as g according to the exact
theory result given in Eq. (84). This agrees almost exact-
ly with the value ~=0.0155 obtained from Fig. 19 and
w =0. 19 obtained from Fig. 3.

V. COMPARISON OF QUANTUM MTGLE
THEORY WITH EXACT THEORY

In the preceding section results were presented for the
red-shifted frequency cu „ofthe vibron oscillator and its

0.97
I

10

GLE Index k

20

FIG. 18. Red-shifted oscillator frequency co „normalized to
coo as a function of the GLE expansion index k for Axed values
of the parameters co, and co, . Parameters are given in the text
under set 9. Calculated to fourth order in the coupling con-
stant.

lifetime ~ based on the MTGLE theory developed in Sec.
II. Confidence in the MTGLE theory within its valid
time domain is based on the general considerations dis-
cussed in Sec. II, and on the rapid convergence of co,„
and ~ as a function of the GLE expansion index k demon-
strated by the calculated results of Sec. IV. Further
confidence in the MTGLE theory within its valid time
domain is provided by its close agreement with exact
theory as described below.

We first look in greater detail at the nature of the

0.8 0.05

0.04

(Op Pi (CO)

04

0.2

0.0

o.o3

0.02

value predicted
from

exact theory

0.01
I

10

GLE Index k

20

FIG. 17. Plot of the spectral density function p& (co) showing
fit to the spectral density at the eigenfrequencies co, through ~~.
The spectral density is required to be zero at co=0. Parameters
are given in the text under set 9. Calculated to fourth order in
the coupling constant.

FIG. 19. Relaxation time ~ as a function of GLE expansion
index k for fixed values of the parameters co, and co, . Parame-
ters are given in the text under set 9. Calculated to fourth order
in the coupling constant.
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0.997
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I
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I
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agreement between MTGLE theory and the exact theory.
Figure 20 shows the frequency per period of y(t) calcu-
lated as a function of time from the exact theory accord-
ing to Eq. (77), and from the MTGLE theory using Eqs.
(22) and (36). (In each case successive maxima were
found, the time difference 6 determined, and the radian
frequency per period computed as 2'/6 )The par. ame-
ters chosen for this illustrative case are the same as those
of set 1 in Sec. IV. In Fig. 20 we have also included at
t =0 a point for the exact Einstein frequency co aseo

defined by Eq. (41a). For this case co, /too =0.999507. In

examining Fig. 20 we see that after a very short transient
of order two cycles of the fundamental frequency co0, the
frequency per period calculated from the exact theory
stabilizes at the frequency given in Eq. (88) and then
gradually increases after about 30 ps. This increase is un-
derstood by appeal to Eq. (86). We see that the argument
of the cosine in the numerator is being continually phase
shifted as time increases. Thus, the simple short-time
formula in Eq. (88) becomes invalid after about 30 ps.

In Fig. 20 the frequency per period calculated from the
MTGLE theory traces out exactly the same transient as
the exact theory and then stabilizes indefinitely at the fre-

FIG. 20. Frequency per period of y(t) calculated from exact
theory and from MTGLE theory. The initial frequency at t =0
is taken to be the Einstein frequency. Parameters of the calcula-
tion are given in the text.

2'
hp, (co)= gyl, sink/(co),

UTCH

(89)

which is similar to Eq. (62), then very large-k values
would necessarily be required in the sum to represent the
spike in Fig. 21. These values would in fact peak around
k =area, r/4, and through Eq. (53) correspond to a time
t =sr/4(co, /co, )r This is consi. stent with the notion that

quency given by Eq. (88). Significant deviation of the ex-
act theory and MTGLE theory occurs at about 40 ps
which represents the limit of validity in this case of the
MTGLE calculation of y(t). Although this breakpoint of
40 ps is sufficiently long enough to allow for about 40 vi-
brational periods, it is short enough relative to the 1-ns
phase-shift effect that the short-time frequency formula
in Eq. (88) accurately predicts the ru, „obtained from
MTGLE theory. This predicted value of co,„ is shown
in Figs. 2, 5, 8, and 18. A more complete comparison is
given in Table V which shows excellent agreement be-
tween the results of Eq. (88) and MTGLE theory over a
wide range of temperatures and values of co0. The agree-
ment extends to much larger coupling constants g as
shown in Fig. 18.

The time limit of 40 ps noted in Fig. 20 has an interest-
ing implication. For this case, using the parameters of
set 1 in Sec. IV, Eq. (53) becomes t=1.047X10 ' k.
This means that the MTGLE calculation of co „would
not change if the GLE expansion index were extended to
k =380. This helps to explain why co,„/coo in Figs. 2, 5,
and 18 converges rapidly to its final value.

This same situation can be looked at from an even
more interesting perspective. Starting with the exact ex-
pression for y(t) given by Eq. (77) we can calculate the
real and imaginary parts of y(ice). Then, using Eq. (26)
we can obtain real and imaginary parts of co 0 (iso) andcl 1

therefore exact values for I(co) and R (co) given by Eqs.
(35) and p&(co) given by Eq. (33). The result of this calcu-
lation for cubo&(co) near co=co,„using the parameters of
Sec. IV, Set 1, is shown in Fig. 21 superimposed on the
MTGLE calculation of co~*, (co) shown in Fig. 1. The
vertical and horizontal scales in Fig. 21 have been ex-
panded to bring out the very localized nature of the
difference b,p, (co) between the exact and MTGLE values
of p, (co). The difference 4p, (co) is clearly a result of
large-k Fourier components in the Fourier sine series in
Eq. (60); that is, if bp, (co) were to be represented by the
MTGLE series

TABLE V. Comparison of MTGLE and analytic results [Eq. 1101)] for co,„/coo at several values of
the vibron frequency ~0 and as a function of temperature.

30 cm
MTGLE Exact

60cm '

MTGLE Exact
90 cm

MTGLE Exact

0
10
50

100
200
300

0.999 203
0.999 178
0.998 036
0.996 200
0.992 558
0.988 807

0.999 200
0.999 178
0.998 032
0.996 234
0.992 555
0.988 856

0.999 605
0.999 589
0.999 418
0.999 000
0.998 085
0.997 151

0.999 600
0.999 600
0.999 427
0.999016
0.998 118
0.997 200

0.999 736
0.999 740
0.999 681
0.999 518
0.999 122
0.998 709

0 999 733
0.999 733
0.999 690
0.999532
0.999 148
0.998 745
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FIG. 21. First heat-bath spectral density near co=co „for
exact theory and MTGLE theory. Parameters used are those of
set 1.

FIG. 23. Spectral density of the time-correlation function
j(t) computed via exact theory and MTGLE theory. Parame-
ters are those of set 1 with %coo=90 cm

longer times produce finer resolution. The effect of the
high-resolution spike near ~=co,„ in the exact first bath
spectral density on the spectral density p(co) of y(t) is
shown in Fig. 22. We see that it produces a broadening
and reduction of the red-shift of the exact line shape rela-
tive to the MTGLE line shape. Although this long-time
or high-resolution broadening effect is significant in this
case, it is not apparent in other regions of parameter
space. We show in Fig. 23 a comparison of p(co) for the
exact and MTGLE theories at Aco0=90 cm ' with the
other parameters fixed to those of set 1. Here we find
essentially perfect agreement. The conclusion to be

drawn is that MTGLE has a domain of validity in time
which for some parameter sets is sufficient to produce the
exact spectral density p(co) but for others is less than the
time required to sample high-resolution contributions.

As a follow-on to the plot in Fig. 21, we have extended
the frequency range and show in Fig. 24 a comparison be-
tween the MTGLE bath spectral density co~& (co) and the
exact bath spectral density co~, (co). The values for
co~, (co) are computed as described above using a
Simpson's rule evaluation with 50000 time points out to
2 ns. We find overall good agreement between the two
approaches with excellent agreement at lower frequencies
aside from the narrow spike near co =co „.As mentioned

0.8

300 MTGLE
0.6

act

Wpi()

0.4

0.98 0.99
I

1.00 1.01 1,02 -0.2

FIG. 22. Spectral density of the time-correlation function
g(t) computed via exact theory and MTGLE theory. Parame-
ters are those of set 1.

FIG. 24. First heat-bath spectral density for exact theory and
MTGLE theory. Parameters are those of set 1.
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FIG. 25. Decay of modulus of g(, t) calculated from the exact
theory and from MTGLE theory and plotted as —In~j'(t) ~. The
MTGLE result is essentially a straight line conveying the ex-
ponential decay. Parameters of the calculation are A'cop=30

cm ', A'co, =60 cm ', g=0. 3 cm ', and T =50 K.

FIG. 26. In~ j'(r)
~

as a function of time for T=10 K comput-
ed from exact theory and MTGLE theory. Other parameters
are Asap= 60 cm ', Ace, =60 cm ', and y =0.3 cm

in Sec. II, this demonstrates that our fitting procedure us-
ing GLE functions is satisfactory.

A similar picture emerges in making comparisons of
the modulus (defined as the locus of maximum points) of
y(t), denoted as ~y(t) ~, calculated as a function of time
from the exact and MTGLE theories. In Fig. 25 we
present results computed by finding successive maxima as
described above. Because of normalization, both theories
start at amplitude unity. We plot the results as In~ f(t)~
so that simple exponential decay produces a straight line.
As expected, the MTGLE curve is essentially linear. The
exact curve on the other hand follows the MTGLE curve
accurately up to about 30 ps and then deviates. This de-
viation again has its origin in Eqs. (82) and (86) which
represent the long-time behavior of the exponential and
prefactor terms appearing in the exact expression in Eq.
(77). We have verified that these expressions are valid
after only 1 —2 ps for the parameters specified above. Ex-
amination of these equations, particularly the denomina-
tor of Eq. (86), shows that there is very long time struc-
ture over and above simple exponential decay which leads
to the nonlinear behavior of the exact theory in Fig. 25.

Since the MTGLE theory follows exponential decay,
since it accurately agrees with the exact theory up to
about 30 ps, and since the very long-time shift effects
should not be revealed in the first 30 ps, one expects that
the exact lifetime formula in Eq. (84) which is extracted
from the purely exponential part of j'(t) will be in excel-
lent agreement with MTGLE theory. This agreement is
shown in Table VI. It is furthermore significant that the
MTGLE theory agrees with the exact theory in that the
relaxation time is independent of the vibron oscillator fre-
quency co0. The only significant discrepancy is at 10 K
and is related to the observation made in Sec. IV under
set 5 that the calculation of ~ converges more slowly as a
function of the GLE expansion index k at lower tempera-
tures. Even here, however, the exact and MTGLE results
agree within l%%uo. Furthermore, in~a(t)

~
in both cases is a

linear function of time indicating exponential decay as
shown in Fig. 26, and agreement at this level extends out
to well beyond 40 ps.

As the temperature decreases further toward the cross-
over point of 1.6 K shown in Fig. 11, the discrepancies
between the exact and MTGLE theories become more
marked. In Fig. 27 ln~y(t)

~
is shown as a function of time

at 1.6 K just above the crossover point. At this tempera-

TABLE VI. Comparison of MTGLE and exact lifetimes in nanoseconds as a function of vibron fre-
quency cop and temperature.

Scop

T (K)

10
50

100
200
300

30 cm

0.993
0.191
0.094
0.046
0.030

60 cm

0.944
0.189
0.094
0.047
0.031

90 cm

1.068
0.189
0.094
0.047
0.031

Exact

0.955
0.191
0.095
0.048
0.032
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FICx. 27. ln~ j'(r)
~

as a function of time for T= 1.6 K comput-
ed from exact theory and MTGLE theory. Other parameters as
in Fig. 26.

FICx. 29.
~
j'(t)~ as a function of time for T=O K computed

from exact theory and MTGLE theory. Other parameters as in
Fig. 26.

1.000

0.999

0.998

0.997
Exact

0.996

ture In~j'(t)
~

is still a linear function of time for the exact
theory, but is no longer so for the MTGLE theory. Some
differences between the MTGLE and exact theories ap-
pear at times as short as 5 ps where the MTGLE result
rises above the exact result, and again beyond 30 ps
where the MTGLE result drops below the exact result.
Even this close to the crossover point the exact result and
MTGLE result still agree to within 10% out to 40 ps.

At 1.5 K ( below the crossover point) the differences
become much larger as two effects set in. First,

~
j'(t)~

calculated from MTGLE theory develops an infinite life-

time as co „ in Fig. 11 drops below the band edge

+co, —2', . The effect of this is shown in Fig. 28 where
~j'(t)

~
is shown as a function time at 1.5 K. After an ini-

tial decline extending out to about 30 ps it levels off; and
if carried further would take on a constant value corre-
sponding to infinite lifetime. A second effect is seen in
the exact calculation of ~y(t)~. The quantum fluctuation
decay time scale given by 2xrt =AP now extends out to 0.8
ps so that j'(t)

~

first declines as a small power of time be-
fore resuming an exponential decay. As a result the
MTGLE theory has no extended region of agreement
with the exact theory.

At 0 K the discrepancy between the calculation of
~y(t)~ by the exact theory and the MTGLE theory be-
comes large as illustrated in Fig. 29. The MTGLE theory
continues to predict an infinite lifetime corresponding to
the leveling off of the upper curve in the figure beyond 30
ps. The quantum Auctuation time scale now extends to
infinity so that the lower curve represents the small
power-law decay given by Eq. (85).

The series of very low temperature results given in
Figs. 26, 27, and 28 seem to relate the emergence of an
infinite lifetime in the MTGLE theory with the emer-
gence of a nonexponential decay in the exact theory. We
have not yet attempted to establish such a relationship
between the very low temperature predictions of the two
theories and will leave that to a subsequent publication.

VI. SUMMARY AND CONCLUSIONS

0.995
I

10
I

20 30

t (ps)

FI(x. 28. ~g(t)~ as a function of time for T=1.5 K computed
from exact theory and MTGLE theory. Other parameters as in

Fig. 26.

Molecular crystals comprised of two or more non-
linearly coupled vibrational systems introduce an impor-
tant new class of many-body problems into the physics
and chemistry of the solid state. Much of the recent
work in the area has focused on long, pseudo-one-
dimensional chains of molecules which support a system
of acoustic phonons nonlinearly coupled to high-
frequency optical vibrons. The interest in such systems
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stems largely from their potential for forming long-lived
localized states with at least some of the properties of sol-
itons. If the lifetimes of such states are sufficiently long,
they can play a significant role in the thermodynamics of
the crystals and may represent an important mechanism
of energy transport. Theoretical and experimental in-
terest has therefore focused on the lifetimes of localized
excitations.

Coupled vibrational systems of this sort are almost
universally described by the so-called Takeno Hamiltoni-
an. This Hamiltonian presents such difficulties that no
satisfactory exact or approximate solutions have yet been
found. Approximate methods of solution abound, how-
ever, with little understanding of their range of validity,
and many of these are mentioned in the Introduction. In
some cases the Hamiltonian is truncated so as to preserve
quanta in the vibron system. In our opinion this approxi-
mation, the so-called Davydov Hamiltonian, omits very
important physics from the problem. In other cases a
solution is approximated by adopting a product wave
function. This so-called Davydov ansatz has been exten-
sively criticized in the literature as a serious
oversimplification.

In this paper we have begun the process of bringing to
bear on these problems the methods of MTGLE theory.
MTGLE theory does not require adopting either the
Davydov Hamiltonian or Davydov ansatz but works
directly by calculating the time-correlation function j'(t)
of a specified excitation from a large number of moments
of the exact spectral density function p(co) obtained from
the Hamiltonian equations of motion. Although the
theory is basically analytical, calculations of the moments
and y(t) as well as the spectral density p(co) both requires
and is made possible by large-scale computation. In this
first paper we have opted to examine the very simple
problem of a single-vibron oscillator coupled nonlinearly
to an acoustic phonon manifold because this Hamiltonian
can be diagonalized exactly by a canonical transforma-
tion as shown in Sec. III. As a consequence, the time
dependence of the time-correlation function j'(t) can be
obtained explicitly. It thereby allows direct comparison
with the results of MTGLE theory and verification of the
time domain of validity of MTGLE theory.

MTGLE theory proceeds by defining a hierarchy of
heat-bath functions 0 (t) whose Laplace transforms
satisfy an infinitely continued fraction. In Sec. II we have
outlined a new approach to MTGLE theory that provides
an optinuzed fit p;(co) to the discrete spectral density

p, (co) of the first heat bath 0,(t) obtained by calculating
15 moments of p(co). Knowledge of the first heat-bath
spectral density allows us to make calculations of the
red-shift of the vibron and its lifetime that are highly ac-
curate within the valid time domain of the MTGLE
theory.

In Sec. III we have outlined the exact theory of the
nonlinearly coupled single-vibron oscillator which will be
discussed in more detail in a forthcoming paper. This ex-
act theory has been discussed before in the literature, but
we have had to carry the theory much further, and make
explicit computer calculations in order to make compar-
isons with MTGLE theory. One unexpected result of this

extension of the exact theory is the discovery that the
correlation function j'(t) has a slow power-law decay at
temperatures near absolute zero.

In Sec. IV and Figs. 1 —19 we show a selection of re-
sults calculated by MTGLE theory for various values of
the vibron frequency mo, the upper band edge of the pho-
non spectrum co„ the nonlinear coupling constant y, and
the temperature T. With so many primary parameters
the results are necessarily representative only. These in-
clude principally the first heat-bath spectral density
p& (co) showing its fit to the discrete spectral density ob-
tained for a finite number of moments; curves showing
rapid convergence of the red-shifted vibron frequency
co,„with increasing number of moments; and similar
curves for the decay constant ~.

In Sec. V we have compared the MTGLE theory with
the results of the exact theory and found complete agree-
ment in nearly all cases for the red-shifted vibron oscilla-
tor frequency cu „and the decay time ~ within the valid
time domain of the MTGLE theory. The only exception
is below 2 K where the MTGLE theory begins to predict
anonamously long lifetimes, culminating in infinite life-
times for temperatures below 1.5 K with the vibron oscil-
lator frequency near the upper band edge of the phonon
spectrum. In the same region the exact theory predicts a
transition from exponential decay to small power-law de-
cay. We have not yet attempted to establish a direct con-
nection between these two events.

The time domain of validity of MTGLE theory is in

principle limited by the number of moments of the spec-
tral density that can be accurately calculated. In practical
terms this means that MTGLE theory will not include
high-resolution effects. The degree to which this omis-
sion limits MTGLE theory and its ability to represent the
spectral density p(co) of y(t) is determined by the number
of moments computed and the parameter values of the
particular Hamiltonian system studied. For the present
case of the single-vibron oscillator Davydov Hamiltonian,
we have found that the parameter regime in which the
vibron oscillator frequency mo is on the order of one-half
of the maximum phonon frequency co, is a regime in

which high-resolution effects contribute and lead to a
broadening of p(co) relative to its MTGLE approxima-
tion. On the other hand this broadening does not affect
the exponential lifetime factor ~ which is well determined
by MTGLE. Furthermore, as coo is increased, the high-
resolution eft'ect goes away and p(co) computed by
MTGLE theory and exact theory come into excellent
agreement. With the caveat that very high-resolution
structure in the spectral density is omitted we conclude
that the version of MTGLE theory presented herein is
well suited to the study of local excitations in condensed
matter systems and is capable of yielding both red shifts
and lifetimes as a function of temperature.
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APPENDIX: CALCULATION OF TIME
DERIVATIVES OF y( t)

20 k COk

2
COO

n

(Al)

for n = 1,2, 3, . . . , and

2

k cok No

n+1
1

A/3' ke
(A2)

for n =1,2, 3, . . . . Using Eq. (11) in the large-N limit,
the first set of parameters can be expressed as

8g 2~n

f.=, „ I 4 r'(1 —Z')""
A %COO

(A3)

which yields

2X'
1 2A CHOCO~

(A4)

Generally speaking, the computation of the short-time
derivatives (or spectral moments) of y(t) in Eq. (18) is the
difficult step in making use of MTGLE theory. In the
present case j'(t) is known exactly through Eq. (77) and
the time derivatives are immediately accessible. In subse-
quent papers which are anticipated in the Introduction
we will not be able to compute the derivatives to higher
than fourth order in the parameter o.k. For this reason it
is important to use the exact solution in Eq. (77) to com-
pute MTGLE results as a function of powers of o.

k in or-
der to demonstrate that higher than fourth order is unim-
portant in the parameter regime studied herein. Since
y(t) manifestly depends on even powers of o k we have
chosen to obtain results from the time derivatives com-
puted to second order, fourth order, and exactly in o.k.

Before proceeding with this expansion in o.
k we deiine

two sets of auxiliary parameters:

for n =1,

n 2
2

A m'COp —k
2k=0

for n even, and

(n —3)/2

(A5)

2~ 2~n 2

i6 &COo

k=0

n J1
2

for n odd. Using Eq. (11) in the large-N limit, the param-
eters g„are given by

8~2 n 1
1

fiPa) y
e

(A7)

Since we have not found a closed form expression for the
integral, we compute Eq. (A7) using Simpson's rule. Our
process is to have the computer program cycle through
successively smaller grid sizes until the newest value of
integral differs from the previous one by a predetermined
small criterion. We have adjusted the criterion as re-
quired to assure that the final results are not adversely
affected by the choice.

To obtain time derivatives through second and fourth
orders we first expand y(t) in Eq. (77) to the fourth order
in o-k. Care must also be taken to expand the partition
function Q defined in Eq. (81). Once the desired expan-
sion is obtained, we take the time derivatives and evalu-
ate them at t =0. To write the resulting expressions in
terms of the parameters f„and g„, it also necessary that
one expand some of the terms using the binomial expan-
sion. We forego an exposition of this straightforward,
but tedious algebra and present the Anal formula. For
the time derivatives fourth order in o.

k we have

(n)

2n

' =1-
COO

16qn g 1
2n 2n 64&2+42, g 2. 1 fz, + A2n(2n —1)

COO

64~„n 2n —1 n
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2n j 2j —1

2J' —1 f2n 2j+1 g 2m——1 f2m —1

m =1

2n
+4 g 2 (2g2J —1+f2j )2j

64gn A4 n —1 2n —1
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n 2n 2j —1
+1624 g 2~ 1 f2n 2J+1 g 2~ (2gzm &+f& )

j=1 - - m=1

2n j 2j+8 g 2~ (2g2„2~, +f2„~))g 2m (2g2~, +f~~),
j=0 m=1

(AS)
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A2=(3n +3n+1&o,

A3=(2n +2n+1&o,

A, = &2n+I &, ,

and

(A 10)

(A 1 1)

(A12)

—
%Pa)On

e nm
n=0

—%Pcs n
e

n=0

(A13)

The second-order expression is easily obtained from Eq.
(97) by dropping terms fourth order in o k.

The computation of the exact time derivatives from
Eq. (77) is a rather formidable task. Because one has to
apply the formula for the derivative of products many

where

A, =2[(n &o+Pq((4n +4n +n &o

—(n &o(4n +4n+1&o)]+I, (A9)

times over, the number of terms grows very rapidly. This
can be ameliorated to some extent by noting that the ar-
gument of the exponential and the argument of the cosine
terms in Eq. (77) are zero at t =0. One can also speed up
the evaluation program by precomputing the degeneracy
factor for a given product of derivatives and only com-
puting the given product once. For example, the second
time derivative of the product u(t) U(t) produces the
terms u (t)ir(t)+u (t)U(t) which obviously should be com-
puted as one term with degeneracy factor 2. These de-
gener acies are compounded by similar degeneracies
which arise from the fact that the time dependence in Eq.
(77) is contained in an exponential factor and the argu-
ments of trigonometric functions. We exploit formula
0.430.1 of Gradshteyn and Ryzhik to compute these de-
generacies. We have incorporated all these features in
our program. With these enhancements we have only
succeeded in computing up to the tenth moment (or
twentieth time derivative) because of the large number of
terms. Nevertheless, this is sufficient for us to make com-
parisons of the exact treatment with the second- and
fourth-order approximations.
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