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Multiscaling in difFusion-limited aggregation
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It is shown using large-scale simulations that the density profile in diffusion-limited aggregation in
two dimensions satisfies a scaling form (multiscaling) of the type g(r, R) = r "+ l"l lC(r/R), where
r is the distance from the origin, R is the radius of gyration, and C(x) is an amplitude. Contrary
to standard scaling, which predicts D(x) =const, here D(x) is found to depend continuously on x.

Growth phenomena are a subject of very active cur-
rent research, due to their widespread occurrence in a
variety of different physical systems. In particular,
considerable attention has been focused on the diffusion-
limited-aggregation (DLA) model, which, although sim-
ple, appears to exhibit the essential features of many
growth phenomena such as electrodeposition, dielectric
breakdown, viscous fingers, crystal growth in aqueous
solution, and neuron growth.

One of the features, well established in DLA, is
multifractality. This consists of associating a mea-
sure to each perimeter site of the aggregate, usually given
by the harmonic measure or growth probability p, and in
decomposing the total aggregate of radius R in infinitely
many fractal sets each characterized by a singularI:ty o. =
—logic p/ logio R with fractal dimension usually referred
to as f(n). i2 This continuity of fractal dimensions char-
acterizes the class of universality to which the growth
model belongs. To calculate or measure this continuity
of fractal dimensions, the scaling behavior of the growth
probability distribution has to be considered. This quan-
tity is usually difIicult to evaluate by means of analytical
and numerical calculations or by direct experimental ob-
ser vations.

A different quantity, which is more accessible to calcu-
lations and direct experimental observations, is the den-
sity profile g(r, R), which is defined as

g(r, R)d"r = dN,

where dN is the number of particles in the infinitesimal
d-dimensional volume d"r at distance r from the origin,
and the dependence on the total number of particles N
is expressed via the radius of gyration R = R(N) .

In the theory of DLA it is usually assumed, by anal-
ogy with critical phenomena, that g(r, R) satisfies the
standard scaling form

(2)

where C(z) is a scaling function and D is the fractal
dimension of the aggregate. However, very recently it
has been suggested that the scaling structure of DLA
clusters is much richer than that allowed by standard
scaling and that (2) ought to be replaced by the multi-
scaling form

Apparently the two forms may seem to coincide in the
limit R oo. This is true if r is finite; however, if both
r and R diverge with their ratio z = r/R fixed, the two
forms diA'er considerably. In fact, the scaling form (2)
gives g(r, R) R & &, while the multiscaling form
gives g(r, R) R i~ D~ &l . Namely, the density profile

(3) exhibits a continuity of power-law decay exponents,
one for each value of z; consequently there is a different
local fractal dimension D(z) for each shell corresponding
to a given value of z. The fractal dimension of the infinite
aggregate is obtained well inside the frozen region for
finite and R ~ oo, namely, for z = 0, yielding D(0) = D

The scaling ansatz (3) follows from general scaling in-
variance under the requirement that the transformations
form a group, i5 and standard scaling is contained in (3)
as a particular case for D(z) =const. It is not possi-
ble to use simple scaling arguments to predict the form
of D(z) or even to determine if it is a constant or not.
This can only be obtained from explicit calculations. In
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Ref. 15 it was shown that the data for two-dimensional
Dl A clusters of Plischke and Racz s are consistent with
a rnultiscaling form of the growth probability P(r, N) de-
fined as the probability that the Nth particle to be added
to the cluster sticks at a distance r from the origin. Fur-
thermore, the exact solution for a model of spinodal de-
composition was found to exhibit a multiscaling form in
the time-dependent pair-correlation function, 7 indicat-
ing that multiscaling may be a general feature of a large
variety of systems.

We emphasize that multiscaling is a distinct phe-
nomenon from multifractality. In the case of multifrac-
tality the existence of infinitely many exponents is the
consequence of the introduction of an appropriate mea-
sure on the fractal. By contrast, by multiscaling we refer
to the existence of a continuity of power-law exponents
in the pair-correlation function. VVe stress that multi-
scaling is more accessible to direct experimental observa-
tion. For example, in those cases that are believed to
be in the same universality class as DLA, an analysis of
the density profile should be easier to perform than the
growth probability distribution. Consequently the mul-
tiscaling spectrum should be easier to detect, than the
multifractal spectrum. Furthermore, as the result for
spinodal decomposition demonstrates, multiscaling is by
far more tractable by analytical methods than multifrac-
tality. Finally, while numerical calculations to measure
multifractality are dificult to perform on large systems,
there are no limitations due to the system size in the mea-
surement of multiscaling. In this paper we describe an
explicit calculation of D(z) using large two-dimensional
DLA clusters. The main result is shown in Fig. 2 and
supports the multiscaling picture.

We performed two sets of calculations A and B. In
A we grew 2000 DLA clusters on the square lattice of
N = 10000 particles. In B we grew 200 off-lattice DLA
clusters of N = 100000 particles. The results are not sig-
nificantly different in the two sets. For each cluster the
growth was divided into 20 stages, corresponding to 20
different values of the the radius of gyration R . At each
stage of the growth corresponding to a radius R, the clus-
ter was divided into 20 shells of radius r„=(n —0.5)R/10
with integer n ) 2. Instead of calculating the "mass"
in a shell between two consecutive radii (to avoid lat-
tice effects, which are present mainly in the small clus-
ters of the set A), we calculated the mass M(r„,R) in
the shell between r„qand r„+q corresponding to an
average radius r„and to a value z„=(n —0.5)/10.
The relation of the mass M(r, R), where the index n
has been suppressed, with the density profile is given by
M(r, R) = 2nrg(r, R)Ar, where b,r = R/5 is the width
of the shell. From Eq. (3) we have
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To check our result and to find the amplitude A(z)
we have analyzed the data using the data collapse
method. Using the calculated values of D(z) we eval-
uate r D& &M(r, R) = A(z) for different values of r and
R. The data collapse for the set of data A is shown in
Fig. 3(a). Figure 3(b) shows the results obtained from an
attempted data collapse using the standard scaling form
(2) with a constant D(z) [D(z) = 1.701]. The data col-
lapse is not as good as that obtained using multiscaling.
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FIG. l. log-log plot of the mass M(r, R) as function of r
for x = 1.5 and x = 1.9. The slopes give the fractal dimen-
sions.

M(r, R) = A(z)r (4)

where A(z) = 27rC(z)/5z. For a fixed value of z the slope
of logic M as function of logiu r gives D(z) (Fig. 1). In
Fig. 2 we plot the values of D(z) obtained from the first
set of measurements. The values obtained from the sec-
ond set were not substantially different. For completeness
we give the values of D(z) obtained in the two sets.

0
0

FIG. 2. Plot of D(x) for the set of configurations A. The
numerical values of D(x) for the two sets A and 8 are also
given. The uncertainty in D(x) has been estimated ranging
from 0.01 for small values of 2: to 0.02 for large values of x.
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FIG. 3. Data collapse Eq. (4) (a) using multiscaling, (b) using standard scaling, (c) using deviation from the average data
collapse A(z)/ ( A ) for multiscaling, and (d) for standard scaling.

To better appreciate the diA'erence in quality of the two
data collapses, we have evaluated the following quantity:
A(z)/ & A &, where & A & is the average over R for a
fixed z, using the multiscaling form [Fig. 3(c)] and the
scaling form [Fig. 3(d)]. By comparing the two figures
we see that multiscaling has much less spread and is thus
a better data collapse.

Discussion The form of D(z. ) shows a slow increase
as function of z before it decreases. A simple argument
shows, however, that for DLA D(z) must be a nonin-
creasing function of z. Consider the density g(r, Ri) of a
DLA aggregate of radius Rq at a distance r from the ori-
gin. Now let the same aggregate grow to a larger radius
Rq ) Ri and consider the density g(r, R2) at the same
distance r from the origin. Due to the irreversibility of
the growth process, we must have g(r, Ri) & g(r, R2).
From Eq. (3) it follows that

with zi ) z2, which for large values of r implies D(z2) &
D(zi). Thus D(z) must be a nonincreasing function of

z. The numerical finding of a small bump in D(z) might
be due to two reasons. One is a numerical inaccuracy, the
other is that the asymptotic regime has not been reached
yet. The first possibility can be excluded, since the er-
ror bars are smaller than the diff'erence D —D(0),
where D

„

is the maximum value of D(z) Moreover, .
our numerical data are consistent with (5), considering
that the numerical values of D(z) and C(z) have been
obtained from clusters of the order of 105 particles, while
in order to see a violation of (5) with those numerical val-
ues of D(z) and ( (z) the number of particles should be
greater than 10 ". Therefore the bump must necessarily
disappear for such large clusters. This is also supported
by the value of D~ „—D(0) that shows a slight ten-
dency to decrease from the value of 0.10 for the 10000
particle clusters to the value of 0.08 for the 100000
particle clusters. Hence, asymptotically we expect D(z)
to be roughly constant over a region up to some value
zo 1.5 and then to decrease for larger values of z. The
first behavior corresponds to the interior part of DLA
where growth almost barely occurs, and it is character-
ized by the fractal dimension of the infinite aggregate,
while the second behavior corresponds to the growing re-
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gions, which are characterized by infinitely many fractal
dimensions.

In conclusion we have performed large-scale simula-
tions of DLA clusters and found that the density profile

obeys a multiscaling form given by Eq. (3).

We thank P. Alstrom for clarifying discussions leading
to inequality (5).
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