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Second-harmonic generation is studied in a medium which is both nonlinear and disordered.
Disorder-induced strong elastic scattering of both a fundamental and second-harmonic light gives rise to
a diffusionlike regime of light propagation. The interference effects, which cannot be described by the
diffusion approximation, are taken into account. They are shown to lead to a sharp peak in the angular
distribution of second-harmonic intensity. The direction of the maximum second-harmonic intensity is
found to be roughly opposite to the one determined by the usual phase-matching condition in an
effective transparent medium. Different models of disorder are considered, and the corresponding values

of peak-to-background ratio are calculated.

I. INTRODUCTION

Recently there has been a considerable increase in the
number of both experimental and theoretical works on
optics of disordered media. Such a revival of the field is
connected with understanding of a role played by in-
terference effects at multiple scattering of light in absorp-
tionless disordered media. As it has been realized, they
are the effects that are responsible for the localization of
waves at a sufficiently large extent of disorder (Anderson
localization). However, even at weak disorder these
effects are important. The most famous examples of such
types are the decrease in conductivity of metals at very
low temperatures' (weak localization) and enhanced
backscattering of light from opaque media.?”® Recently
the physical principles of weak localization have been ap-
plied to nonlinear optical phenomena.!® ! As has been
shown in Ref. 10, the same interference effects that lead
to enhanced linear backscattering can produce a sharp
peak in the angular distribution of second-harmonic in-
tensity, the direction of maximum second-harmonic in-
tensity being opposite to the one of the fundamental-light
incidence. Such an effect is impossible in a transparent
nonlinear medium where the second-harmonic intensity
has a sharp peak in the forward direction due to the
momentum-conservation law for mixing photons. It also
cannot be obtained in a strongly scattering medium
within the diffusion approximation, which is usually ap-
plied to this case.!? In order to take into account the in-
terference effects in nonlinear mixing, one should go
beyond the diffusion approximation in describing the
propagation of light in strongly scattering materials. The
first step in this direction has been made in Ref. 10.
However, in this work we have confined ourselves to the
case when a medium is transparent for a fundamental
light of the frequency w and only a second-harmonic (SH)
light is scattered strongly. In addition, the nonlinear po-
larizability ' is supposed to be nonrandom, constant in
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space value. Though the calculations are simplified con-
siderably in this case, it does not correspond to a real ex-
perimental situation.!?

The results of the work'® showed that there is no prob-
lem with the registration of the output intensity of the
second-harmonic radiation generated in a strongly
scattering sample [pressed powder of potassium dihydro-
gen phosphate (KDP)]. The main experimental difficulty
is the presence of an intense diffuse background, which
prevented us, under the conditions available in Ref. 13,
from observing the interference peak. The smallness of
the peak-to-background ratio at a stationary second-
harmonic generation in a strongly scattering bulk sample
has been pointed out in Ref. 10. That is why the case of a
pulse second-harmonic generation has been studied in
Ref. 10 as a possible way to increase the relative value of
the interference peak.

However, the real experimental situation is much rich-
er than a model considered in Ref. 10. The most impor-
tant phenomena, which were not taken into account in
Ref. 10, are scattering of a fundamental light and disor-
der in the nonlinear properties of a sample. In this work
a general case is studied where both a fundamental and a
second-harmonic light is scattered, the elastic scattering
lengths being /, and /,,, respectively. It will be shown
that in spite of fundamental-light scattering, the interfer-
ence peak in the angular distribution of SH intensity is
present. Moreover, fundamental-light scattering makes
its observation easier because scattering suppresses the
diffuse background in the angular distribution of SH in-
tensity, and, therefore the peak-to-background ratio in-
creases. At not too large sizes of a sample L, the maximal
peak-to-background ratio is roughly equal to /,,/[, in
contrast to the value /,, /L found in Ref. 10 for the case
1, > L. Under real experimental conditions'? the scatter-
ing lengths are [, ,~I,,~90 um, that is two orders of
magnitude smaller than the sample size L =1 cm. Thus,
scattering of a fundamental light gives rise to a dramatic
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increase of the peak-to-background ratio. Therefore, the
predicted interference peak in the angular dependence of
SH intensity could be observed even in bulk samples at
stationary conditions.

However, for such experiments the choice of a sample
is of great importance. The most obvious example!® of
both a nonlinear and scattering medium is a pressed
powder prepared from a nonlinear crystal with nonzero
¥'? (i.e., noncentrosymmetric crystal). Nevertheless, this
is not an optimal (with respect to the value of the peak-
to-background ratio) choice for the experiments on the
interference effects in second-harmonic generation. The
reason is that the average value of the nonlinear polariza-
bility {(x'®) [not (x(3))] is zero in such a medium be-
cause of its spatial isotropy.

We shall consider below both a model with a constant
and a model with a random in space nonlinear polariza-
bility. The latter model seems to be more realistic for the
description of second-harmonic generation (SHG) in sam-
ples consisting of small randomly oriented particles of a
nonlinear crystal. It is shown that at sufficiently small
values of the particles size, R <</,,l,,, the interference
peak in the SHG is smeared out. This result explains the
failure'> to observe the interference peak.

Another possible cause of this failure is connected with
the phase mismatch because of the frequency dispersion
of the linear dielectric constant. Although this effect has
been considered in Ref. 10, it acquires different important
features when fundamental-light scattering and disorder
in the nonlinear constant are taken into account. In par-
ticular, it is shown in this paper that the negative fre-
quency dispersion of the average refractive index
An=n(20w)—n(w) does not lead to a decrease in the
second-harmonic intensity generated in a bulk scattering
medium. On the contrary, the positive dispersion results
in the additional suppression of the diffuse background in
the second-harmonic generation. It means that the posi-
tive dispersion diminishes the peak-to-background ratio
weaker than the negative one. On the other hand, if one
is interested in the maximum output second-harmonic in-
tensity, not the maximum relative value of the interfer-
ence peak, the negative dispersion is preferable. Thus, a
problem of optimizing the parameters of a sample ap-
pears, the solution of this problem depending on the aim
of the experiment. If this aim is an observation of the in-
terference peak, the problem reduces mainly to the op-
timization of the peak-to-background ratio with respect
to such parameters as I,,/L, I,,/1,, and (l,,/A)An,
where A is the wavelength. This problem is considered
below in detail as well as the dependence of a peak shape
on the parameters of a sample.

The paper is organized as follows. In Sec. II different
models of disorder are described. The experimental
geometry and the basic equations are given in Sec. III. In
Sec. IV the impurity diagrammatic technique is general-
ized for the particular problem. The main results of cal-
culations are summarized in Sec. V. The effect of the
phase-matching condition is discussed in Sec. VI. Section
VII is devoted to the consideration of a model with a ran-
dom nonlinear polarizability. In Sec. VIII the main
features of SHG in a strongly scattering medium are ex-
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plained qualitatively. In the Discussion the necessary nu-
merical estimations are made as well as some experimen-
tal recommendations on the optimal choice of samples.

II. TWO MODELS OF DISORDER

We shall consider two different models for the descrip-
tion of SHG in disordered materials. The first model is
characterized by a nonrandom, spatially homogeneous
nonlinear polarizability )(ﬁzj), and a random, inhomogene-
ous linear dielectric constant.

A possible example of a material described by this
model is an absorptionless nonlinear monocrystal of the
proper symmetry group (with no inversion symmetry)
that contains internal scatterers (e.g., cavities). At a rela-
tively small fraction f of volume occupied by scatterers,
nonlinear properties of such a material can be described
approximately by a space-averaged nonlinear polarizabili-
ty. However, even weak Rayleigh scattering by internal
inhomogeneities makes a sufficiently thick sample opaque
due to the diffusionlike propagation of light in it.

Another example is a pressed powder of a centrosym-
metric nonlinear material in a strong external electrostat-
ic field Ey. In this case a corresponding second-order
nonlinear constant y'?’ is proportional to the averaged
value of a third-order nonlinear constant ¥‘*) and the
value of an external electric field. In spite of the small-
ness of a constant x'*, such a material may be preferable
to the first one because it is not easy to imbed scatterers
in a single crystal.

Formally, inhomogeneous linear optical properties of a
sample can be described in terms of a space-dependent
dielectric tensor €;(r’). For the sake of simplicity we re-
strict ourselves to the consideration of a scalar dielectric
constant

e(r)=e€+8e(r) , (2.1)

where the ensemble average of {8e(r)) is supposed to be
zero. For the particular case when scatterers are uni-
formly distributed over a volume and their size a is much
smaller than the wavelength of light A, the averaged
dielectric constant is given by

e=c(l—f)+ef, 2.2)

where €, and €, are dielectric constants of a surround and
a scatterer, respectively, and a volume fraction of scatter-
ers f is supposed to be small. In this case a random part
of the dielectric constant 8e(r) can be considered as a
Gaussian random field characterized by a correlator:
2 f?

(8e(r)8e(r')) =(ep—¢€) —;1—6(r—r‘) , (2.3)

where n is a number of scatterers in a unit volume. The

coefficient attached to the 8 function in (2.3) determines
an elastic scattering length / for Rayleigh scattering:

4
2
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Equation (2.4) shows that in the absence of frequency
dispersion in the dielectric constants €j,€; the following
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relationship is valid for elastic-scattering lengths corre-
sponding to a fundamental and a second-harmonic light:

1,=16l,, . 2.5)

For short-wavelength scattering @ >>A the expressions
(2.3)=(2.5) no longer hold. In this case one should expect
the light-scattering cross section to be an independent on
the wavelength value of the order of a2. Therefore, the
value /,,, /1, should be close to unity when a >>A.

The ratio a=A/(2wl) plays a crucial role in the theory
of light propagation through a disordered medium. For
small values of a the diffusion approximation is a good
zeroth-order approximation for a consideration of weak
localization effects. Large value of a correspond to the
strong Anderson localization of light.!*!> For Rayleigh
scattering by spherical scatterers of the radius a the pa-
rameter « is given by the expression
3
278 | < (eg—e, S

2
a=)»/(27rl)=3(60—61 Zf X

(2.6)

Because both values (e,—¢,)? and f are usually less than
unity, the parameter a is a small value of the order of
1072-1073 for such media as suspensions of solid spheres
in liquids or pressed powders.>®° Below we shall use the
smallness of this parameter in the calculations.

As far as linear optical properties are concerned, all
the above expressions are also valid for a polycrystal sam-
ple, e.g., for a pressed powder prepared from a transpar-
ent single crystal with a nonzero second-order nonlinear
polarizability ¥?.13 In this case small air cavities be-
tween single-crystal particles of a powder play the role of
scatterers. However, the nonlinear properties of such a
sample differ strongly from those of a single crystal. The
reason is that the nonlinear polarizability ( Xﬁzj’,) aver-
aged over all possible orientations of single-crystal parti-
cles turns out to be zero. Indeed, after such averaging
the third-rank tensor ( Xﬁi’,) becomes invariant under
transformations of the group of rotations SO(3) in the
three-dimensional space. The only nontrivial SO(3)-
invariant third-rank tensor is known to be the totally an-
tisymmetric tensor e;;. On the other hand, the tensor
xﬁ-,zj),(m,a)) is symmetric with respect to indices, j,/. That
is why for a polycrystal nonlinear sample one has
(x{3))=0. It means that for such samples a model with
a constant in space nonlinear polarizability is principally
wrong.

The more realistic model appropriate to this case is the
one with a Gaussian random nonlinear polarizability
X(Z)(r), which is characterized by a correlator,

_r—r'|

K(lr—r')={x?(r)xP(r")) ={(x*)exp ?

’

(2.7)

where R is an average size of single-crystal particle in a
polycrystal and {x?) is a square of the nonlinear polari-
zability x'?’ of the corresponding single crystal averaged
over all possible orientations. For the sake of simplicity
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we omit the tensor structure of { ¥?) and consider it to be
a scalar value.

III. THE EXPERIMENTAL GEOMETRY

We consider SHG in a slab of the thickness L >>1_,1,,,
(Fig. 1) occupying the layer 0<z <L. A plane mono-
chromatic wave of the fundamental frequency w is in-
cident from the half space z <0, the direction of in-
cidence being in the x-z plane. We are interested in the
angular distribution of the SH-light flux II, (6) radiated
back into the half space z <0. It is convenient to intro-
duce a dimensionless quantity (nonlinear albedo)

115,(6)
H b

(o]

Ry(0)=

3.1)

where I, is a flux of an incident fundamental light. Be-
cause for linear diffuse scattering the value of the albedo
is of the order of 1/27,° the quantity 2R, gives a ratio
of the generated SH flux to the flux of a scattered funda-
mental light.

The basic wave equations for the electric-field ampli-
tudes of a fundamental and a SH light have the form

2 Ve,,
VEy,+ 2 6, (DB +V | —E,,
c 20
=—nEP@EN (), (3.2
2 Ve
V2E,+ 5 €,(r)E,+V | —2E, |=1,(r), 3.3)
c ®
where
167w?
ma =X | T | 64

and J (r) is an external source of a fundamental light.
The vector nature of an electromagnetic field makes
Egs. (3.2) and (3.3) rather complicated. In particular, a

w, kw 2(0, ka

/

g

.
V%

FIG. 1. The experimental geometry.
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special term appears containing the logarithmic deriva-
tive of e(r), which is due to the lack of transversality of
an electric field in an inhomogeneous medium.!® This
term is responsible for the change in the polarization of
light propagating in a disordered medium. Though po-
larization effects are important, they are known to be
minimized (for linear backscattering) when the polariza-
tions of an incident and a measured scattered light are
the same, the electric field being parallel to the boundary
of a sample (s polarizations).” For the same reason, the
polarization effects in SHG are expected to be less impor-
tant for the case where both a fundamental and a mea-
sured SH light is s polarized [E=(0, E,0)] and, in addi-
tion, the nonlinear polarizability ngj)l satisfies the condi-
tion

x32,=x%s,, . 3.5
This condition means that the nonlinear source on the
right-hand side of Eq. (2.2) is polarized mainly in the y
direction as is the linear source in (2.3).

The condition (2.4) is obviously fulfilled when a sample
has a symmetry axis that coincides with the y axis. Prac-
tically, such a situation takes place when a static electric
field is applied along the y axis to a powder of centrosym-
metric crystal pressed into the form of a slab. For such a
geometry one can use a simplified scalar model described
by the equations

2

V2E,,+ 4%62w<r)E2w =—n(r)E(r), (3.6)
C

2 o’ —
A% Ew+—zem(r)Em—Jm(r) . (3.7)
c

This is just the model we will study below.

IV. THE DIAGRAMMATIC TECHNIQUE

The formal solution of Egs. (3.6) and (3.7) may be ex-
pressed in terms of the corresponding Green functions
g,(r,r') and 9, (r,1'), each 9(r) being dependent on the
particular choice of random functions €,(r) and €,,(r),
respectively:

EZw:_n{§2w{§wa}2} ’ (41)

where {@J} means a convolution. This operator equa-
tion corresponds to the diagram shown in Fig. 2(a). Here
solid lines denote Green functions §, (,,)(r,r’). Black
circles correspond to fundamental-light sources J,, and
an open circle corresponds to the nonlinear constant 7.
The SH intensity averaged over the ensemble of random
functions e(r) is given by the value { |E,,|?). Therefore,
for a model with a nonrandom nonlinear constant 7, one
should average a product of six Green functions in order
to obtain the SH intensity. This averaging may be
represented by the diagrams shown in Figs. 2(b)-2(f),
which are similar to those used in the theory of disor-
dered conductors.!”!® Here thin solid lines correspond to
the averaged Green functions G, (,,)(z,z";p—p'). At
small values of the parameter «, the Fourier transforms,
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Gw,(zm(z,Z’;q)=fGw,(zm)(z,Z’;p—p’)ei“"’"’"—dqz ,
(27)
4.2)
are given by
G(o(Z(u)(Z!z’;q)
S — 1 ei|z-—z'|l?1’(2)(q)+rl’(z)(q)ei(z+z’)1?1’(2)(q)] ,
2lkly(2)(q)
(4.3)
where
k(g)=V'k*—gq> (4.4)
and
~ i
k =k + 4.5
1,(2) 1,(2) 20, o (4.5)

In (4.3) and (4.5) k; and k, are wave vectors of a funda-
mental and a SH light in an effective transparent medi-
um,

Jo
2w @
w
(a) Jo
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7 r‘{
(b)
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w w
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2w 7 Jo
WS \w
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g5 g
w I Js
2w
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FIG. 2. The diagrammatic technique: (a) a diagrammatic
representation for the SH-amplitude, (b) ladder and (c) maxi-
mally crossed diagrams, (d) a peak contribution to the SH inten-
sity, (e) a surface and (f) a bulk contribution to the diffuse back-
ground, and (g) a diagrammatic representation for the field
correlator I, (r,r’).
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=2V, k2=27w1/€2w : (4.6)
The first term in (4.3) describes the bulk part of Green
functions, while the second one is due to the internal
reflection of light from the sample boundary, r(g) being
the complex reflectivity. The imaginary parts of Kk, and
k, in (4.5) are due to light scattering, which results in an
exponential decay of bulk parts of Green functions for
|z—z'| >>1 as well as a decay of surface-induced parts far
away from the boundary z,z’ >>1.

However, averaging over a disorder does not reduce to
independent averaging of Green functions. In addition,
some correlations between different Green functions
G(r,r’) should be taken into account. They are shown by
dotted lines in Fig. 2, each dotted line corresponding to a
correlator (8e(r)de(r’)). At a multiple scattering
diffusion regime, a special role is played by the infinite
series Cy ((r,1';1;,1]) of ladder and maximally crossed
diagrams shown in Figs. 2(b) and 2(c). In the presence of
time-reversal symmetry, both series can be expressed’® in
terms of a diffusion propagator D(r,r’):

Cy(r,r';rir))=C.(r,r';1},1,)

_ 127

—1—31)(r,r')8(r—r1)8(r’—r'1) . 4.7)

An exact diffusion propagator is a solution of an integral
equation corresponding to the ladder series [Fig. 2(b)].
The kernel of this equation depends on the surface-
induced parts of Green functions (4.3), and a general
equation is too complicated to be solved analytically. The
only case where an analytical solution is possible corre-
sponds to a negligible internal reflectivity r(g). In this
case the integral equation is of the Wiener-Hopf type.
However, even a solution of this simplified equation is
still too complicated for further analytical calculations.
Therefore, in this paper we restrict ourselves to a simple
approximate solution for the diffusion propagator
D(r,r’). In accordance with this approximation®!! the
diffusion propagator is supposed to satisfy a usual equa-
tion for the stationary case:

V2D(r,r')=—8(r—r') . (4.8)

The effect of a boundary is taken into account by means
of the following boundary conditions:

9D(r,r') _
on

The constant 4 in Eq. (4.9) depends on the reflectivity of a
boundary and on the corresponding elastic-scattering
length I. For small values of the reflectivity, a compar-
ison of the approximate solution with the exact one far
away from the boundary gives the following value of the
constant h:>12

D(r,r')+h 0. (4.9)

hy,2)=0.71, 30) - (4.10)

For the case L >>[,z,z', the Fourier-transform
D(z,z';q), which we shall use in our further calculations,
is given by
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Z)(z;z';q)=i e—qlz—z'l_ﬂieﬂl(zﬂ’) (4.11)
2q 1+gh

In Fig. 2 only diagrams with the minimal number of
diffusion propagators are shown. More complicated dia-
grams containing a larger number of diffusion propaga-
tors are proportional to additional small factors a <<1
[see (2.6)]. In calculating diagrams one also should take
into account that each external Green function originat-
in at a source corresponds to the factor
{G,J,}=(E,), where (E,) is an averaged electric
field inside the sample. For nearly normal incidence it is
given by

(Ew>=Eﬁf)exp ik-r——% , 4.12)

where k; is a wave vector of an incident fundamental
light. For the correct calculation of the nonlinear albedo
(3.1) near the backscattering direction (6<<1), one
should prescribe the function

¥4
21,,

— L T, IS exp (4.13)

47E© ~ikr

to external lines corresponding to SH Green functions.
In this equation, T, is a transmission coefficient for the
SH-light incident on a sample from the outside, S is an il-
luminated area of a sample, and k, is a wave vector of an
outgoing SH light.

It can be easily seen that Figs. 2(d) and 2(e) correspond
to processes when a fundamental light is not scattered be-
fore nonlinear mixing. Due to the exponential decay of
the averaged electric field (4.12), the main contribution of
these diagrams corresponds to the surface SHG, which
occurs within a layer of thickness /, near the boundary of
a sample. On the contrary, in Fig. 2(f), the nonlinear-
mixing point is separated from external-source points by
an infinite number of scattering events. This diagram de-
scribes the bulk SHG by nonlinear mixing of the
multiple-scattered fundamental-light photons. Using
(4.7) and (4.13), one can see that only Fig. 2(d) depends on
the direction of the SH wave vector k,. It is this diagram
that describes the interference peak in the SH intensity in
the direction corresponding to k,= —2k;,.!° All other di-
agrams of Fig. 2 contribute to the diffuse background in
the angular distribution of the SH intensity.

V. THE CALCULATION OF DIAGRAMS

We calculate the diagrams of Fig. 2 for the case when a
fundamental light is incident normally on the boundary
z=0 of a sample. In this case only Fourier components
G(z,2';q=0)=G(z,z') contribute to the result and the
calculations are simplified considerably. In particular,
the diagrams shown in Figs. 2(e) and 2(d) correspond to
the following expressions, which one can obtain using
(4.7), (4.12), and (4.13):



4936

L —(z,+zy)/1, —z/1
R0=Af dzdz'dzdzye ' TP e
0

RP(9)=Af0Ldzdz'dzldzze

where g =(k,), is a small component of the SH wave
vector k, parallel to the boundary,

20
~—10|, 53
g~=_16l (5.3)
and the coefficient A4 is given by
4
AzllzTﬂsz()(‘Z)lEﬁf’l)z 27“’ (5.4)
2w

Because the diffusion propagator (4.11) decreases with in-
creasing g, the function R,(6) has a peak at 6=0 (see
Figs. 1, 7, and 8). This is just an interference peak in the
SH intensity, which we predict to occur.

For the case of interest, L >>1, , the upper limit of in-
tegration in (5.1) and (5.2) can be chosen to be infinity.
The independence of the integrals on the thickness of a
sample for L >>1,, means that the diagrams of Figs. 2(d)
and 2(e) describe a surface contribution to the SH intensi-
ty. At a small value of the parameter a,, the quantities
R,(6) and R, do not depend explicitly on the reflectivity
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—(z,+z,)/1 ~—(z+z2')/21 2ik (2, —2z,) —ik,(z—2")
1 2 ®e Zme 1“1 2e 2

#“
20 2k (z)—2;) Tp— ’ * ’
e @20,(2,2 »q O)sz(l 721)62(0(2 yzz) ’ (5.1
Dy(2,2';9 )G (2,2,)G 3, (2',2,) , (5.2)
—
E=h,/1,, , (5.5)
_ 1 12w

p=- + L (5.6)

and
A=(ky,—2k )y, . (5.7)

The possible values of parameters u and § may be found
from (2.5) and (4.10). For the case of Rayleigh scattering
(@ <<A) with no significant internal reflection of SH light
from the interface, parameters § and p are equal to

gminzo‘7’ .u'min=% . (5.8)

With increasing the internal reflection the parameter §
also increases, £ being proportional to T';.! at small T,,,.
The increase in sizes of scatterers gives rise to an increase
in the parameter . When the sizes approach the wave-
length, the ratio I, /I, tends to unity, so that the param-
eter u takes a maximum value

of a boundary r (but do depend on 4). The results of the By =2 . (5.9)
calculations may be expressed in terms of the following max 2
dimensionless parameters: | The final result of calculating (5.2) reads
3 20 | [l |*[! £(@)
R(0)="TT, (xPEQ|? |2 | |22 | |22 1 , (5.10)
P 2 AR k, ky | [(ptg)+Aa*)(1+7)?
where
2 2+ +a 2_|_ —1 + =2
fg)= §_ LA q; 2 (12 2u+7q) (5.11)
1+g¢ A+ (1+p)
and
2wl
7=gl,=—16=16| /ay, . (5.12)

Expressions (5.10)-(5.12) show that the angular width of the interference peak is of the order of A@=a,, and the peak
shape depends on parameters u,{ and A (see Figs. 7 and 8). On the contrary, expression (5.1) does not depend on the
angle 6. It describes a part of a diffuse background in the angular distribution of SH intensity.

The crucial parameter for the observation of the predicted peak is a peak-to-background ratio, which depends on pa-
rameters of a system and may be considerably less than two. In order to evaluate this quantity one should calculate the
integral (5.1) and compare it with the ¢ =0 limit of the expression (5.10). The result may be represented in the form

4 2 2
3 20 Lol Solw, E)pug+A%)
R. =TT (| g0)[y2 | =9 , 5.13
0= T PIESD k2| (WA [(p+12+A2] 5.13)
4 2 2 2
_ 37 )] (02 | 20 12_‘0 (1+20)(p, +A7)
R,y (0)="To(x LED) - by | @A [(ut 1P TAT] (5.14)
where
2_
fo(u,§)=(2+4§)§‘ "+1, (5.15)
un
2
2 p(p+D[24+48)u+5+4C] , (5.16)

2+4Hu*—p+1



IR

» (wHD[A+26)u*+3+28)u+1]
Hp (1+26) :

THEORY OF SECOND-HARMONIC GENERATION IN STRONGLY ...

4937

(5.17)

The bulk contribution R {®"I) to the diffuse background given by Fig. 2(f), can be expressed in terms of the field corre-

lator:
. (EL(DE}(r))
I, (1,1 )—‘W (5.18)
w
Comparing the diagrams of Figs. 2(f) and 2(g), one obtains
4
T.

RE0 = =22 (yV|EQ| 2 27“’ [a* [ d*r (1,5, 0) PLy(x,r) . (5.19)

In the bulk region the field correlator (5.18) is given by the expression'®
sin[k ) r—r'[] kyalr—r'|
I (r,r')=1Iy(z) - (5.20)
oz ° ki lr—r'| 21 4(20)

where I,(z) is an averaged intensity of light in a sample

Iy(z)=3(1+¢&N1—2z /L) . (5.21)
Using Egs. (5.20) and (5.21), the integral in (5.19) may be represented as follows:

277 (g3 SL (ar (k) — (2K, +ky)— T (ky—2K)] (5.22)

2 kik,
where
. klZaJ
sin t
® kil
1= [ B etdr=tan—! |22 (5.23)
0 t

At small values of a,,, one can set I (k,)=1(2k,;+k,)=1/2. Then Egs. (5.19)-(5.23) result in

REW=2TT (1 L epr, (P EO | p—E |22 | o1 | & (5.24)

2 kik,

It is seen from Eq. (5.24) that the contribution R ") be-
comes the main one at large values of L. In this limit the
interference-peak intensity is small as compared to that
of diffusive background. However, for intermediate
values of sample thickness /,, << L <Ly(A), where

I
Lo(0)~27ly, 1, /A= % >>1,, (5.25)

@
one can neglect the process of SHG by a scattered funda-

mental light. For such samples the peak-to-background
ratio takes the form

R,,(0)—R,  (1+25)(u}+A%)

R, Folp,E)(ud+A?)

It follows from (5.26) that the peak-to-background ratio
decreases with increasing /,. Therefore, one can con-

clude that scattering of a fundamental light results in an
increase in the relative value of the interference peak.

lZa)

1

(5.26)

W

VI. THE EFFECT OF A PHASE-MATCHING
CONDITION

In this section we consider the influence of the frequen-
cy dispersion of €(w) on the results obtained. It is well

T
known that one of the main difficulties of the SHG exper-
iments is connected with a nonzero value of
2k, —k,=(20/c¢)V &,—V'E,). For the case of SHG
in a transparent medium, the phase-matching condition
should be fulfilled with the accuracy of

|2k, —k,|<L7!, (6.1)

otherwise the SHG intensity is negligible. However, the
requirement (6.1) becomes weaker in strongly scattering
media, as it follows from (5.13), (5.14), and (5.24). A con-
siderable decrease in the intensities R, and R,(0) occurs
when

2k, —k,| > 15} . (6.2)

The reason is that the uncertainty of wave vectors in a
strongly scattering medium is of the order of the inverse
scattering length, rather than the inverse size of a sample.

An interesting phenomenon takes place in a relatively
thick sample with L > L,(A). Equation (5.24) shows that
the intensity of the diffuse background behaves like
cot”(k,—2k)l,,. Therefore, there is no decrease in the
SHG intensity at large positive (2k, —k,)l,,, while at
large negative (2k; —k,)l,, the intensity decreases pro-
portional to |2k;—k,|”!. The explanation of such an
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asymmetry is rather simple. In the bulk of a sample there
are fundamental-light photons with all possible directions
of momenta. The total momentum should be conserved
[see Fig. 4(d)] in a process of SHG with the accuracy of
15.]. This means that a considerably SHG can occur only
when the following condition is fulfilled:

lk1+kl1lzk2, |k1|=|k’1|:k1 ’ (6.3)

where k; and k| are wave vectors of two mixing funda-
mental photons. For the case when 2k, > k,, the condi-
tion (6.3) can always be fulfilled by a proper choice of the
angle between wave vectors k; and kj, while for 2k, <k,
it is impossible to meet this requirement.

A relatively slow (if any) decrease in R "% with in-
creasing |A| means that at sufficiently large values of
|A|>1 this contribution to R,,(0) always becomes the
main one. For |A| >>L,(0)/L the interference peak can
hardly be observed because of its small relative value.
However, as long as the sample thickness L is still less
than Ly(A), the dependence of the peak-to-background
ratio on |A| is not too strong (see Fig. 6).

On the other hand, the effect of an absence of SHG
suppression at A <0 in strongly scattering media can be
used to increase the integral SHG intensity. Indeed, us-
ing the expressions (4.12) and (4.13) and calculating Fig.
2(a), one can show that for a Gaussian profile of the in-
cident beam intensity in the x-y plane, the integral SH in-
tensity /= | R,,(0)d€) generated in a transparent sam-

ple is equal to

(4]

sin[(w/c)(An )L ]
(An)

I, =@m)*(|E® )L (6.4)

Using the expression (5.24) also, we obtain the ratio of
the integral SH intensities I, and I, generated in a
strongly scattering and in a transparent sample. At large
negative values of A=(2wl,, /c)(An) it has the form

27T
ISC /Itr = 2

It is seen that for |An|>5X 1073 the total SH intensity
generated in a strongly scattering sample is larger than
that generated in a transparent sample.

(14+£)3|An|~200|An| . (6.5)

VII. THE MODEL WITH A RANDOM NONLINEAR
POLARIZABILITY

The model with a constant in space nonlinear polariza-
bility, which has been considered above, fails to explain
SHG in a polycrystal sample. In this section we study the
model with a random nonlinear polarizability y*(r),
which is characterized by the correlator (2.7). We shall
concentrate on the calculation of the surface contribu-
tions to R,, similar to those described by the diagrams
shown in Figs. 2(d) and 2(e). However, in the case of a
random nonlinear polarizability, the integrations over po-
sitions of nonlinear-mixing points r; and r, are no longer

J

F(z,z’;q)=fowdzldzzK(zl,zz;q)GZw(z,z,;q)wa(z’,zz;q)e ,
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FIG. 3. The diagrammatic representation of SH-intensity for
the case of a random nonlinear polarizability: (a) a diagram for
the interference peak and (b) a surface contribution to the
diffuse background; double lines denote the correlator of non-
linear polarizabilities, and wavy curves correspond to diffusion
propagators.

independent due to the correlator K(|r;—r,|). The dia-
grams corresponding to those of Figs. 2(e) and 2(d) are
shown in Fig. 3(a) and Fig. 3(b), respectively. It is worth
noting that in a general case where there is both a
nonzero average value and a random part of the non-
linear polarizability, the same diagrams appear in addi-
tion to the diagrams of Fig. 2. Below we consider a case
when the correlation radius R obeys the following condi-
tion:

A<R <<l1,, . (7.1)

This condition is most likely fulfilled in experiments on
powder samples!> where R is an average size of powder
particles. It is seen from Fig. 3 that under such a condi-
tion the main contribution of the diagram Fig. 3(b) cor-
responds to the integration over large momenta
g~R "!'>>171 In this case the diffusion approximation
(4.8) and (4.9) no longer holds for the diffusion propaga-
tor D(z,z';q), which is determined mainly by twofold
scattering. At zg >>1 and z'q >>1 one can neglect the
surface-induced term in the diffusion propagator and use
the bulk expression for 2(z,z';q), which decreases
strongly when |z—z’| > ¢ ~!. Because in the further cal-
culations the diffusion propagator is to be integrated over
an interval |z—z'| >>¢ !, the following approximation
for D(z,z’;q) is sufficient for the calculation of Fig. 3(b)
oyl

6 .
On the contrary, in Fig. 3(a), the longitudinal momentum
q in the diffusion propagator remains equal zero. There-
fore, the diffusion propagator for this diagram is given by
the g =0 limit of the expression (4.11):

Diz,z';qg >>1"H=8(z (7.2)

(z+z')—|z—2z']
2

The contributions R, and R,(68) of both diagrams of Fig.
3 can be expressed in terms of the quantity

D(z,z';q=0)= +h . (7.3)

2ik (2 —zy))—(z +2,)/1 (7.4)



4 THEORY OF SECOND-HARMONIC GENERATION IN STRONGLY ...

4939

where K(z,,2,;q) is a longitudinal Fourier-component of the correlator (2.7):

Ro=4 [ “dzdz" [ ?2%":1)71)(2"’2;" =0)F(z,z;9)e

R,(0)=4 fowdzdz’f(—ng)gﬂ(z,z’;q)F(z,z’;q)e
T

2"/l

—ik,(z —z’)e —(z+z')/21,,

’ (7.5)

(7.6)

Neglecting all terms proportional to the higher powers of small parameters A/R or A/l one can obtain the following ex-

pression for F(z,z';q ):

Flz.z"q)= mRk; 1* (e =2) =+
T P 2k, —k, PR 2
where
d_r
l* 212(0 Ia)

It is seen from (7.7) that at R <</ the quantity F(z,z’;q)e—

)/lw(e"lz“‘l'l/l*_

iky(z —

—(z +z’)/l*)

e , (7.7)

(7.8)

) . ..
7 varies weakly at the variation of z—z' by a value

g ~!'~R. That is why the approximation (7.2) with a & function is valid. The rest part of calculations is trivial and the

final result is:

R RlyLs, k2 (1+2p+4ut)

= n ,

O l6uk? | 12k, —k,|*+R 2 s
TI’2 Rk;zlga)

R,(0)=4 :
? 484 \/12k, —k,|+R 2

where the constant A4 is given by Eq. (5.4). The expres-
sions (7.9), (7.10), and (5.24) show that the peak-to-
background ratio behaves like

sz(o)_RO _ 7T2§ klle
R el ’
° ¢k\Rl,+c,Leot™" |2
u
(7.11)
where ¢; =(14+2u+4ul)in(k,£),c,=18u(1+£)3, and
= R (7.12)

E= :
V 1+R2?|2k, —k,|?

The main result of these calculations is the following.
Under the conditions (7.1), the peak-to-background ratio
is considerably less than in the case of nonrandom non-
linear polarizability, and it decreases strongly with de-
creasing the correlation radius R or increasing the
difference |2k, —k,|. It may be shown that simultane-
ously the angular width of the peak increases
ABO~A/E>>A/I,,. It means that in powder samples the
interference peak in SHG is smeared out. For example,
in the experiment!3 the parameters of a sample satisfy the
conditions R ~£~A=~1 um and A=50. For such condi-
tions the peak-to-background ratio is approximately
equal to 0.02AkR%/L ~10~*, which is, of course, unob-
servable.

VIII. THE MAIN QUALITATIVE FEATURES OF SHG
IN OPAQUE MEDIA

First of all we shall explain what is the cause of a peak
in the angular distribution of SH intensity and why this

(7.9)

(7.10)

—
peak is referred to as an “interference peak.” Because of
the supposed small ratio A/, the explanation can be done
using the quasiclassical language of photon trajectories.
In Fig. 4(a) the process of SHG is shown for the case
when nonlinear-mixing points are situated in a layer of
thickness /,, near the interface z=0. In this case for
each trajectory of a SH photon one can always find a con-
jugated trajectory [depicted by a dotted line in Fig. 4(a)],
both being connected by the time-reversal transforma-
tion. For such conjugated trajectories, a random
difference in phases 8¢ of the outgoing SH waves arises
only due to the incomplete equivalence of their initial and
final parts at a nonzero value of the difference 2k, —k,.
The corresponding phase-difference acquired on a dis-
tance d ~1,, is of the order of 8¢~ A. If the parameter
|A| is small, a constructive interference between the con-
jugated trajectories takes place, which doubles the contri-
bution of these trajectories in a total SH intensity. It is
clear that such an interference could occur only when the
outgoing SH wave is directed oppositely to the incident
fundamental one (6=0). Otherwise, an additional ran-
dom difference in phases appears, which depends on the
particular shape of the trajectory (more strictly, it de-
pends on the distance between the points of the first and
last scattering). After averaging over random positions
of scatterers, all the interference terms containing a ran-
dom difference in phases vanish. Therefore, contribu-
tions of all trajectories corresponding to sufficiently large
angle 0 are added incoherently. That is why there should
be a peak in the angular distribution of SH intensity in
the backward direction.

In fact, the nature of the interference peak is the same
as for linear backscattering.?”° The only important
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(c) (d)

FIG. 4. Typical trajectories of photons for different processes
of SHG: (a) conjugated trajectories contributing to the interfer-
ence peak, (b) trajectories with no fundamental-light scattering
contributing to the diffuse background, (c) a trajectory for SHG
in the bulk, and (d) the momentum-conservation law.

difference is that a SH light is generated in a sample, not
incident from the outside. This difference exhibits itself
in the dependence of results on the phase-matching con-
dition. It also manifests itself in the contribution of tra-
jectories corresponding to nonlinear mixing in a layer
l,>z>1,, [see Fig. 4(b)]. Because SH photons have a
small probability of ballistic motion through a layer of
the thickness /, >/, ,, for such trajectories there are no
conjugated ones. Hence, these trajectories are added in-
coherently and they make no contribution to the interfer-
ence peak. Nevertheless, all trajectories shown in Fig.
4(b) contribute to the diffuse background. Therefore, the
peak-to-background ratio for the total SH-intensity is
considerably less than two (which is typical for linear
backscattering?~°) and depends on the ratio [, /1,,,.

The next result to be explained is the suppression of
SHG in the bulk, i.e., beyond a layer of the thickness /,
[see Fig. 4(c)]. In this case two fundamental photons tak-
ing part in SHG are scattered, and, hence, they have arbi-
trary directions of their wave vectors k; and k] just be-
fore nonlinear mixing. Therefore, the momentum-
conservation law (6.3) cannot be fulfilled automatically in
this case (even when 2k, =k,). It gives ruse to some con-
straint (within the uncertainty 8k ~1,,! <<k) in possible
directions of the fundamental-photon wave vectors k;
and k| [see Fig. 4(d)]. It is this constraint that results in
the suppression of SHG in the bulk by the appearance of
an additional small factor A /! in the expression for a SH
intensity. That is why the peak-to-background ratio for
not too thick samples is determined mainly by the ratio
of thicknesses of a layer (~1,,), where conjugated trajec-
tories of SH photons are originated, and a layer (~1,),
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FIG. 5. Two different types of conjugated trajectories in a
polycrystal sample: (a) nonlinear-mixing points are in different
monocrystal particles (b) nonlinear-mixing points are in the
same monocrystal particle.

which contributes mainly to the diffuse background.

Finally we give a qualitative explanation of a decrease
in the peak-to-background ratio for polycrystal samples.
In this case all conjugated trajectories of the Fig. 4(a) can
be subdivided into two general classes. One of them con-
sists of conjugated trajectories with nonlinear-mixing
points being situated in different monocrystal particles
[Fig. 5(a)]. Another class corresponds to conjugated tra-
jectories with two nonlinear-mixing points being in the
same monocrystal particle [Fig. 5(b)]. The interference
term corresponding to conjugated trajectories of the Fig.
5(a) vanishes after averaging over random orientations of
monocrystal particles due to the zero average value of the
nonlinear polarizability. Therefore, such trajectories
make no contribution to the interference peak. On the
contrary, trajectories of Fig. 5(b) contribute to the peak
intensity in the same way as in the case of a monocrystal
sample. However, for small sizes of monocrystal parti-
cles R <<l,,, such trajectories correspond to random
walks with a return to approximately the same point. In
three-dimensional space (contrary to the case of two-
dimensional space!) the probability of such processes is
small by use of the parameter R /I,,. Therefore, the
peak-to-background ratio decreases by the same small
factor in polycrystal samples.

IX. DISCUSSION

Because nonlinear effects are relatively small, one has
to estimate an order of magnitude of the nonlinear albedo
(3.1). As an appropriate model system, we consider an
inhomogeneous centrosymmetric nonlinear material in an
external electrostatic field E,. A good example of such a
material is the one containing semiconductor microcrys-
tallites embedded in a glass matrix.'>? A value of > of
the order of 1072 esu is typical for such materials. For
the estimations made below, we take a value of the elec-
trostatic field E,~300 kV/cm=10" esu and a value of
the fundamental-light flux IT,~10* W/cm?. At such in-
tensities one has

XPIEQ | =xPEEQ|~6X1073 . ©.1)



4 THEORY OF SECOND-HARMONIC GENERATION IN STRONGLY ...

Another important parameter a,, =2wl,, /c is usually of
the order of 10°-10° in similar strongly scattering
media.>”® For our estimations we choose A,,=3,2
X107° cm and /,,=107% cm, so that a,,)=2X10%
Therefore, at |2k;—k,|l,, <1 we obtain for the non-
linear albedo the following estimation:

R,,~(¥?|ED|a;,)2~1072. 9.2)

This means that the generated SH intensity can be as
large as few percent of the scattered fundamental-light in-
tensity. This is, of course, sufficient for the observation
of second-harmonic generation.

The most serious experimental difficulty results from a
small value of the peak-to-background ratio and large
fluctuations of intensity due to a randomness of a medi-
um. The latter fluctuations (speckles) may be so large in
solid strongly scattering media that one fails to observe
even a linear backscattering peak.’ Nevertheless, averag-
ing by means of rotation of a sample with respect to an
incident beam, can reveal the predicted interference peak
if the peak-to-background ratio is not too small.

In Fig. 6 the peak-to-background ratio is shown as a
function of A=(k,—2k)l,, for different values of the
parameter u and different thicknesses of a sample. It is
seen that the peak-to-background ratio is larger for thin
samples (L =1 mm) corresponding to dashed (u= Z) and
dotted-dashed (u=3) lines, the relative value of the in-
terference peak being especially large in the latter case of
big scatterers (@ > A). However, in this case the peak-to-

-4.0 -2.0 0.0 2.0 4.0

FIG. 6. The peak-to-background ratio as a function of A: the
solid line corresponds to L=1 cm, u= %, the dashed line corre-
sponds to L =1 mm, u= %, the dotted line corresponds to L =1

cm, u= %, and the dashed-dotted line corresponds to L =1 mm,
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FIG. 7. The dependence of the normalized peak shape on A
at l":%: the solid, dashed, and dotted lines correspond to
A=0, 1, and 10, respectively; the dotted-dashed line corre-
sponds to the linear backscattering peak.
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FIG. 8. The dependence of the normalized peak shape on u
at A=0: the solid, dashed, and dotted lines correspond to
,u=19—6, 1, and %, respectively; the dotted-dashed line corre-
sponds to the linear backscattering peak.
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background ratio decreases rapidly when increasing the
thickness of a sample (the dotted curve corresponds to
L =1 cm), while for small scatterers (u=2) the depen-
dence on a thickness is not so important (compare the
dashed curve and the solid curve, which corresponds to
L=1mm and L =1 cm, respectively). It is also seen that
the peak-to-background ratio is larger in the case of posi-
tive dispersion A >0 when the bulk contribution to the
diffuse background is suppressed more strongly.

The dependence of the peak shape on the parameters A
and p is shown in Fig. 7 and Fig. 8, respectively. At large
values of |A|>1, the peak shape is approximately the
same as for linear backscattering of SH light, whereas for
|A]| << 1 the peak width is considerably smaller.

The main results of this paper can be summarized as
follows.

(1) The angular distribution of the SH intensity should
exhibit a sharp peak in the backward direction as well as
a diffuse background.

(2) For not too quick samples the peak-to-background

KRAVTSOV, AGRANOVICH, AND GRIGORISHIN 4

ratio increases with increasing the size of scatters a until
a>A.

(3) For polycrystal samples with (x¥*')=0 and small
sizes of monocrystal particles R <<[,,, the peak-to-
background ratio is small.

(4) The SH intensity in a thick sample has a weak an-
gular dependence, but it strongly depends on the sign of
the frequency dispersion An =n(20w)—n(w), where n is
an average refraction index. For negative An the SH in-
tensity does not decrease with increasing An. The phase-
matching condition is irrelevant in this case.
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