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Computation of ring statistics for network models of solids
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In random-network models of amorphous solids, ring statistics provide a measure of medium-range
order. However, many criteria used so far to determine the set of rings to count have serious drawbacks.
Here, a "shortest-path" (SP) criterion is shown to give ring statistics that agree well with intuition, and
to avoid problems inherent in other criteria. The SP criterion arises naturally in a hierarchy of criteria
for "irreducible" rings. It falls exactly midway between the least restrictive and most restrictive criteria
in the hierarchy, suggesting that it may give the optimal balance between the two extremes. Since SP
rings are simple to characterize and enumerate, SP ring statistics appear to be the most promising means
for characterizing network topology.

I. INTRODUCTION

Amorphous solids are difficult to characterize, because
they have no long-range order. In random-network mod-
els, information on the short-range order can be obtained
from the distributions of coordination (number of neigh-
bors per atom), bond length, and bond angle, while ring
statistics have become the generally accepted measure of
medium-range order. ' Ring statistics may also help
explain physical properties of the solids represented. '

A standard method for computing ring statistics is sim-

ply to count all possible rings up to some predetermined
size. ' ' However, each set of intersecting rings com-
bines to form many larger rings. In an early paper,
King' pointed out that because of these redundant rings,
the number of rings per atom increases rapidly with the
ring size, making such statistics of little use for character-
izing network structure. On the other extreme, if one
counts only the shortest rings in the network, many rings
that one intuitively would call "primitive, " i.e., not com-
posed of smaller rings, are omitted.

Thus, to compute ring statistics that give meaningful
information, a central problem is to determine a criterion
that includes all such primitive rings, but excludes redun-
dant, or "compound, " rings. A natural approach is to in-
troduce some kind of irreducibility test to eliminate rings
with "shortcuts" across them. Applying this rule
symmetrically to all shortest paths in the ring gives the
"shortest-path" (SP) criterion. This criterion was also
suggested in Ref. 11.

Here, the SP criterion is shown to yield ring statistics
that are exactly what intuition would suggest, in contrast
to other definitions that have been used. More formally,
the SP criterion is shown to lie in the center of a natural
hierarchy of possible irreducibility criteria, which ex-
plains why it may be the most appropriate criterion for
computing ring statistics.

The remainder of the paper is organized as follows.
General terminology is given in Sec. II. SP rings are
defined in Sec. III, and examples are given showing that
SP ring statistics match what one expects in a reasonable
measure of network topology. In Sec. IV a hierarchy of

irreducibility criteria is introduced, obtained by systemat-
ically weakening a very restrictive but natural criterion,
until all rings are included. The SP ring criterion is
shown to be in the center of the hierarchy, which ex-
plains why it is the one that should give the best results.
In Sec. V other criteria that have appeared in the litera-
ture are examined, showing that although they may have
uses in special cases, they are not useful as general mea-
sures of network topology. A practical algorithm for
computing SP ring statistics is outlined in Sec. VI. The
conclusions are summarized in Sec. VII.

II. TERMINOLOGY

Most of the terms used here are standard in graph
theory (see, e.g. , Ref. 12). Terms from the
noncrystalline-solid literature are included as well.

A graph (or network) G =(V,E) consists of a set V of
vertices and a set E of edges (usually representing atoms
and bonds between atoms). Each element of E is an unor-
dered pair [x,y ] of distinct vertices in V. If [x,y ] is an
edge, y is a neighbor of x (or is adjacent to x) and vice ver-
sa.

Cxiven vertices y and z, a y-z path length k in 6 is a
chain of k edges joining y to z, in which at most two
edges share any vertex, i.e., a subgraph containing dis-
tinct vertices y =xp, x &,x&, . . . , xI, =z and k edges
[xo,x, ], [x„x2],. . . , [xk „xt,]. One can represent a
path simply by listing the sequence of vertices,
xpx ix2 ' xp.

A ring of length k is a closed loop with k edges, a path
of length k except that the path returns to its starting
point (xo=xt, ). At most one edge per vertex pair is al-
lowed in the definition of a graph, so the smallest possible
ring is of length 3.

The distance between vertices y and z, dist(y, z) is the
minimum k such that there is a y-z path of length k in 6.
When emphasizing that distance depends on the graph 6,
one writes distG(y, z). A shortest y-z path is one of
length dist(y, z ).

The diameter of a graph is the maximum distance be-
tween any pair of vertices. The diameter of a ring of
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length k is k /2 if k is even, and (k —1)/2 if k is odd.
If P is a y-z path in a ring R, let Q be the y-z path ob-

tained by deleting all vertices and edges of P, except y, z,
from R. Then Q is the complementary path for P. In oth-
er words, P U Q =R and P A Q = [y, z I .

III. SP RINGS AND STATISTICS

There is no general theory that explains which rings
are relevant to the physical properties of the solid
represented. Because of the complicated geometry of
three-dimensional networks, there is also no obvious
characterization of what are called here "primitive"
rings, those which cannot be decomposed into smaller
rings. However, at least for simple examples, there is not
much controversy about which rings should be called
primitive. For example, in the graph of Fig. 1, one clear-
ly would count rings abcfea, bdfcb, and dgfd as primi-
tive. One would not count abdgfea, because the path dgf
has a shortcut (df).

The goal of this paper is to show that a definition based
on the shortest-path (SP) criterion is the only one out of
many possible definitions that captures the intuitive con-
cept of a primitive ring, and has desirable formal proper-
ties. The same criterion was proposed independently in a
recent article, " and applied to various crystalline forms
of SiOz. The present work shows explicitly why the cri-
terion is the best available, and gives a simple algorithm
to implement it.

The definition, which is given below, is first motivated
by the simple example in Fig. 1. It is then shown to give
desirable results on a variety of networks. In Sec. IV the
definition is shown to arise naturally from a hierarchy of
irreducibility criteria. The analysis there provides evi-
dence that the criterion is "optimal" in a certain forrnal
sense.

The purpose of the SP criterion is to include only rings
which have no shortcuts (paths which shorten the ring).
Notice that each pair of vertices in a ring divides the ring
into two complementary paths. For example, in Fig. 1,
vertices b and f divide the ring abdfea into paths bdf
and feab. In the example of Fig. 1, if one counts only the

rings with no shortcut of any of these paths, one ends up
with only the ring dgfd, excluding too many rings. The
SP criterion allows only rings having no shortcut of any
shortest path on the ring. This leads to the following.

Definition. Given a graph G and a ring R in 6, R is a
shortest pa-th ring (SP ring) if R contains a shortest path
for each pair of vertices in the ring. That is,
distG(y, z ) =dist+ (y, z) for each pair y, z in the ring.

Under this definition, four of the six possible rings in
Fig. 1 are SP rings. The rings abdgfea and bdgfcb are
not SP rings because the distance between d and f is one,
rather than two. (Although it may not be obvious that
one would want to include abdfea, it is essentially
equivalent to abcfea. )

To illustrate that SP-ring statistics correspond to intui-
tion, it is useful first to consider simple, well-known
graphs. In the 2D square lattice, the only SP rings are
the squares of length 4 (one per atom). In the 3D cubic
lattice, the only SP rings are cube faces of length 3 (three
per atom), and "chairs" of length 6 (four per atom). (See
Fig. 2.) In the diamond lattice, there are two SP rings per
atom of length 6, but no others. (Note that each ring is
counted only once. If one counted a ring once for each
atom on the ring, one would get four rings per atom in
the square lattice and 24 chairs per atom in the cubic lat-
tice. )

In all these examples, the SP-ring statistics turn out to
be exactly what one would expect of a good measure. Al-
though these results may appear trivial, we show in Secs.
IV and V that many other possible criteria give counter-
intuitive results even for these simple networks.

Since a primary object of computing ring statistics is to
capture order in amorphous structures, SP-ring statistics
were computed for a random network modeling amor-
phous silicon. This model, which has been studied exten-
sively, was obtained from a diamond lattice by a "bond-
switching" algorithm. ' The results, shown in Fig. 3, are
remarkably close to what one would desire in a reason-
able measure of medium-range order. The diamond lat-
tice has two SP rings of size 6 per atom; in the amor-
phous Si network the total number of SP rings per atom
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FIG. 1. Graph with seven vertices, labeled a —g, used to illus-
trate ring criteria. The SP rings are abcfea, abdfea, bdfcb, and
dg

FIG. 2. Rings in the cubic lattice. The only SP rings are the
length-4 square, formed by the heavy lines in {a), and the
length-6 chair, formed by the heavy lines in {b). The length-6
ring shown in {c)is a K ring but not a SP ring.
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FIG. 3. Ring statistics (rings per atom vs ring length) for the
amorphous Si network of Ref. 13. Statistics for all rings (top)
are contrasted with SP ring statistics (bottom). Note the very
different vertical scales.

IV. A HIERARCHY OF IRREDUCIBLE
RING CRITERIA

In order to determine whether there are other
definitions which give good results, it is worth searching
systematically for irreducibility criteria. A natural ap-
proach is to generalize the concept of a ring with no
shortcut, described as follows.

Definition. Given a ring R and a path P contained in

R, R is P irreducible if R is a shortest ring containing P
(no shorter ring contains P).

is 1.9, with a peak at size 6, but a broader distribution of
ring sizes: There are substantial numbers of rings of sizes
5 and 7, no rings smaller than length 5, and no rings
larger than length 9 (verified up to length 20).

By contrast, if one counts all rings in the same amor-
phous Si network, the number of rings per atom grows
rapidly with ring size, as shown in Fig. 3. Clearly, such a
count yields little useful information.

R is m irreducible, since any path of length A, —1 already
contains all the distinct vertices of R. Thus, the set of
(A, —1)-irreducible rings is the set of all rings.

Thus, if one treats m as a function of the ring R, and
allows m to range between 0 and A,(R) —1, one obtains a
hierarchy of classes of irreducible rings, starting with a
very restricted set of rings and ending with all rings.
Note that if R is m irreducible, then R is (m + 1) irreduc-
ible, since any path of length m +1 contains at least one
path of length m.

The following notation will be used in showing that SP
rings occupy an interesting position in this hierarchy.
Let d denote the diameter of the ring R, and let d *=d if
A, is even, and d* =d+1 if A. is odd. Then, if P is a path
of length d, the complementary path has length d*. SP
rings are characterized precisely within the hierarchy by
the following theorem, which is proved in the Appendix.

SP-ring theorem. R is an SP ring if and only if R is d*
irreducible.

The SP ring theorem shows that SP rings are exactly in
the center of the hierarchy. In order to determine wheth-
er the criterion is indeed "optimal, " let us study the re-
sult of strengthening the criterion slightly, then of weak-
ening it slightly.

Intuitively, each vertex v in some ring should also be in
a primitive ring. For example, the shortest ring contain-
ing U is in fact a SP ring (the proof is similar to that of the
SP ring theorem). To study the effect of strengthening
the SP criterion, consider the set of (d —1)-irreducible
rings. In Fig. 1, dgfd is the only such ring; for example,
the ring abcfea (length 5, d =3) is not 2 irreducible,
since the path bcf is contained in a smaller ring. In gen-
eral, this means that there will exist primitive rings that
are not (d* —1) irreducible. Thus, the SP criterion in-
cludes at least one primitive ring for each vertex, but all
stronger criteria in the hierarchy will, in general, exclude
primitive rings.

To see the effect of weakening the criterion, now con-
sider (d +1)-irreducible rings. In the square lattice, re-
call that the SP rings (d *-irreducible rings) are the
squares of length 4. The (d'+1)-irreducible rings also
include squares of length 8. Thus, in general, relaxing the
SP criterion leads to rings one would regard as compound
rather than primitive. In this sense, SP rings are exactly
at the threshold-separating criteria that are clearly too
restrictive from those that are clearly too inclusive.

V. OTHER RING DEFINITIONS

Definition. Given a non-negative integer m-, R is m ir
reducible if R is P irreducible for every path P in R of
length m.

For example, in Fig. 1, abdfea is 3 irreducible; it is not
2 irreducible because the length-2 path bdf is contained
in a ring of length 4. The ring dgfd is the only 0-
irreducible ring.

In general, a 0-irreducible ring R is "vertex minimal":
For each vertex v, R is the shortest ring containing v. A
1-irreducible ring R is "edge minimal": For each edge e,
R is the shortest ring containing e.

If A, = A, (R ) is the length of ring R, and m ~ A,
—1, then

There have been few other irreducibility criteria in the
published literature on ring statistics. Possibly the first
clearly stated criterion to appear was that of King, '

which is called the "K-ring" criterion here. The cri-
terion, which is stated in the following definition, is
equivalent to requiring that R be P irreducible for a
specified path P = wxy.

Definition Given a vertex x. and two of its neighbors w

and y, a K-ring generated by wxy is any ring containing
edges [w, x ],[x,y ] and a shortest w-y path in G —x. (If x
is a vertex in 6, 6 —x is the graph obtained by deleting x
from V and all edges containing x from E.)
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In Fig. 1, cbd generates the K-ring cbdfc, and gfe gen-
erates gfeabdg. (Note that although there are two possi-
ble K-rings of length 5 generated by cab, only one would
be counted in Ref. 10, since the focus there was on ring
length rather than number of rings. )

The criterion may work well when applied to the net-
work for which it was proposed (Si02), because all pairs
of neighbors have the same angle between them. Howev-
er, the K-ring criterion does not in general admit only the
primitive rings. For example, in the square lattice, each
pair of neighboring edges with an angle of 180' yields two
K-rings of length 6, formed from two rings of length 4
sharing one edge. These certainly should not be called
primitive. In the cubic lattice, each such pair generates
four K rings of length 6 of this type [Fig. 2(c)], but no
pair of edges generates a length-6 chair [Fig. 2(b)], which
should be counted as a primitive ring.

A notable feature of King's criterion is that it is not
symmetric; i.e., the definition depends on the origin of the
ring. (This may be because the motivating problem was
only to count the proportion of rings of each size contaIn-
ing a given atom. ) However, it makes sense to avoid non-
symmetric definitions because they introduce an ambigui-
ty when one tries to compute the number of rings per
atom: Should one count each ring exactly once, no
matter how many origins generate it, or should one count
a ring each time it is generated? Since a K-ring can be
generated by any number of origins (between 1 and the
ring length), the choice can have a significant effect on
the statistics. (Note that if one makes the definition sym-
metric by requiring the criterion to hold for each path of
length 2, the 2-irreducible rings are obtained, which is
too restrictive a class).

There is also a ring definition which is often used in the
study of two-dimensional networks, but which appears to
be irrelevant in three dimensions. A network which is
embedded in the plane with straight-line edges and no
crossings (a planar graph) can be regarded as a partition
of a plane region into polygons; in this case, a set of natu-
ral "irreducible" rings is the set of boundaries of the po-
lygons (the faces of the planar graph). In Fig. 1, these
boundaries are abcfea, bdfcb, and dgfd. Note that the
set of faces depends on the particular embedding as well
as the topology. This definition could be generalized for
networks that partition a 3D region into polyhedra (e.g. ,
the cubic lattice), but not for arbitrary 3D networks.

VI. COUNTING SP RINGS EFFICIENTLY

A. Outline of basic strategy

Given a finite graph, a simple strategy for enumerating
all SP rings up to a given length m is the following.

(1) Select an (arbitrary) vertex z.
(2) Generate each ring containing z, of length at most

m, and test whether it is a SP ring (if so record its size).
(3) Delete z from the graph. (Form G —z. )

(4) Repeat 1 —3 until all vertices are deleted from
graph.

Without step 3, each ring of length k would be
enumerated k times. It is possible to remove this

inefficiency only because the definition of SP ring is in-
dependent of the origin z.

Section VI 8 gives an efficient method for generating
candidate rings. Section VIC presents a test for the
shortest-path property which can be performed in time
0 (k) on a ring of length k.

It is easy to modify the scheme to compute the number
of rings per atom for an infinite but periodic graph with a
specified unit cell (such as any of the networks studied in
Sec. III). It suffices to enumerate all SP rings containing
at least one vertex in the unit cell, since the number of
rings divided by the number of atoms in the cell is the
same for any cell. However, some caveats are given at
the end of Sec. VI B.

B. Generating candidate rings

There is a standard method for generating all rings
containing z, called backtracking. ' lf vertices are linear-
ly ordered, then rings are examined in lexicographic or-
der. One keeps a current path stored on a stack (last in,
first out); if the current end point is x, then at each step
one either finds an edge [x,z] to close a ring, extends the
path with a new edge [x,y ], or, if all neighbors of x have
been explored, discards x from the stack (backtracks).

Since the number of rings can grow exponentially with
the number of vertices, even in graphs of small degree,
one would like to restrict the search to promising candi-
dates only. SP rings satisfy a "unimodal labeling" prop-
erty, described below, which makes this feasible.

Given vertex z and a SP ring 8 containing z, label each
vertex u in R with dist(z, u ). If the labels are listed in the
order encountered starting at z, the sequence must be uni-
modal, i.e., either 012 . (k —1)k(k —1) . 210 (for an
even ring) or 012 (k —1)kk(k —1) 210 (for an odd
ring). In Fig. 1, the SP ring abdfea has labels 012210;
bdfcb has labels 01210. The ring dgfcbd has labels
011210, and hence is not an SP ring. Thus, when imple-
menting the backtracking scheme, one need only consider
a new vertex if adding it to the current path maintains
the unimodal labeling.

Given a vertex z, one can compute dist(z, u ) for all u
by labeling vertices in order of their distance from z,
starting with the neighbors, then neighbors of neighbors,
and so on, i.e., performing a breadth first search from-z. '

If the average number of neighbors per atom (the "aver-
age degree") is 5, the time required is proportional to the
number of edges, 6n/2, where n is the number of ver-
tices. If the graph is small enough, one can precompute a
look-up table containing the distance between each pair
of vertices in this way. A table of size n can be generat-
ed in O(n ) steps for bounded 5.

Even if one modifies the backtracking strategy with the
heuristic above, one will still enumerate each SP ring con-
taining z twice. If necessary, one can avoid this using a
simple strategy. For each neighbor y of z, after all the SP
rings containing the edge [z,y] have been enumerated,
omit this edge from the graph during further enumera-
tion. When z has exactly one neighbor remaining, each
SP ring containing z has been enumerated once.

Care is needed when counting rings in an infinite
periodic graph. A small piece of such a graph is illustrat-
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FIG. 4. Piece of an infinite periodic network, with a unit cell
represented by the parallelogram. If the network is represented
by a finite graph in which a =a' and d =d', the path abcda' be-
comes a ring, so care must be taken in counting rings.

FIG. 5. Antipodal pairs shown joined by dashed lines. The
ring length is k; if k =6, there are k/2=3 pairs; if k =7, there
are k=7 pairs. If the true distance between each pair of an-
tipodes is the ring diameter, then the ring is an SP ring.

ed in Fig. 4. A standard representation is obtained by
imposing periodic boundary conditions on the finite
graph determined by an arbitrary unit cell. (The parallel
sides of the cell are "identified, "yielding an embedding of
the graph in a three-dimensional "torus. ") In the graph
of Fig. 4, this means that vertices a' and a are considered
equivalent, as are vertices d' and d and edges [d', a ], and
[d,a']. Notice that in the finite representation abcda is a
ring; however, this is not a ring in the infinite graph. If
the maximum ring size is larger than the "diameter" of
the cell, many such spurious rings will be counted. One
way to avoid this problem is to store the coordinates of
each vertex as rings are generated. Another solution,
which allows one to save time by precomputing the dis-
tance table, is simply to increase the size of the finite
graph sufficiently, by replicating the unit cell.

definitions which are too restrictive and those that are
too inclusive. Since the criterion is independent of the
origin of the ring there is no ambiguity in counting SP
rings. Moreover, their statistics can be computed easily.
Thus, at present, SP ring statistics are the most natural
general measure of medium-range order.
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APPENDIX:
PROOF OF THE SP RING THEOREM (SEC. IV)

C. An efBcient test for SP rings

Although there are k(k —1)/2 pairs of vertices on a
ring of length k, it is sufficient to check only pairs of an-
tipodes, vertices whose distance in R is the diameter of R.
(Antipodal pairs are illustrated in Fig. 5.) It is not hard
to show that if dist+(x, y)=distG(x, y) for every pair of
antipodes x,y, then R is an SP ring; i e.,
dist~(u, v)=distG(u, v) for every pair u, v. The test re-
quires only O(k ) distance checks, since there are k/2 an-
tipodal pairs if k is even, and k pairs if k is odd.

If distance labels are maintained as described in Sec.
VI 8, when the distance labels have stopped increasing,
the test can be performed for the antipode(s) of each new
vertex just before it is added to the current ring. This al-
lows one to discard candidates more efficiently than test-
ing all antipodes after each ring is completed.

VII. CONCLUSION

By excluding rings which contain shortcuts, one ar-
rives naturally at the shortest-path criterion. Not only
does the criterion produce the ring statistics that one
would want intuitively, but within a natural hierarchy of
irreducibility criteria, it lies on the threshold between

First, assume R is an SP ring. Let P* be any path in R
of length X(P")=d*, and let P be the complementary
path, with u, v as their common end points. Observe that
the length of P is d. Given any ring R ' containing P*, let
Q be the complementary path of P* in R'. Since R is an
SP ring, P must be a shortest u-U path; hence
A, (Q) ~ k(P), which implies A, (R') ~ A, (R ). Since P* and
R' were arbitrary, R is d* irreducible.

Now assume that R is d* irreducible. Let u and U be
any distinct vertices on R; we want to show that R con-
tains a shortest u-v path, i.e., dist+(u, v) ~distG(u, v).
Let Q be any shortest u-v path. Let u =xo, x „.. . , x.= v

(j 1) be all the vertices contained in both Q and R, in
the order they appear in Q. Let Q; be the segment of Q
which contains [x;,x;+, ], and let R; be the shortest seg-
ment in R containing [x, ,x, +&].

By the definition of the x, , Q, and R intersect only' at
x; and x;+&, thus, if R,* is the complementary path for
R, , R,.*UQ, is a ring. Al, o, the length of R;* is at least
d*. R is d* irreducible, so the length of Q, is at least the
length of R, . The sum of the lengths of the R, is at least
dist+(u, v). However, since Q is a shortest u-v path, the
sum of the lengths of the Q, is distG(u, v). Hence,
dist+ (u, v ) ~ distG(u, v ) as desired.
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