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Using the recently developed direct-configurational-averaging method, we have considered the expan-
sion of formation energies of the random and ordered states in terms of efFective cluster interactions
{ECIs) for two model tight-binding binary-alloy systems. In particular, we have examined the rates of
convergence of such expansions in two di6'erent averaging schemes. In the canonical scheme the ECI's
depend on the concentration {c)of the alloy explicitly, while for grand-canonical averaging they do not.
For a model system in which the ordering energies are highly asymmetric about c =0.5, we find that an
expansion in canonical ECI's gives slightly better convergence. However, for the other system con-
sidered, both averaging schemes lead to similarly convergent expansions due to the symmetry of the sys-

tern about c=0.5. We have also verified numerically formal relations between the ECI's in the two
averaging schemes. Such relations provide a useful convergence criterion of expansions in terms of
ECT*s.

I. INTRODUCTION &E) =V, + y„v.g. ,

In order to study the phase formation and stability of
substitutionally disordered solid solutions, it is necessary
to have reliable expressions for the configurational energy
and entropy. These expressions are usually obtained
within the context of an "Ising-like" system of atoms on
a fixed lattice, and are most naturally formulated in terms
of eff'ective pair and multisite interactions. In conjunc-
tion with the cluster-variation method (CVM), ' Monte
Carlo techniques, and other methods, these eff'ective
cluster interactions (ECI's) have been used to examine
structural phase diagrams, short- and long-range or-
der, ' ' "' and other thermodynamic properties of alloy
systems. Thus, a detailed study of the ECI's is an essen-
tial step towards a more complete understanding of these
alloy properties. In the first part of this paper (hereaf-
ter called paper I), a formal derivation is given for ex-
panding any function of configuration, f (o ), in terms of
an orthonormal set of "cluster functions. " In particular,
the internal energy is expanded in terms of ECI's. Two
proposals for averaging over configurations are presented
and it is shown that, not only the coeKcients in the ex-
pansion (the ECI's), but also the basis functions are
diFerent in the two distinct schemes. In the first, the so-
called grand-canonical (GC) scheme, the basis functions
are defined to be orthonormal with respect to an average
over all possible configurations of the system. This leads
to GC-ECI's which are independent of the concentration
(c) of the system, efFectively averaging out any concentra-
tion and configuration dependence. The expectation
value of the energy is written as

where V are the GC-ECI's for a given cluster a, and g
are the correlation functions, given by the ensemble aver-
age

g=&oo . o (2)

where the primed sum represents the sum over all
configurations, holding sites p, p', . . . , p" fixed. The fac-
tors p and p&, are normalization factors, which, for

n N —n
the grand-canonical case, are simply 1/2 and 1/2
respectively, where n is the number of sites in the clus-
ter a. A familiar example of Eq. (3) would be the
eFective pair interaction between sites p and p':

Vpp
= ,'(E~~+EIsti E~I—i Eii~ )—, —

where Ezz is the total energy of the system with an 2 -3
pair at sites p and p' and all other sites are averaged over
all possible configurations. Similar definitions apply for
F~~, E~~, and F~~.

In the canonical (C) scheme, the expansion is expressed
in terms of functions which are orthonormal with respect
to a sum over all configurations which are consistent with

where the o''s are the "spin" variables of the system,
o =+1 (

—1) designating an A (B) atom at site p. The
GC-ECI's are given by

+1
V =p g crpop . . o. pic g'E(cr),

4914 1991 The American Physical Society



EFFECTIVE CLUSTER INTERACTIONS FROM. . . . II 4915

a given concentration. Thus, the configuration depen-
dence of these C-ECI's is again averaged out, but the con-
centration dependence is not, since the operation which
actually defines the expansion is different at each concen-
tration. The canonical expression for the internal energy
is then

(E &
= Vo(c)+ g V (c)5$

where 5g are cumulants defined by

g =((cr o)—(o o)—. (o. -—o)&,
o =(o, &=(,=2c —1,

and V are the C-ECI's given by an expression similar to
the GC-ECI's where the primed summation over
configurations is now restricted to those consistent with a
given concentration of the system, with the appropriate
normalization factor.

Successful phenomenological approaches for comput-
ing the ECI's have been used in the past. More recent-
ly, several methods have been proposed for ab initio com-
putations of ECI's. Each of these techniques in-
volves the determination of electronic structure as well as
averaging over some set of configurations. It is precisely
this averaging which is one of the most distinct aspects of
the various methods. For a system of N lattice sites, the
number of configurations in the GC scheme is 2, thus,
calculating a sum over configurations exactly becomes
rapidly intractable, even for relatively small X. Hence,
one of the most widely used approximations to this sum
involves setting up an average medium of 3 and B atoms.
Thus, in this coherent-potential approximation (CPA),
rather than summing over all possible values of some ob-
servable, the average value of the observable is approxi-
mated by the value of the quantity evaluated in the aver-
age medium. The CPA has many merits, most notably
that it restores periodicity to the lattice, thus facilitating
the most sophisticated band-structure techniques.

By using this CPA medium to approximate the sum
over configurations, one can calculate the appropriate
quantities to obtain the ECI's. There are, in fact, several
methods based on this idea, most notably the generalized
perturbation method ' (GPM) and the embedded clus-
ter method ' (ECM). In the GPM, the ECI are ob-
tained by considering any given configuration of the sys-
tem as a finite perturbation of the CPA medium. The
ECM treats the ECI by embedding the cluster in the
CPA medium, including all of the possible scatterings off
the cluster. The equivalence of the ECM and GPM has
been established previously, and, in fact, the ECM gives
the exact summation of the partially renormalized GPM
to all orders. Also, it is noteworthy that ECI's from ei-
ther the GPM or ECM are calculated in the canonical
scheme simply by changing the average concentration of
the reference medium.

A second averaging technique is to obtain the interac-
tions from Eq. (1) itself: ' Assuming that the sum in
Eq. (1) converges (as will be shown below), it is permissi-
ble to truncate at some point. (The point of truncation
has, of course, been the subject of some controversy. )

Thus, calculating the total energies of n ordered struc-
tures, s, one can write n equations of the form

E'=Vo+ g V p .

Because the correlation functions of the ordered struc-
tures are obtained simply (practically by inspection),
these equations each have m unknowns, where m is the
number of interactions kept after truncation. Thus, pro-
vided n ~ m, the system may be inverted to obtain the in-
teractions. Initially, it was proposed to use the method
with n =m, however, recently, several schemes have been
used successfully with n )m. ' ' The question of which
interactions and which ordered structures to use is of
paramount importance, and hence, has been discussed ex-
tensively elsewhere. ' ' Thus, the averaging over
configurations is not explicitly performed, but rather is
inherent in the formalism.

In direct configurational averaging ' (DCA), it has
been shown that it is possible to approximate the sum
over configurations by restricting the sum to a small
number of randomly chosen configurations. Since the
ECI S involve energies and differences of energies (all in-
tegrated quantities), the convergence with configurations
is much faster than that of the density of states. The
averaging philosophy of this approach, in contrast to the
CPA, is that at least part of the sum over configurations
is taken explicitly, however, this requires a nonperiodic
structure, and hence a real-space method for diagonaliz-
ing the Harniltonian. Also, the similarities between in-
teractions calculated with DCA and those of the GPM
and ECM have been established. ' Interactions in the
DCA may be calculated in either the grand-canonical or
canonical averaging schemes by an appropriate restric-
tion (or lack of it) on the sum over configurations, and
therefore the DCA lends itself to a comparison of the two
averaging schemes.

II. DIRECT CONFIGURATIONAL AVERAGING (DCA)

The DCA method is discussed in detai1 by Dreysse
et al. , however, for completeness, we present the essen-36

tial points here. The system is described by a tight-
binding Hamiltonian

I lt
p ~p ~@~&

(p'&p" )

where the Latin indices designate the lattice sites and the
Greek indices label the orbitals. The c's are the on-site
energies and the P's are the hopping integrals. In this pa-
per, we choose to restrict the Hamlitonian to d orbitals
only. (Note that this is done merely to expedite the com-
putational process, as the Hamiltonians for full spd sys-
tern are readily calculated either semiempirically or us-
ing a first-principles approach. ) Thus, one might ex-
pect that this Hamiltonian would reasonably represent a
transition-metal alloy, since it is well known that the pri-
mary resonances in transition-metal systems occur in the
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d band. The hopping integrals are given their canonical
(not related to the canonical averaging scheme) values of

(ddo )= —0.6251 eV;
+ i(ddo )i

2

(dd5) =0,
(9)

(10)

and ~0) is the starting vector of the recursion. Thus, the
local density of states (DOS) on atom 0 is obtained from

—1
Im TrGoo .

Of course, the recursion must be stopped at some
stage, thus, a terminator must be applied to the Green's-
function continued fraction. This terminator has been
the topic of much research. " It has been shown that
the ECI are relatively insensitive the choice of the termi-
nator (for transition-metal alloys), thus we use a simple
quadratic one. Also, in this paper we use ten exact levels
of recursion, which corresponds to a system of 3140
atoms.

Integrating the local DOS to the Fermi energy gives
the band-structure term of the cohesive energy on a given
atom in any configuration. Calculating the ECI's involves

leading to a d-band width of 5 eV, which is reasonable for
a transition metal.

Determination of the on-site energies requires some
care. Clearly, since it is only diQevences in energies
which interest us, it is only the quantity 5=s~ —e„ that
is relevant. As has been shown previously, simply fixing
5 arbitrarily is dangerous, as it can lead to significant
charge transfers (up to -0.5 electrons) between the A
and B atoms. This is serious for a number of reasons:
This charge transfer is not constant as a function of con-
centration, and because the concentration dependence (or
lack of it) of various quantities is the primary focus of
this paper, this sort of effect must not be overlooked.
Also, the differences in energies needed to obtain the
ECI's [as in Eq. (4)] are, in fact, differences in total enev-

gies of the system. However, in the DCA and CPA-based
methods, usually only the band energy contribution is
taken into account. In the absence of charge transfer, it
has been shown that the other contributions to the total
energy tend to cancel. This cancellation presumably does
not occur in systems with significant charge transfers.
For these reasons, the value of 5 is chosen so as to be con-
sistent with local neutrality. Again, this approximation is
certainly consistent with transition-metal alloys, where
charge transfers are known to be negligible.

Next, the Hamiltonian for a given configuration is tri-
diagonalized using the recursion method. Because this
is a real-space method, the recursion cluster may have
any configuration, i.e., the configuration need not be con-
strained by any symmetries. Given this transformed
Hamiltonian, the Green's-function matrix element

Goo= (O~G~O) is obtained as a continued fraction, where
G is given by

the differences in energies, e.g. , the GC effective pair in-
teraction (EPI), as in Eq. (4). However, computing each
of the terms in Eq. (4) separately and then taking
differences is difficult due to a large subtractive cancella-
tions. The formalism of "orbital peeling" ' may be ap-
plied to the problem of computing the ECI's. Using this
method, one may obtain the differences in Eq. (4) direct-
ly, and thus bypass the numerical instabilities caused by
simple subtractions. In Ref. 36, Dreysse et al. show that,
because of symmetries in the definition of the pair in-
teractions, it is only necessary to "peel" on one of the
atoms in the pair. It is important to note that this sym-
metry extends to triplets and higher-order ECI's, i.e., one
only need "peel" a single atom in calculating any ECI.

Thus, the averaging process of the DCA is to calculate
the ECI with the medium surrounding the embedded
cluster given as a random atomic configuration. This
procedure is repeated for several configurations (in this
paper, 20 —50) and then averages are performed. The
configurations generated are, of course, consistent with
the averaging scheme used. For GC-ECI's, there is no
constraint on the configuration. In other words, there
are equal probabilities of any given lattice site in the
medium being occupied by an A or a B atom. To com-
pute C-ECI's, the configurations are constrained to a
given concentration. Thus, the probability of each site in
the medium being occupied by an A (B) atom is cz
(c~ =1—c„).

III. MODEL SYSTEMS

We choose to look at two systems within the frame-
work described. In the first system, there are 8 d elec-
trons on an 3 atom and 3 d electrons on a B atom. We
refer to this system as "8-3." The second system under
investigation is the "9-4" system (where similar
definitions apply). Physically, 8-3 might represent the
Rh-Ti system, whereas 9-4 should describe Pd-V. Heu-
ristically, one might expect that the 8-3 system will be
strongly symmetric ' about c =0.5. This is due to the
fact that 8-3 is almost centered with respect to the d
band. (This is, of course, assuming that the properties
under consideration will be symmetric about the center of
the d band. ) This assumption is borne out by the shape of
the nearest-neighbor pair interaction (NN EPI) as a func-
tion of band filling. A theorem based on the local mo-
ments of the density of states, ' states that the NN EPI
must have at lest two zeros as a function of band filling
for the canonical d band Hamiltonian. Extensive work
in this area has also shown that, for this same Hamiltoni-
an, the curve is indeed regular, has two zeros, and is sen-
sibly symmetric about the center of the d band, although
the degree of the asymmetry present can shift with con-
centration. Also, this research shows that more distant-
neighbor pairs and higher clusters are not necessarily
symmetric. However, since the NN EPI is expected to
dominate all the other interactions, this heuristic predic-
tion still has some merit. Based on the same sort of
reasoning, one should expect that the 9-4 system will be
strongly asymmetric about c =0.5. It is important to
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bE'„d .=E' E„„q(c,—), (12)

where c, is the stoichiometric concentration of the struc-
ture s.

It is possible to compute the ordering energies by ex-
panding both of the energies involved via the grand-
canonical expansion of Eq. (1). The values of the correla-
tion functions for both of these phases are easily ob-
tained: For the completely disordered state, the correla-
tion g, for a cluster a composed of n sites simply be-

comes g, , where g, is the point correlation given by

g& =2c —1. Thus, combining Eqs. (1) and (12) gives

hE'„d= g V (p~ —g, ) .
n (%1)

(13)

Note that the terms involving the empty cluster and
point interactions cancel. (In the grand-canonical
scheme, the empty cluster will vanish in any difference in
energies, and the point interaction will vanish in
differences in energies at the same concentration. ) One
can also write a similar formula for the case of canonical
averaging. Again, the cumulants for the ordered phase
are given by inspection, and for the completely disor-
dered state, all of the cumulants vanish, leaving only
Vo(c). Thus, we have

b,E;,d= g V 5p.
n (%1)

(14)

Again, the only terms left in the sum are pairs and
higher.

There are several reasons to look at the ordering ener-
gy: Since it involves the difference in energy between two
structures at the same concentration, terms involving the
empty cluster and point terms cancel in both averaging
schemes. Also, the ordering energy is the most critical
test of the formalism, because it is much smaller (typical-
ly -0. 1 eV or smaller) than other quantities relevant to

note that we have chosen two systems for study with the
same AN =X& —Nz. Because AN is roughly proportion-
al to 5, which is a direct measure of the diagonal disor-
der, the two systems should have approximately the same
amount of this type of disorder. In this way, differences
between the two averaging schemes that are infIuenced by
the size of the diagonal disorder should be kept to a
minimum. Thus, a comparison of grand-canonical and
canonical averaging schemes for these two systems
should provide an interesting test of the formalism.

The source of comparison between the averaging
schemes cannot lie in the ECI's themselves, but rather in
the energy expansions of Eqs. (1) and (5). Thus, it is
necessary to choose a real, physical quantity associated
with these expansions for the study. However, for com-
putational reasons, it is difficult to calculate the empty
cluster and point interactions with as much confidence as
the pairs and higher order clusters. The choice of order-
ing energy bypasses these difficulties, as will be shown
below. The ordering energy for a given structure s is
defined to be the difference between the energy of that
structure and the energy of the completely disordered
state at the same concentration:

alloying, such as the formation energy of the random
state. The latter quantity can be five or more times larger
than the ordering energy. Also, it is the ordering energy
that is the relevant quantity when discussing order-
disorder transitions and alloy phase stability.

IV. RESULTS

A. Convergence of the expansions

Vp'. = .' «AA+ EBB E—AB EBA
)— — (15)

(Note, in this section, these equations are valid for either
averaging scheme, unless noted otherwise. ) Figure 1

shows the logarithm of GC-EPI versus distance between
the pairs for the 8-3 system. In this figure, we use an ob-
vious extension of the notation of Table I: V2 „
represents the nth-nearest-neighbor EPI. Clearly, the
EPI do decay with distance, but even up to fourth nearest
neighbor, the interactions could hardly be termed "negli-
gible".

Also, as described above, cluster interactions must de-
crease as any of the atoms in the cluster become widely
separated. As an example, consider the triplet interac-
tion between sites p, p', and p":

Vpp'p" = 8(EAAA+EABB EAAB EABA EBAA

BBB+EBBA +EBAB ) (16)

As p" becomes separated from p and p', the energies,

Because the two equations, (1) and (5), are in terms of a
complete, orthonormal set of functions (the correlations
and the cumulants, respectively), they are, in fact, exact,
and the problem of computing the energy of any given
configuration just becomes one of finding the correct
coefficients in the sum (the ECI's). However, since the
sums contain an infinite number of terms, this situation is
certainly impractical. If the series were rapidly conver-
gent, then perhaps it would be appropriate to truncate
the sum at some suitably chosen cluster, throwing away
the rest of the series as "negligible. " For the series to
have any chance at convergence, the following two condi-
tions must hold: (1) cluster interactions must decay as
any of the atoms in the cluster is "moved" away from the
other atoms (an example of this is pair interactions de-
caying with distance between the pair), and (2) cluster in-
teractions must decrease with the number of atoms in the
cluster. In both cases the decay need not necessarily be
monotonic, but it is vital that no "neglected" terms be of
the same order of magnitude as the dominant terms
which are kept in the sum.

First, the decay of the pair interactions with distance is
checked. As the pairs are separated, heuristically, one
would expect the pair energies to split into the constitu-
ent point energies [e.g. , E„B—,'(EA+EB ) fo—r large sepa-
rations between A and B]. Thus, the expression for the
pair interaction becomes
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FIG. 1. Convergence of pair interactions with distance be-
tween pairs.

FIG. 2. Convergence of triplet interactions with average dis-
tance between atoms.

E»~ separate into E» and E~, and all of the other en-
ergies similarly decouple. Then, just as before, the ex-
pression for the triplet interaction, Eq. (16), tends toward
zero. Figure 2 shows the convergence of triplet interac-
tions made of a nearest-neighbor pair and a third atom
for the system 8-3. Each point on the figure represents a
different effective triplet interaction, and the horizontal
scale is just the average of the three sides of the triplet,

TABLE I. Eft'ective cluster interactions for fcc lattice.

measured in lattice constants. As the distance between
the third atom and the pair increases, the interactions de-
crease exponentially.

For convergence, the ECI must also decrease as the
number of atoms in the cluster is increased. Consider the
expression for the triplet interaction between sites p, p,
and p" [Eq. (16)]. The first four terms are a pair interac-
tion with the first atom held fixed as A. Also, the next
four terms again are the pair interaction with the first
atom being 8. This motivates us to write the triplet in-
teraction as a difference of pair interactions

2,1

Q o ~"
0 00

NN PAIR

V2,2

0 00
.P' o .P
2NN PAIR

U2, 3

Q o ~"

.~o Q
3NN PAIR

V2,4

0 00
.~o ~'
4NN PAIR

This formula is easily extended to any size cluster:

(17)

3,1

Q o +"
0

NN TRIPLET

V3,2

0 00

2NN TRI.

V33

g o g"
0

3NN TRI.

V34

Q o ~"
0 00

4NN TRI.

Thus, in the triplet case, if ( V ~ )z „„~is of the same
order of magnitude as V p-, then the triplet interaction is
clearly smaller in magnitude than the pair. This sort of
assumption is reasonable if one considers that GC-ECI's
obey the following:

V4, 1

NN QUAD

V4,2

IRR. QUAD.

V5, 1

PYRAMID

V43

o ~"

+oQ
SQUARE

V4,4

o M' o
0 0 0

0

LINEAR QUAD.

V6, 1

OCTAHEDRON

while

V~t,-=c~[V~.t,-]t, ~+ca[V~,t,„]~ (20)

holds for C-ECI's. This same sort of argument would, in
general, hold for all clusters. The decay of the cluster in-
teractions in the 8-3 system can be evidenced in Fig. 3.
Here, again, the logarithm of the interactions (normal-
ized to the pair interaction) is plotted as a function of
number of atoms in the cluster. Note that the conver-
gence of the cluster interactions seems to be much more
rapid than that of the pairs (over distance); however,
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FIG. 3. Convergence of ECI's with number of atoms in the
cluster.

FIG. 4. Formation energies for system 8-3.

several of the triplets and quadruplets are as large as the
second- and third-nearest-neighbor pair interactions, and
thus, these interactions must not be considered negligible.

B. Comparison of grand canonical and canonical

For both the 8-3 and 9-4 systems, the interactions in
Table I and the random formation energies were calculat-
ed as a function of concentration. Also, the formation
energies of the following 11 ordered structures were cal-
culated: L 10, phase 40, L 1„L12(A3B and AB3), D02z
(A3B and AB3), phase X (A3B and AB3), and MoPt2
(A2B and ABz). All of these phases are superstructures
of the fcc lattice and are defined in Ref. 56, except for
phase X, which is defined in Ref. 40. The formation ener-

gy of a structure s is given by

6E«,m
=E' (c„E&+c~E—&),

where the superscript 0 represents a pure element. The
formation energies of the ordered phases were calculated
by finding the cohesive energies of an A and a B atom in
the structure (as described above), and then summing
these energies weighted by the stoichiometry of the
configuration. With the D022 and phase-X structures,
there are three distinct types of atoms in the unit cell (as
opposed to two types for all other phases). Thus, these
systems were, in fact, treated as ternaries, with different
on-site energies for each distinct atom, all generated by
the condition of local neutrality. This sort of problem
made the calculation of certain structures, namely, those
with many distinct atoms in the unit cell, practically un-
feasible. The formation energies of the random struc-
tures were found in much the same way, except that, of
course, the cohesive energies of the A and B atoms were
calculated in a random configuration, and these energies
were averaged over many configurations, until there was
a suitable convergence.

Figure 4 shows the formation energies for the 8-3 sys-
tem. There is a correspondence between this system and

0.07

0.06- 2, 1
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0
V
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V)
CJ
V
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0.03—

0.02—
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-0.01
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v
2 3~

+$~ ~ ~ 0 ~ 00%~%0+g V
v '"o 22

2,4
I

0.800.20 0.40 0.60

Concentration of "8"
1.00

FIG. 5. Effective pair interactions vs concentration for sys-
tem 8-3.

an artificial one with only a single nearest-neighbor
concentration-independent pair interaction. We will call
this artificial alloy system a "perfectly symmetric" one
since one of its characteristics would be the complete
symmetry of ordered and random formation energies
about c =0.5. Also, the ground states of the "perfectly
symmetric" system (including only the structures listed
above) would be L lo (degenerate with phase 40) and L12
(degenerate with DO@2). The MoPtz structures would lie
just above the tie line connecting L10 and L lz. The same
general properties are seen in the 8-3 system in Fig. 4.
The random formation energy is nearly symmetric about
c =0.5 and, although the exact degeneracies are, of
course, broken, the other general features are kept as
well: L 10 is a ground state, as are both L12 phases. (The
degeneracies with phase 40 and the D022 phases are lift-
ed, but these phases are still very close in energy. ) Also,
both MoPt2 phases still lie very close to the tie lines be-
tween L10 and L12. Figures 5 —7 show the canonical
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pair, triplet, and quadruplet interactions, respectively,
versus concentration. As expected, the nearest-neighbor
EPI dominates, and the higher-order interactions con-
verge rapidly. Also, note that the concentration depen-
dence of the pair interactions is extremely small. Thus,
our qualitative predictions about the 8-3 system are
verified.

The formation energies of the 9-4 system are shown in
Fig. 8. In this system, the formation energies of the com-
pletely random states are not symmetric about c =0.5,
but rather, the curve is asymmetric, with a minimum at
c-0.7. Also, note the strong asymmetry in the ordered
formation energies: The DO&2 at 75% 9 is stable with
respect to the L lz, while at 25%, the situation is re-
versed. At 50%, the L I

&
is stable over L 10 and phase 40.

The two MoPt2 structures also show the asymmetry. At
c 3, MoPt2 is stable with respect to decomposition into
L, 11 and D022, while the MoPt2 structure at c =

—,
' is quite

far from the tie line between L1, and L, 12. We have in-
cluded the question marks at the 9-rich end of the con-
centration because of the possibility of the Pt8V structure
being stable in this system. Of course, this is also possible
in the 8-3 system; however, it is much more likely in 9-4,
since this system should represent the Pt-V system.

Due to all of the observations above, one would expect
that the NN EPI in 9-4 should be strongly concentration

FIG. 8. Formation energies for system 9-4.

dependent or perhaps the many-body interactions will be
important (or both). In fact, both of these are found to be
true. In Figs. 9—11, we show pairs, triplets, and quadr-
uplets, respectively, for 9-4 system as functions of con-
centration. The NN EPI is a strong function of concen-
tration, and the more distant pair interactions are larger
with respect to the NN EPI in this system than in 8-3.
Also, Fig. 10 illustrates that the triplet interactions are
clearly relevant in 9-4. Note that the fourth NN triplet
(which forms a straight line) is larger than all of the other
triplets. The notion that ECI for clusters composed of
self-retracing linear paths would be more important than
those for compact clusters has been proposed before and
studied with the tight-binding CPA-GPM. Note also
the large value of the linear quadruplet, even though it
spatially extends to the ninth nearest neighbor.

In this paper, the main source of comparison between
the canonica1 and grand-canonical ECI's is in how well
they predict the ordering energies. The ordering energies
for all 11 ordered structures are computed simply by tak-
ing the ordered (not ordering) energy of the structure, and
then subtracting from that, the random energy at the
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FIG. 9. Effective pair interactions vs concentration for sys-
tern 9-4.
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same concentration. The ordering energies determined in
this way will be termed "exact". It is also possible to
determine the ordering energies through either Eq. (13)
or Eq. (14). Using the grand-canonical or canonical
ECI's, the terms in the summations of Eqs. (13) and (14)
are calculated. Then, these results are subtracted from
the "exact" results, and a root mean square is formed.
This quantity, for whichever set of interactions, is termed
the error in ordering energy for that set. Thus, the con-
vergence of the expansions should be seen if this error is
plotted versus the number of terms kept in the sum.
These results appear in Figs. 12 and 13 for the 8-3 and 9-
4 systems, respectively. The interactions are added in the
order of Table I, except for the pyramid and octahedron
interactions, which are negligible for both systems. Thus,
the first ECI to be used is the empty cluster. Since this
interaction does not appear in Eqs. (13) and (14), the
root-mean-square error of the ordering energies is simply
the root mean square of the exact ordering energies them-
selves (for instance, 0.033 eV in the 8-3 case). Similarly,
the error does not change with the point interaction,

since this ECI also does not appear in the sums. It is not
until the NN EPI is included that the error drops
significantly. The leveling out of the curves with large
number of interactions implies that the sum has mostly
converged and additional interactions are not appreciably
changing the average error in the ordering energies.

Figure 12 shows the convergence for the 8-3 case. For
this case, both the grand-canonical and canonical interac-
tion are able to describe the system relatively well. Both
curves show a huge drop in error at the NN EPI interac-
tion, and a smaHer drop in error at the fourth NN EPI.
Both curves level off at slightly less than 0.01 eV, and
since the "exact" results for the random formation ener-
gies are only expected to be accurate on this sort of ener-

gy scale, we say that the system is described by both sets
equally well. This is consistent with the fact that the NN
EPI dominated this system, and was, for a11 intents and
purposes, concentration independent. Thus, we expect
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that there would be little or no difference between the
two averaging schemes for this system.

Figure 13 gives the results for the 9-4 system. Again,
there is a large drop in the error with the NN EPI. The
grand-canonical interaction is actually slightly lower than
the canonical interaction at this point. It is not until the
fourth NN pair that the canonical interactions actually
prove to more accurately describe this system than the
grand-canonical interactions. However, it should be not-
ed that both the grand-canonical and canonical interac-
tions have quite a bit more difficulty in describing this
asymmetric system than they did in the symmetric, 8-3
case. (Note the lower end of the energy scale on Fig. 13.)
Also, both averaging schemes undergo a sharp rise in er-
ror with the linear quadruplet, indicating that neither set
of interactions has completely converged at this point.
Thus, a larger set of interactions is needed to adequately
describe the 9-4 system.

C. Relations between GC-KCI's and 6-KCI's

In paper I, the equivalence of the grand-canonical and
canonical expansions was proved. In identifying the ex-
pansions terms for term, the following expression was de-
rived relating the GC-ECI's and C-ECI's:

V =P' (c)+ g ( —o) P 0' (c) .
aCP

(22)

Thus, the concentration-independent GC-ECI's may be
expressed as linear combinations of the concentration-
dependent C-ECI's. If the canonical interactions are
properly renormalized by the triplets and higher-order
interactions, they will tend towards their grand-canonical
counterparts or, in other words, will tend to lose their
concentration dependence. Figure 14 shows the concen-
tration dependence of the NN EPI for the 9-4 system. As
state previously, the unrenormalized interaction is
strongly concentration dependent. However, as expected
from Eq. (22), the EPI becomes less concentration depen-
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FIG. 14. Renormalized nearest-neighbor pair ECI for system
9-4.

dent when renormalized by the triplet interactions, and
even less so when renormalized with triplets and quadr-
uplets. This simple test provides an extremely strong
verification of the formalism, and also gives valuable in-
sight into the similarities between the two seemingly dis-
tinct averaging schemes.

V. DISCUSSION

The notion of expansion in orthonormal cluster func-
tions was introduced by Sanchez, Ducastelle, and Gra-
tias (SDCx) who showed that the cluster-variation
method did not need to be considered as a variational
method at all. In fact„cluster function expansions pro-
vide an unambiguous way of obtaining the optimal
description of the state of order in a (partially) disordered
system for a given cluster approximation. Additionally,
such expansions also provide a rigorous formalism for
determining effective cluster interactions which, in turn,
determine the thermodynamics of the system. The origi-
nal SDG formalism produced concentration-independent
ECI's but we have now shown, in this paper and in I, that
concentration-dependent ECI's could be defined within
the same orthonormal expansion formalism: it was mere-
ly necessary to modify the method of summation which
enters into the definition of the scalar product to the vec-
tor space.

It was then possible to prove that energy expansions
based on concentration-independent and concentration-
dependent interactions are strictly equivalent, and could
be identified term for term. Thus, by Eq. (22), the renor-
malized effective interactions beyond the "point" ECI
despite the manifest concentration dependence indicated
in Eq. (22), turn out to be concentration independent. It
follows that the expansion in concentration-dependent in-
teractions proposed, for example, in Eq. (5.9) of Ref. 39,
can, in fact, be written as an expansion in concentration-
independent ECI's (beyond the point interaction) via this
renormalization. The forrnal proof given in I is well sub-
stantiated here: in Fig. 14, the NN pair interaction for a
highly "asymmetric" system becomes progressively less
concentration dependent as the renormalization is ex-
tended to higher clusters (triplets, quadruplets).

From a practical standpoint, however, it may be
preferable to approximate the energy of a system in terms
of a small number of concentration-independent pair in-
teractions. It will not do, of course, to expand the energy
in concentration-independent pair interactions only. A
phase diagram perfectly symmetric about the central con-
centration would result, which would be generally in-
correct. Hence, with GC-ECI's, it is necessary to include
cluster interactions beyond the pair. In some cases, this
may be the best way to proceed computationally. Al-
though the GC expansion may require a large set of in-
teractions to accurately represent the energy, this set can
be used throughout the entire range of concentrations of
the system. Whereas, with the C expansion, it is perhaps
permissible to use only a small number of pair interac-
tions, these interactions must be calculated individually
for each concentration. Thus, for phase-diagram calcula-
tion, the GC scheme might actually require fewer ECI
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calculations than the C scheme.
Calculated C and GC-ECI's will, of course, be numeri-

cally different. Their physical meaning will also differ.
However, both sets of interactions may be interpreted
physically as interchange energies averaged over a
specified set of configurations. Thus, neither set may be
said to be more or less physically meaningful than the
other. In any case, what matters is that the actual energy
expression be invariant to the choice of ECI definitions.
In the GC expansion, the whole burden of the concentra-
tion dependence of the expectation value of the ordering
energy is placed on the correlation functions, g, in the C
expansion, the concentration dependence is shared by
both the V and the g parameters of Eq. (5).

What is not available at present is a universally valid
criterion for series termination. On the basis of present
considerations, we may state merely that multiplet in-
teractions are contributing significantly to the ordering
energy up to the point where the "renormalized" C-ECI's
become practically concentration independent. Thus, al-
though this criterion allows the declaration of conver-
gence with some degree of confidence, it does not indicate
which interactions are most relevant for a given system.
At present, this choice is still somewhat arbitrary.

VI. CONCI. USIONS

In this paper, we have examined the formalism for
defining a complete set of cluster functions which can be
constructed so as to be orthonormal in both types of
averaging schemes: An average over all configurations of
the system (the GC scheme), or an average with the con-
straint that only configurations at a given concentration
are to be included (canonical). The former leads to an en-

ergy expansion in which the ECI's are independent of the
concentration of the system, whereas the latter gives
concentration-dependent ECI's. We have also seen that
the DCA is a practical, viable method for obtaining the
ECI's in either averaging scheme, Both types of averag-
ing schemes have been shown to be rapidly convergent.

This was evidenced in part by the decay of cluster in-
teractions (pair and triplets) as the distance between
atoms was increased and also by the decay of interactions
as more points were added to the cluster. With respect to
the numerical comparisons made for a symmetric, or
concentration-independent system, canonical and grand-
canonical interactions seem to describe the system about
equally as well. For a strongly asymmetric system, both
of the methods have much more trouble giving correct
values for random and ordered energies. In these sys-
tems, canonical interactions seem to do slightly better
than grand canonical. Thus, generalizing from these two
systems, we can say that DCA with either GC or C ECI's
seems to be a reliable method for obtaining the correct
trends in binary-alloy systems; however, quantitatively,
the best choice, unfortunately, seems to be system depen-
dent. We have also numerically studied relations be-
tween the interactions in the two averaging in schemes.
These relationships establish links between the
concentration-dependent and -independent interactions
which prove the complete and formal equivalence of the
two expansions. Thus, we have seen in I that two distinct
averaging schemes are available and can be justified
theoretically under the same general framework. The
choice of which scheme to adopt for a given calculation is
clearly dictated by the system under study as well as
practical concerns, such as computer time or the con-
straints imposed by the numerical minimizations of the
CVM free-energy functional.
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