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States of (partial) order in binary-alloy systems are described by means of expansions in a complete set
of orthogonal cluster functions. The expectation value of the energy of such systems can then be ex-
pressed as a bilinear form in multisite correlation variables and effective cluster interactions (ECI's), as
originally proposed by Sanchez, Ducastelle, and Gratias [Physica A 128, 334 (1984)]. It is shown that
ECI's are defined as interchange energies averaged over all atomic configurations with a fixed concentra-
tion or over all configurations and concentrations, depending on the orthogonal expansion considered.
The former averaging process leads to concentration-dependent ECI's, the latter to concentration-
independent ECI s. From their formal definitions, certain relations will be shown to hold between the
interactions derived in the two averaging schemes in the thermodynamic limit. In particular, an in-
teresting convergence criterion is established for the concentration-dependent ECI s.

I. INTRODUCTION

To understand the physical properties of an alloy sys-
tern, a knowledge of the equilibrium phases and their lim-
its with respect to experimentally controlled parameters,
such as pressure, temperature ( T), volume, concentration
(c), etc. , is essential. In particular, very accurate knowl-
edge of the c-T phase diagram is crucial for technological
applications. Therefore, much effort, both theoretical
and experimental, has been devoted to the understanding
of phase stability in alloy systems.

For an ideal crystalline binary alloy, one of the two
types of atoms (denoted symbolically as A and 8) occu-
pies each site on a lattice. A given arrangement of these
atoms specifies a configuration which may exhibit varying
degrees of long-range or short-range order. The atomic
configuration of a macroscopic system at equilibrium can
be predicted given the knowledge of the free energy.
Therefore, a theoretical study of phase stability in a
binary alloy consists of trying to accurately describe the
configurational dependence of the energy and the entro-
py.

For a lattice with X sites, 2 possible configurations ex-
ist which make a straightforward calculation of the parti-
tion function intractable for macroscopic systems. For
this reason, theoretical efforts in this field have made use
of appropriate statistical models in which a finite set of
efFective cluster interactions (ECI's) are used to
parametrize the energetics of the system. In general, the
model Hamiltonian takes the form

H= gg V (p)4 (p),
0. P

where the sums are over sets of clusters a located at sites
p in the lattice. The set of I V (p)J are the effective clus-
ter interactions and the I@ (p)I are termed cluster func-
tions. Equation (1) is a generalization of an Ising Hamil-
tonian for which the @ (p) are products of spin variables.
In a first-principles study, one is left with the task of cal-
culating the set of ECI's and solving the statistical
mechanics of the model.

In Ref. 1, Sanchez, Ducastelle, and Gratias formulate a
mathematical framework by which the different terms in
Eq. (1) can be uniquely defined. In particular, these au-
thors show that, in the space of the 2 possible atomic
configurations, a complete orthonormal basis set of clus-
ter functions can be constructed. Therefore, any function
of the atomic configuration can be expanded in the form
of Eq. (1), and the V ( p ) are defined as generalized
Fourier coe%cients which are constant over the entire
concentration range in the alloy. The formal definition of
the ECI's is also discussed by Gonis et aI. in Sec. V of
Ref. 2 where these parameters are shown to depend ex-
plicitly on the composition of the alloy. In order to study
how the ECI's, as formulated in Refs. l and 2, are relat-
ed, we will extend the formalism of Sanchez, Ducastelle,
and Gratias by constructing a complete orthonormal
basis set of functions in the space consisting of all
configurations with a fixed concentration, as originally
proposed in Ref. 3, on a lattice in which the number of
sites, X, becomes infinite.

4907 1991 The American Physical Society



4908 M. ASTA, C. WOLVERTON, D. de FONTAINE, AND H. DREYSSE

As will be discussed in detail below, the ECI's are
uniquely defined as interchange energies averaged over a
certain set of atomic configurations. These ECI's are
concentration dependent if only configurations with a
fixed value of c are averaged over and are independent of
c if all concentrations are traced over as well. Thermal
effects such as phonons and increased scattering of the
electrons will cause the energy of a given configuration,
and hence the ECI's, to be temperature dependent. In
practice, however, ECI's are usually calculated only at
T =0.

In this paper, we will show that relations between
concentration-dependent and concentration-independent
ECI's can be obtained from the formal definitions of these
parameters. That such relations exist is not surprising
since the latter ECI's are obtained by averaging over the
N!IN„!N~! configurations [where NIi =N(1 —c) and

N~ =¹are the number of 8 and A atoms, respectively]
with fixed concentration c which are a subset of the 2
configurations traced over for the former ECI's (note that
gN!/Nz!Nz! =2 ). From these formal relations, an in-

teresting convergence criterion for the concentration-
dependent ECI's will be established which we will test
numerically using the direct configurational averaging
(DCA) method in the companion paper (hereafter re-
ferred to as paper II, which follows).

A set of 2 ECI's is defined by the formalism described
above so that this approach to alloy phase stability stud-
ies becomes useful only if the model Hamiltonian (1) can
be truncated to include a finite set of parameters. In pa-
per II we will compare the convergence of the energy ex-
pansions in terms of the two types of ECI's for two model
tight-binding binary alloy systems within the framework
of the DCA method in order to study under which condi-
tions a small set of either type of these interactions can be
expected to describe the configurational dependence of
the energy of a binary alloy system.

Several numerical techniques now exist for determining
ECI's from first principles. In particular, the generalized
perturbation method (GPM), embedded cluster method
(ECM), and DCA method have been used to calculate the
concentration-dependent ECI's which are discussed in
Refs. 2 and 3. The Connolly-Williams method and the
DCA method can be implemented to calculate
concentration-independent ECI's as defined in Ref. 1.
These methods are all related in that they are used to
determine ECI's which are defined within the context of
the formalism discussed below. The S' '(Ic) method has
also been used to derive parameters which describe order-
ing tendencies in binary alloys. The parameters in this
method, however, are not completely equivalent to those
defined below since they are derived within the context of
linear response theory in the totally disordered alloy as
characterized by the coherent-potential approximation.
The methods for calculating ECI's will be discussed in
further detail in paper II.

In order to solve the statistical mechanics of Hamil-
tonians of the form (1), several techniques are available.
Most notably, Monte Carlo (MC) simulation and the
cluster-variation method' (CVM) have been used in
binary-alloy phase-stability studies. Detailed compar-

Consider a binary-alloy system on a lattice with N
sites. In order to specify the microscopic arrangement of
atoms in this system, it is convenient to use spin variables
o. which can take on values +1 or —1 depending on
which type of atom occupies site p. Any configuration on
the lattice can be fully specified by the N-dimensional
vector o = Icrz, oz, o. „,. . . ]. We are interested in calcu-
lating functions on the configuration o. such as the energy
&(cr).

We begin by defining an inner product between two
functions of configuration cr, f (o ), and g(o ), defined on
the space of all configurations or in the subspace of
configurations with a fixed concentration c:

(f( ),g( ))=p, g f( )g( ) . (2)

The sum in (2) is over all configurations in the space in
question and po is a normalization factor. Next, we use
the Gram-Schmidt procedure to construct an orthonor-
mal set of basis functions from the set

W(op)= Wo= 1

Wi(o~)=a~ .

The result is

0O= 8'O=1

8,(o )=P(o —(l,o~)),
where P is defined by requiring (8,(o. ), 8,(o„))=l.
Provided the spins on different sites are independent, it
follows that

(8;(crp), 8, (op )) =5;)5p p,
where 5, . and 6p p

are Kroenecker 6's. A completeness
relationship can be shown to hold

8O+8i(cr )8i(cr ) =5( r,c)cr,

where (f(o~), 5(o~,cr~)) =f (cr~).
We now consider the set of configurations on the N lat-

tice sites in the space in question. We assign point func-
tions 8o= 1 and 8i(cr ) to each point p and form the ten-
sor product

isons of MC simulations and CVM calculations on the fcc
lattice" have established the accuracy of the latter
method. As shown in Ref. 1, an expansion of the density
matrix (which specifies the probability of observing a
given atomic configuration) in terms of cluster functions
provides a useful framework from which the CVM can be
formulated.

The outline of this paper is as follows: after a general
treatment of the formalism in the next section, the expan-
sion of the internal energy will be discussed in detail in
Sec. III. A comparison of the energy expansions will en-
able us to discuss how the ECI's are related in the two
averaging schemes, as is shown in Sec. IV.

II. FORMALISM
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(7)

This equation defines 2 cluster functions @ (o ) which
have the form

@ (o )=gi(o~)gi(o~ ) . . gi(o~ ),
where the subscript a specifies the points in the cluster:
a = (p, p', . . . , p" ) [note that the p dependence of the
cluster functions in (1) has been taken into the definition
of a]. From Eqs. (5) and (6) it follows that the cluster
functions are orthonormal,

(9)

and complete

g @ (o')@ (cr')=5(o. , o') . (10)
a

Therefore, we can expand any function f (cr ) in the given
configuration space as follows:

f(~)=f0++f & (o), (11)

where

(12)

4 (o )=50p5o 5o. (16)

where 50. =o. —o. and where the circumflex denotes
canonical averaging. In Appendix A we show explicitly
that these cluster functions are orthogonal.

Note that, for c =
—,
' (cr =0), the cluster functions be-

come identical in the two schemes. As will be made more
precise in Sec. IV, in the thermodynamic limit of N ~~,
the two schemes become equivalent at c =

—,'.

III. INTERNAL ENERGY

Consider now the internal energy which is defined as
the ensemble average of the energy,

where (1—o )' is the reciprocal of P defined above.
Aside from the normalization factor, we see that a canon-
ical cluster function is given by the product of spin devia-
tions away from the average spin o.. It will be useful to
consider unnormalized cluster functions in this scheme
which are related to those defined in Eq. (7) by a factor of

—2 n /2
1/(1 —o. ),where n is the number of points in clus-
ter a. The cluster functions used in this case are, there-
fore,

and (13)

g, (o p) =cr

since ( l, g, (cr)) =0. Therefore, the cluster functions in
this scheme are simply defined as products of the spins on
a specified cluster:

is the generalized Fourier coefficient, and where we have
extracted the configurationally invariant term
fo

= ( 1,f (cr ) ) from the sum. In the approach of San-
chez, Ducastelle, and Gratias, ' the entire configuration
space consisting of the 2 possible atomic arrangements
is considered. Since the inner product in Eq. (2) is
defined in terms of a sum over all configurations regard-
less of the concentration, we will refer to this approach as
the grand-canonical scheme. Alternatively, we can limit
the set of configurations to those with a given composi-
tion. In this second approach, which we will refer to as
the canonical scheme, orthonormal cluster functions can
only be defined in the limit of N~ ~ since the spin vari-
ables become independent only in this thermodynamic
limit.

In the grand-canonical scheme, it is easy to verify that

where p(o ) specifies the probability of observing the
atomic configuration o and where E(o ) is the total ener-
gy of a given configuration, which we refer to as the
configurational energy. We will be interested in the ex-
pansion of E (o ).

In the grand-canonical scheme we have

E(o )= Vo+ g V @ (cr), (18)

where, using Eq. (12), we find, for the generalized Fourier
coefficients,

V =(@ (o),E(o )) . (19)

Vp p
= ,'(E„~+xiii E~—ii Es„), — —

where E~„ is defined as

(20)

These coefficients, which we will refer to as grand-
canonical effective cluster interactions (GC-ECI's), are
concentration independent since the inner product in (19)
is defined in terms of a trace over all atomic
configurations.

As an example of the GC-ECI's, consider the pair in-
teraction: from Eq. (19), we have

N (o)=o'pop o'p- . (14)

and

g&(o~)=(cr~ —o )/(1 —o )'
(15)

For an infinite system in the canonical scheme, it is
seen that ( l, o ~) =o, where o. is the average spin in the
system and is related to the concentration by o. =2c —1.
Therefore, we have

with the prime indicating a restricted sum over
configurations where sites p and p' are both occupied by
A atoms. E~~, Ezz, and E~~ are defined similarly with
appropriate atoms occupying the two specified lattice
sites. By definition, we see that the GC-ECI is an inter-
change energy averaged over all atomic configurations,



4910 M. ASTA, C. WOLVERTON, D. de FONTAINE, AND H. DREYSSE

regardless of the concentration. From Eq. (18) the inter-
nal energy can be written as

&E&=v+yv g (22)

E (cr ) = 00+'g P' (c)4 (o ), (23)

where P' (c) is defined as

(24)

n
The factor (1—o ) in (24) comes from the normaliza-
tion of the canonical cluster functions as specified in Eq.
(A5) of the Appendix A. The coefficients in expansion
(23) are now concentration dependent since the inner
product in the definition (24) is defined in terms of the
canonical trace defined earlier.

As an example of the P' (c), which we will refer to as
canonical effective cluster interactions (C-ECI), consider
the pair interaction (again in the thermodynamic limit).
It is shown in Appendix B that this pair interaction has
the form

where f =
& 4 (o ) ) are known as correlation functions.

In the canonical scheme, the expansion of the energy of
a configuration with a specified concentration again has
the form of Eq. (18):

5$ (o )=g + g (
—cr)

yCa
(28)

where the sum is over all subclusters y of cluster a. The
expansion (27) can be rewritten using Eq. (28) as

&E(c))= f o(c)+ g P'(c)g

where the primed ECI's are defined as

P' (c}= 0' (c)+ g ( —o ) P'&(c)
aCy

(30)

lar, the C-ECI's are obtained by averaging over a subset
of the configurations used to obtain the GC-ECI's.
Therefore, these two sets of ECI's are necessarily related.
As we now show, the relations between these parameters
can be used to establish a convergence criterion for the
C-ECI s. Such a criterion is important since a common
problem in this approach to alloy phase-stability studies
is determining an appropriate level of truncation for ex-
pansions such as (22) and (27).

Consider the expansion for the internal energy in terms
of C-ECI's given in Eq. (27). The cumulants can be ex-
panded in terms of the correlation functions used in (22}.
In particular, for a disordered system in which all sites
are equivalent by syminetry (i.e., & cr&) =o for all p),

(c)= ~ [Egg(c) +Pgli(c) Egin(c) Eiig (c) ]

where Ez„(c) is defined as

P„„(c)=p„„(c)g' E(cr ) .

(25) in which the sum is over all clusters P containing cluster
a. By taking total derivatives of Eqs. (22) and (29) and
equating the resulting expressions, it is found that the fol-
lowing relations exist between the GC-ECI's and the C-
ECI's.

&E(c)}= t 0(c)—gt (c)Q' (27)

where Q' =&5o 5o 5cr~ )is the .cumulant of the
product of spins on a cluster n. Note that in the random
alloy at concentration c we have Q' =0 for all clusters a
so that f'0(c) is the energy of this random alloy.

IV. RELATIONS BKTWKKN GC-KCI AND C-ECI

The restricted sum is over all configurations with a fixed
concentration having A atoms at sites p and p', and p~z
is the inverse of the number of such configurations. The
terms kz~(c), E„z(c), and X'iiz(c) are again defined

analogously. Therefore, the C-ECI's are now concentra-
tion dependent. As mentioned in the Introduction, the
expansion (23) was formulated in Ref. 2 without the as-

sumption of N~ao. For finite N, however, the cluster
functions in the canonical scheme are no longer orthogo-
nal and the coefficients in expansion (23) can no longer be
interpreted as generalized Fourier coefBcients.

In the canonical scheme for a lattice with an infinite
number of sites, the internal energy takes the form

a f'o(c) a P' (c)
V, =P,'+ ' + y

a ~0

V =f '(c), aAO, p,
(31)

where a=p refers to the point cluster. In establishing
these relations we have used the definition g =o and the
fact that the correlation functions are independent vari-
ables. By equating the expansions (22) and (29) and using
(31), the relation between the empty ECI's [defined as
& 1,E(o ) }] can also be obtained:

a v,'(c) a 0.'(c)
Vo= Vo(c) — + g g cr . (32)

Bc7 Bo

av, (c)

C)0

The V are independent of concentration so that, from
the second equality in (31), we know that the derivative of
P' ' (c) with respect to concentration is zero for all except
the empty and point clusters. Relations (31) and (32) can
therefore be simplified as

at;(c)
V = P''(c) — o—0 0

Bo

In the previous section it was shown that the C-ECI's
and CxC-ECI's are both defined as interchange energies
and di6'er only in the way they are averaged. In particu-

a v,'(c) a v;(c)
V =P''(c)+ + o,

V = 0' ' (c), a%0, p .

(33)
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X
F.„~= 2, pox(N w )E~~(N„),

N~ =2
(34)

where p~„(N„) is the number of configurations with Nz
the number of A atoms having an 3 atom at the specified
sites normalized by the number of configurations having
A atoms at these sites:

1 (X —2)!
~ (N~ —2)!(X—X„)! (35)

As shown in Appendix C, for large X we can use
Stirling's approximation to show that, in the thermo-
dynamic limit, E„„=P„„(o=0). Similar relations hold
for the other terms in Eq. (20). Furthermore, the same
considerations can be made for other clusters so that we
again find that, for N —+ ~, the GC-ECI's are equivalent
to the C-ECI's at concentration —,'. This argument applies
even for the point cluster so that in order for the relation
between Vz and P ~(c) in (34) to be true, we must have

=0. (36)

The relations (33) provide an interesting convergence
criterion for the C-ECI s in the thermodynamic limit.
Given a finite set of C-ECI's at different concentrations,
the parameters can be renormalized according to Eq.
(30). The set of C-ECI's at a given concentration is then
increased until the relations (33) hold to within an accept-
able error between this set and the set evaluated at o. =0
which are equivalent to the GC-ECI's. Equivalently, the
range of interactions can be increased until the C-ECI's
become concentration independent. Clusters beyond this
range will have little effect in renormalizing the already
concentration-independent C-ECI s so that this condition
for convergence will be satisfied. In paper II, a numerical
study will be made to show that relations (33) are indeed
valid.

The relations (33) lead us to conclude that the GC-
ECI's are exactly equal to the C-ECI's at concentration
c =

—,
' (o =0) for all but the point cluster. Another way

to establish this equality is to make use of the fact that
the binomial distribution converges to a normal distribu-
tion which becomes peaked around o. =0 for large 1V. In
particular, consider the pair interaction in the two
averaging schemes. As shown in Eq. (19), the grand-
canonical interaction is defined as an interchange energy
averaged over all atomic configurations on the lattice.
Using the definitions of the terms in (20) and (25), it is
possible to relate the pair interactions in the two averag-
ing schemes. For example, the expression for Egg can be
rewritten in terms of that for Pz„(c) as

V. CONCLUSIONS

The formal definitions of ECI's has been considered us-
ing the mathematical framework of expansions in com-
plete sets of orthonormal basis functions. This frame-
work has allowed us to establish that the difference be-
tween the two types of ECI's formulated in Refs. 1 and 2
is the set of atomic configurations over which they are
averaged. In particular, by limiting the averaging to
configurations with a fixed value of concentration, the
ECI's defined in Ref. 2 are obtained while extending the
averaging to all concentrations as well leads to the ECI's
in Ref. 1.

The ECI's as defined in (19) and (24) can be interpreted
as interchange energies of clusters embedded in an "aver-
age medium. " It is commonly argued that this "medi-
urn" should reAect the dependence of the alloy properties
on concentration so that the C-ECI's are a more valid
choice of parameters to use in such studies. However,
the complete set of GC-ECI's contain no less information
than the set of C-ECI's at all concentrations since the
"medium" for the former set of parameters contains all
of the properties of the system at all concentrations. This
is not to say, however, that an expansion of the energy in
GC-ECI's will converge at a given concentration as rap-
idly as the similar expansion in C-ECI s. Indeed, for a
system in which the physical properties are strongly
dependent on concentration, fewer terms in expansion
(27) might be expected to be needed to parametrize the
energetics at a given concentration than for expansion
(22). These considerations will be quantified in the nu-
rnerical study of the second part of this paper.

For a system in which the number of atoms becomes
infinite, we find that the C-ECI's and GC-ECI's are relat-
ed as follows: By expanding the cumulants in the inter-
nal energy expression (27), it is found that the GC-ECI's
are related to the set of C-ECI's at any concentration as
given in (33). In particular, it is established that the GC-
ECI's are actually equivalent to the C-ECI's at concen-
tration c =

—,'. This latter equivalence is true essentially
because an exponentially greater number of configura-
tions exist at c =

—,
' than at any other concentration.

These relations are derived using only the formal
definitions of the ECI's and should therefore hold in-
dependently of the methods used to calculate them.
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APPENDIX A

In general, cluster functions constructed by forming a tensor product of point functions, as is done in Eq. (7), will be
orthonormal provided these point functions are independent and orthonormal according to Eq. (5). In particular, con-
sider the canonical cluster functions defined in Eq. (16). In order to show explicitly that the 4 (o ) are orthogonal, use
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will be made of the following equality:

ppT1[crp cry ' ' 0'p =0 (A 1)

where the trace and normalization are those for canonical averaging. To prove the above equality, consider a lattice
with X sites:

Ã~w~& (N n—)!
p Tr[cr o. . cr ]= Y '

( —1)'N!,. i (n i—)!i! (Nti i)!—(N~ n—+i)!

n n!
(N~ )" '( Nti)—' +0(1/N)

(n —i)!i!

n

&~ —&a +0(1lN) =o"+0(.1/N), (A2)

so that (Al) is true in the limit of N ~ oo.
Now, consider the inner product of two cluster functions written explicitly as

(4~(cr), 4 (o )) =ppTr[(o& —o ) (cr —o ) (o~ —o ) . . (o —o )], (A3)

where the points [pi,p2, . . . ,p;] are in both clusters (i being the number of such points) and where j is the number of
distinct points in clusters a and a' (so that n +n ~ j—=i) Equa. tion (A3) can be expanded as follows:

(
& W

)
1 1 1

@ (cr),c .(cr) (1+o. ' —cr2 i —
(,n&+n2+ . -. +n,. ) j—i —(n,. +&+n,. +2+ . . +n. )

n& =0 n2=0 n. =0

(A4)

which can be rewritten using Eq. A1 as follows:

(4 (o ),4 (cr)) =. [1— 'c]r'[ crcr]'— (A5)

From Eq. (A5) it is seen that, if a and a' are identical clusters (so that i =j =ml2=n ), (0 (cr), 4 (cr)) =(1 cr )—
while if any points in a are distinct from those in cc, we have (cd (cr),4 (o ) ) =0. That these cluster functions are not
normalized follows from their definition in Eq. (16).

APPENDIX 8

From Eq. (25), the canonical efFective pair interaction is defined by

&, , ( )=(1— ') '(E( )@.( )), (Bl)

where the inner product is defined by Eq. (2) in terms of a trace over all configurations with a fixed concentration c. For
a lattice with N sites, Eq. (Bl) can be written explicitly as

, &~ l&al
(c)=(1—0. ) g [(ocr)(o c.r)—]E(o.) . — (B2)

The spin variables o. take on values +1 or —1 if site p is occupied by an 3 or 8 atom, respectively. Therefore, Eq.
(82) can be rewritten as

(N —2)! 2 (N —2)!

where the terms such as Ezz(c) are defined in Eq. (27) and where the explicit expressions for pzz, ptiii, pzz, and pic~
have been used. Equation (B3) can be further simplified to order 1/N using the relations N„=N(1+o )/2 and
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Nz =N (1—0 )/2 as follows:

1+cr 1 — 2
f pp (c)=(l —cr )

' (1 —cr)' E„~(c)+(1+cr)' E~~(c)4 AA 4

—(1—a ) E~~(c)—(1 —cr ) E~„(c)+O(1/N)
(1 —o ) z (1—cr )

(84)

which becomes, in the thermodynamic limit of N —+ ~,
P'p p(c,) = ,' [P~„—(c)+E~~(c) E„~—(c) P~~—(c)]

as in Eq. (26).

(85)

APPENDIX C

In order to show that E„~=E„~ (cr =0) in the thermo-
dynamic limit, it is necessary to show that, for large X,
p„z(N~ ) as defined in Eq. (35) converges to a normal dis-
tribution centered around o. =0. From Stirling s approxi-
mation it can be shown that, for large X, the following re-
lation holds:

The sum in (C2) can be rewritten as an integral (using a
Euler-MacLaurin series) which becomes, after changing
variables from Xz to o.,

1 1

v'2' v'N N(N —1)
r

1+2/N
X 1+0 1+0——

—1+2/N

1 Nt 2 1

2+ N !(N —N )! v'2~ v'N

—2(NA N/2)—

(Cl)

X exp X'~~(cr) dcr . (C3)

so that Eq. (36) can be rewritten as
In the thermodynamic limit, (C3) can again be rewritten
as

8 1 1

V2m. v'N N(N —1)

N
X g N„(N„—1)

1Ez„= —J V N/2(l+cr) exp
rr

—So.
2

E~„(a )der

(C4)

where, in the second equality, we have made use of the
fact that

X exp
2(N„N/2—)—

v'N/2exp[ ¹r—/2j~Vm5(0. ) (C5)

(C2)
in the thermodynamic limit of N~ ~, where 6(cr ) is the
usual Dirac 6 function.
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