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Optimal control of acoustic waves in solids
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Optimal dynamic normal surface loading of a homogeneous elastic solid for interior acoustic-energy
focusing to a specific target volume is treated in this paper. The goal is achieved by additionally impos-
ing the criteria of applying a relatively minimal total surface force and system disturbance except at the
target. By utilizing the calculus of variations, the optimality conditions are obtained, and the approach
is implemented through the finite-element method along with half-space dyadic Green s functions. The
optimization procedure is done via the conjugate-gradient method. Numerical results show that the op-
timal normal surface loads consist of two radially shrinking concentric rings of special structure. For a
positively constrained surface force, the earlier of the two surface load streams produces a self-focusing
shear volume wave that moves to the target volume to create a high acoustic-energy density. An addi-
tional following longitudinal load adds further energy by compression of the surface directly over the
target volume. In a second example without any positive constraint on the surface force, however, the
earlier of the two surface load streams now produces a concentric surface wave as well as a self-focusing
shear volume wave. An additional longitudinal load then converts the surface wave into bulk volume
waves for achieving the objective with a minimum of total surface force and of total system disturbance.
The overall approach of optimal design of dynamic surface loading for bulk volume objectives is flexible
and capable of treating a variety of complex problems.

I. INTRODUCTION

There are a number of physical situations where it
would be useful to produce a specified acoustic-wave
structure within a solid, by applying a pattern of forces
on the solid's surface. Here an acoustic wave refers to a
vector elastic wave field and not just a scalar field as for
sound waves in a Auid or air. The design of the optimum
surface forcing to generate a specified wave is a compli-
cated problem, especially if one takes into account tech-
nical or practical constraints. Optimal-control theory is
a branch of the calculus of variations that naturally takes
into account the physical response, as well as practical
constraints in calculating the optimum application of
forces that move a physical system to a desired state.
Optimal-control theory has been applied to a wide variety
of problems in engineering science, especially for dynami-
cal systems with many degrees of freedom and important
constraints on the forces available to move the system.
Recently, optimal-control theory has been used to calcu-
late the optimum temporal structure of laser pulses for
molecular site-specific photochemistry. In the work
presented here, we apply optimal-control theory to the
systematic design of the moving forces on a solid surface
for generating tailored acoustic-wave structures within a
solid.

The generation of tailored electromagnetic (EM) waves

has been studied since Brittingham's work, which first
suggested the possibility of a packetlike solution of
Maxwell's equations. Such solutions are called focus
wave modes (FWM's), which remain localized in three-
dimensional space and move at the speed of light without
dispersing. Unfortunately, a true FWM has an infinite
total energy and is impossible to obtain. As a result of
Brittingham s work, however, the possibility of solutions
of the wave equation that are localized and slowly decay-
ing in space-time has been reported by several groups.
These include electromagnetic directed energy pulse
trains, acoustic directed energy pulse trains, splash
modes, EM missiles, Bessel beams, EM bullets, and
transient beams. ' These cases, with the exception of
electromagnetic waves, are all for waves described as sca-
lar fields. Within the author's knowledge such solutions
for vector acoustic fields have not yet been treated. In
the case of solid dynamics a proper physical description
requires a vector field with longitudinal and shear waves
traveling at different speeds. This apparent added com-
plexity is in fact an attribute, as the vector field provides
much greater ability for achieving the objective. In addi-
tion, it is natural to consider a free-half-space boundary
problem for laboratory-realizable situations with solids.
As a result one must use the half-space Green's functions
that incorporate the more involved dynamics due to the
free boundary. Thus, in this paper, it will be shown how
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an optimal surface load can be designed to give a tailored
acoustic vector field for a specific goal. The use of op-
timal control theory, in contrast to the other works men-
tioned above, allows for the inclusion of a broad family of
ancillary criteria or practical constraints besides that of
just achieving the original physical objective.

Acoustic waves have been long recognized as a valu-
able tool for studying and potentially manipulating the
structure, dynamics and properties of solid materials. "
A common problem for acoustic-wave studies is the pro-
cess of generating or coupling the waves into the solid,
which is made more difIicult if one wants a specific wave
characteristic, such as a focus. One approach to this
problem is to act directly on the surface, rather than to
use separate transducers, acoustic lenses, ' and coupling
media. Direct generation of acoustic waves at surfaces
has been demonstrated using lasers' ' or electron
beams' as mell as with arrays of individually driven
transducers. ' The technique of laser acoustics is especial-
ly interesting from the perspective of the work presented
here. Laser beams can be controlled both spatially and
temporally, and energy can be delivered in a noncontact-
ing manner in the ambient environment. Thus optimal-
control techniques may be applied to the spatial and tem-
poral design of laser pulses which act on a surface to gen-
erate tailored acoustic waves. The resultant tailored
acoustic pulses could provide a new and possibly general
tool for producing localized, strain fields in solids. We
envision these acoustic wave forms and fields to be poten-
tially useful in a broad range of applications for internal
materials diagnostics and modifications. '

In the low strain linear medium regime the response of
a solid to distributed surface forces can be described in
terms of the superposition of responses due to point
forces on the surface, with the response from each point
source described by a dyadic Green's function. The
acoustic response due to a single point force is fairly com-
plex, with generated waves of shear, compressional, and
surface modes, all of which have distinct spatial and an-
gular dependence. If the solid is anisotropic, or non-
linear, then the response is even more complicated. If
one desires to design the surface forces to produce a
specific acoustic state in the interior of a solid, then it
would be quite difticult to account for all of this complex-
ity without a systematic procedure. Optimal-control
theory provides a natural means to manage this complex-
ity. In addition, optimal control theory allows one to in-
clude practical constraints as cost functions, in the calcu-
lation, so that one can, for example, derive the surface
forcing function, which produces the best interior acous-
tic focus with the minimum expenditure of work in mov-
ing the surface.

We present here examples of optimal calculations of
the moving forces on a solid surface, which produce a
subsurface acoustic focus. In these examples, we assume
a simplified physical situation that does not reAect a limi-
tation in the general methodology. For the purposes of
this paper, we treat the wave focus as a small volume
with a desired maximum acoustic energy density, both ki-
netic and strain energy, without regard to the direction of
local solid motion. There are other possible choices for

defining a focus (e.g., maximum strain levels in a particu-
lar direction), the choice of which depends upon the
specific application. We choose as cost functions the to-
tal disturbance of the system (except at the target time in
the target volume) and the total surface loading, so that
we may minimize the total energy of the system and the
total surface force producing the focus. Again, there are
other possible choices for the cost function, such as
minimal laser energy required to drive the surface via
opto-acoustic interactions' instead of the total surface
loading. Here we treat the solid as an ideal isotropic elas-
tic material, although anharmonic solids could be con-
sidered, and the optimization algorithm is of suKcient
generality such that nonlinear materials could be treated
as well. In the examples described in detail here, we con-
sider bases both with and without a constraint that the
surface forces be positive semidefinite.

In Sec. II of this paper, we formulate the optimal-
control problem. The moving forces (control functions)
are the surface loads, and the situation is identified as a
boundary control problem. The objective of the control
problem is to minimize a given objective functional,
which depends on the state of the system (its displace-
ment field) and its controls. The necessary optimality
conditions for the problem are obtai. ned from the varia-
tion of the objective functional with respect to the control
functions. In Sec. III, we cast the problem in a discrete
form, suitable for numerical solution. The state and co-
state equations are discretized on the surface [by the
boundary element method (HEM)], ' and in the target (fo-
cal) volume [by the finite element method (FEM)].
Next, the conjugate gradient algorithm ' (CGA) of
mathematical programming is used to minimize the de-
rived objective functional of the optimal surface load con-
trol problem. In Sec. IV, we present numerical results for
the optimum surface loads, sho~n as patterns that vary
as a function of time and of radius from the center of
symmetry defined by the target location. We also show a
time sequence of the subsurface (bulk) acoustic-energy
density. The reformulation of the dyadic Green's func-
tions for a symmetric ring-type load is presented in the
Appendix.

II. OPTIMAL-CONTROL PROBLEM

Consider an elastic, homogeneous and isotropic half
space whose free surface is subjected to a dimensionless
boundary traction r(x, t). Using the dimensionless dis-
placement field u(x, t) as the state function, the system
equations in the domain V with its boundary S may be
written in dimensionless form as

a'
pV u+(A, +p)VV u=p u, ( t)xE VXT+ . (1)

at2

Here, the dimensionless displacements, surface tractions,
energy density, Lame's constants, mass density, coordi-
nates, time, and Green's functions are defined in terms of
their dimensional counterparts by
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U=u/Zp,

A, =A, /pcd',

X=X/Zp',

W= W/Pcd,

p=P/pc

t =cdt /Zp

e =e/pcd,

p=p/p= 1

G=PcdZ0G .

(2)

respect to time t." Within this section, unless otherwise
states, u;=u;(x, t), 7 =.7 (x., t), and g; =g;(x, t). Then,
Eq. (1) can be rewritten as

pu; "+(A,+p)u; =pii;, (x, t)E VX T+ .
The longitudinal and shear wave velocity cd and c, are
defined by cd =(X+2P)/p and c, =P/p, respectively, and

Z0 is some characteristic length, and the hat symbol is
used to denote the corresponding dimensional variable.
After this point, unless otherwise stated, all quantities are
in dimensionless form.

For convenience, the standard index notation has been
adopted where summation is assumed over repeated in-
dices, commas with following indices denote spatial
differentiation, and dots indicate differentiation with

The initial and boundary conditions are

u;(x, O)=u;(x, O)=0, xE V, (3a)

Au n;+. p(u; +u. ;)n~ =r;, (x, t)ES X T, (3b)

where n; are the direction cosines of the unit vector nor-
mal to the surface S.

Using the half-space dyadic Green's functions G +',
one may obtain u;(x, t ) at any point in the half space as

u;(x, t)=p f dV GJ+' uJ(xp, tp) uj(x—p, tp) G~+' + f dtp f dS G~+'ri(xp, tp) .

J[u;,r;]=4&(T)+L,
with

L& =w& f dV f dt e(x, t) —w'& f dV e(x, T)
V 0 V

(7a)

From the initial conditions in Eq. (3), Eq. (4) can be re-
duced to a boundary integral equation.

In the present optimization problem, it is desired to
maximize acoustic energy in a local subsurface target
volume at a particular time in an efticient manner such
that the total energy of the system remains as small as
possible elsewhere and by applying a minimum surface
force by means of the controllable surface traction during
the process. Thus, the physical objective functional may
be written as

The choice of the weight factors m allows for Aexibility in
balancing the role of the N and L contributions to J. The
choice of weights is a standard practical issue in applied
optimal-control theory. ' The numerical computations in
Sec. IV will illustrate some of the logic involved with
specific results for different choices for m.

The dynamic optimization of surface loading for the
purpose of e%cient focusing of acoustic energy within the
solid interior may be stated as the problem of finding the
optimal control function ~; from a set of admissible con-
trols such that the objective functional J is minimized un-
der the system constraints Eqs. (1) and (3). It is well
known that a constrained minimization problem can be
treated as an unconstrained one by introducing Lagrange
multiplier functions (g,. ); ' that is, instead of minimizing
J with constraints Eqs. (1) and (3), one can minimize the
modified objective functional

L, = f dSf dt's, (7b) J[u, , r, , g, ]=J—f dV f

dt's,

[pu, ,, .

where the error function N( T ) measures the degree of
satisfaction of the objective of localizing the energy in the
local target volume V, at the target time t=T at a
specified value E . In competition with this goal are the
penalty cost functions L =L

& +L2, respectively corre-
sponding to the desire for minimizing the total energy of
the system except in the volume V, at t = T and the total
surface force during the energy focusing process. The to-
tal energy density e(x, t ) may be expressed as a sum of
the kinetic energy density k(x, t ) and strain energy densi-
ty s(x, t) as

+(A+p)u. i;
—pu;] .

(9)

The necessary condition for J to be stationary is that

5J[u;, r;, t/t;] =5J+5M

=5@(T)+5L,+5L2+5M=0, (10)

e(x, t) =k(x, t)+s(x, t)
where M refers to the new integral term in Eq. (9). By
utilizing the following variational equations with the sys-
tem constraints, Eqs. (1) and (3),
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f dV5k= f dVpu;5u;,

f dV5s= f dV[[pu. ..+(X+p)u, ,;
—pu;]5u;+leuk k5uk k+p(u;, +u, ;)5u;, ]

= f d V[A(u. 5u; )„+p[(u; +u; )5u; ],J p—u, 5u; ]

= f dS[Au .n;+p(u; +ui;)nj]5u; —f dV pii;5u;

= f dS r;5u, —f dVpii;5u;,

and recognizing that the total energy of the system at time t is equal to the sum of the power input from time 0 to t,

(12)

dVe x, t = dS dv~; x, v u; x, v
V S 0

we can write M&( T ), 5L „5L2,and 5M as

(13)

5@(T)=+ f dV p[u;(x, T)5u;(x, T)—ii;(x, T)5u;(x, T)]+f dS r;(x, T)5u;(x, T)
C C

5L, =w, f dS f dt f dvI [u, (x,v)5r, (x, v) ~;(—x, v)5u;(x, v)]+r;5u, ]S 0 0

—w, w', f dVp[u, . (x, T)5u, (x, T)—u, (x, T)5u,. (x, T)]+f dS ~, (x, T)5u, (x, T)
C

5L, =w, f dS f dt r, 5r, ,
S 0

5M= —f dV f dt [[pu; . +(A, +p)u; pii; ]5/;+—g;[p5u; +(1,+p)5u; —p5ii;]],

(14)

(16)

where the —sign in Eq. (14) is operative when the energy in the target volume V, at t = T is less than a specific value E
and vice versa for the + sign. By using the following identities with the initial condition in Eq. (3),

and

g;5u ~; =(g;5uj ~
)„.(P;;5—u ), . +f;; 5u

g;(5u; JJ+5uj. ;~ )=[/.;(5u; +5u;)],J
—(P;~5u;), ~ g; 5u;+(—g; 5u )„—$, ,~5u~, (19)

f dt $;5ii; =$;5u; ~, f dt $,—5u, =g, (x, T.)5u, (.x, T) P, (x, T)—5u, (x, T)+ f 'dt j,5u, ,
0

then Eq. (17) can be rewritten as

5M = —f d Vf dt [ [pu;, + (k+p)u; pii; ]5+;+ [p—g;, + ( A +p)P; pi/i; ]5u;]-
—f dS f dt[Q;[A5u n;+p(5u, +5u, )n, ]

—[Ag n, +p(g; +Q;)n ]5u;]

+ f dVp[g;(x, T)5u;(x, T)—g;(x, T)5u;(x, T)] .

(20)

(21)

Substituting Eqs. (14)—(16) and (21) into Eq. (10), the stationary condition for J may be derived from the fact that the
variations 5u, , 5r, , and 5g; are independent of each other; hence, their coefficients can be set equal to zero, separately.
Thus, the costate (the Lagrange multiplier) equations of motion can be written as

pP, J~+(A+p)P, =pg;, (x, t)H VX T+,
where the costate boundary condition and final conditions at t = T are, respectively,

Ag~jn;+p(g, +P. , )n =r', , (x. , t)HSXT+,

r;. =w, [(T t )r, —r; ], —

(22)

(23)

(24)

(w, w', +1)u;(x, T)
p;(x, T)= '0

(w, w', +1)u;(x, t), if xH V, ,

0, otherwise,tP X, T (25)

where r; denotes the costate boundary traction. Note that the equation of motion for the costate function g, is the
same as that of the displacement field. This is a consequence of the self-adjointness of the wave operator.

The gradient of Jwith respect to the control functions ~; can be written as
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5J T 'o
dS(yp) dtp w ] dv u;(yp, v)5(y —yp)5(t —v) + [w2r;(yp tp ) f (yp tp ) ]5(y yp)5(t tp )

5r, r, t s 0 - 0

T=27rr [w
&

dt p u ( ( y ) t )h ( tp t ) + w 2 7(. 1tj( ]
0

=2nr[w&(T t)—u, +w2r, —g, ], (y, t)ES X T+, (26)

where h (t ) is the unit step function and this gradient will be utilized in the iteration procedure for finding the optimal
function w;.

The costate function can be written as follows in terms of the half-space dyadic Green's function:

g, ( xt)=P f dV 6 '
1( ( xpt p)

—1t~(xp, tp) 6 + f dtp f dS GJ 'rj(xp, tp),
T S

0

(27)

=6,', '(x, t„x,, t) . (28)

Until now, we have allowed the optimal surface loads
to take on both positive and negative values. However, in
the laboratory, it is quite difficult to generate negative
surface loads with optical means (other techniques could
achieve such negative forces by first uniformly preloading
the surface and selectively relaxing the force). Thus, we
may desire to constrain the surface load to assume only
positive values. For this constraint, we define the surface
traction ~; as follows, so that we can have only positive
surface load I';,

(29)

and the positive constrained optimal problem can be re-
formulated with new cost function L2 as

L = fdSf dtp; (30)

From the same procedure, one finds the same costate
constraints except the gradient equation is now

6J = —w, (T t)u;p; +w p2; +g—;p;, (x, t)HSX T +
1

(31)

The optimization problem is reduced to solving the
state function [Eq. (4)] and the costate function [Eq. (27)]
integral equation iteratively in the direction of minimiz-
ing the objective functional J until a specified conver-
gence criteria are satisfied. In other words, by taking an
initial guess for v.; on S, the state problem may be solved
for u,. from Eq. (4) with Eq. (3). With this u;, the costate
problem Eq. (27) may consequently be solved for g; with

where the advanced dyadic Green's function
6 . '(x, t;xp, tp) describes the ith directional effect at x
corresponding to a jth directional unit impulse at x0 with,
however, the sense of time reversed, so that the event at t
occurs at some time earlier that the impulse causing it at
a time tp (i.e., t (tp). Thus, from the reciprocal relation
the advanced dyadic Green's function can be rewritten
as"

Gi. '(x, t;xp, tp)=G, ' '(x, —t;xp, tp)—

Eqs. (23)—(25). Better values for the control function r,
can be found via the CGA (Ref. 21) by using the objective
functional J [Eq. (5)] and its gradient with respect to r;
[Eq. (26) or (31)].

III. NUMERICAL PROCEDURE

The continuous space-time optimal-control problem
posed above can be rendered to a mathematical-
programming (MP) problem of minimizing a functional
over a set of coefficients subject to algebraic constraints.
In order to apply a MP technique directly to the optimal
control problem, the continuous space-time system of
Eqs. (4) and (27) have to be discretized in space and time.
However, using the half-space dyadic Green's function
the optimal control theory avoids requiring a discretiza-
tion of the whole space domain. The discretization of the
boundary surface and target volume is enough to apply
the MP technique. For this purpose the boundary sur-
face is discretized as a series of axial-symmetric ring seg-
ments by the BEM and the target volume (V, ) will be
discretized as a series of cylindrical segments by the
FEM. Within the present constraint of axial symmetry,
any target volume shapes could be considered. The
choice of cylindrical symmetry is the natural choice here
in keeping with the uniform nature of the solid and the
symmetry of the target volume. The remainder of this
section will give a concise summary of our numerical pro-
cedures, which are based on reliable existing
methods. ' ' The algorithm was successfully tested on
several standard acoustic propagation problems and was
found to be quite accurate.

Special care should be taken on the choice of time in-
tervals and boundary discretization in order to avoid
violating the causality property of the Green's function;
that is, in a time step, the spatial nodes should not com-
municate and should be localized. Thus, the parameter
a, given by a=cdirt lb, r =At/b, r, should be chosen
a & 1. Here Ar and b, t are the dimensionless grid spacing
and time increment.

In keeping with the presently assumed system axial
symmetry, the surface traction need only be discretized
on radial nodal points. Taking into account the axial
symmetry of the system and the restriction that the sur-
face traction be perpendicular to the surface, the surface
traction r, (r, t), displacements u, (r,z, t), and costate
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function g, (r, t) can be approximated to r,*(r,t),
u;*(r,z, t ), and f,*(r, t ) through interpolation functions as

difference form as

u n» =(u" + Jl —u" l Jl)/2/t
1 1 t (40)

r;(r, t)= g g P"(t)q'(r)r,"',
j n

(32) Similarly, Eq. (27) can be approximated by Eqs.
(32)—(34) as

u,*(r,z, t)= g g g B"(t)rIJ(r)h'(z)u;"'J',
j n l

f,*(r, t ) = g g f"( t )rIJ(r )Q,"'J,
j n

(33)

(34)

where j, J', and n refer to radius, depth, and time discreti-
zation point indices. The expansion coeKcients are in-
tended to represent the boundary values through the con-
ditions

P (t )=B (t )=5 „,
n'(rk ) =5,k

h'(z ) =5l

(35)

Since the displacement in Eq. (4) is related to a time in-
tegral of the surface tractions, if we choose piecewise con-
stant time interpolation functions for P"(t ) in the trac-
tion, then a suitable type of time interpolation for the dis-
placement B„(t) is a piecewise linear function

1, if t„~t~t„
Ikn t 0, otherwise . (36)

1 —lt t„I
/b, t, i—f t„+, ~ t ~ t„

Bn
0, otherwise . (37)

Substitution of ~,* and u;* for r, and u, in Eq. (4) yields a
system of algebraic equations

n,j, l

where

k m=1
n —1

k m=0

Gnm, jk, l m, k
R, iz +z

Gm, jk, l (n —m), k
R, iz +z (38)

k+1Gg;J~'=2m. drorog"(ro)
"k —1

m+1
dtoG& „(r&,zl to "o) . '

t
(39)

—1r, (r, t )= 5(r —ro)5(t ),
at rp The dyadic ring Green's function is very useful for
the present case of an axially symmetric system and may
be derived from the impulse point-load Green's function
(see the Appendix). The radial integration in Eq. (39) is
carried out numerically using Gauss quadrature formulas
for all time steps so one can avoid the singular behavior
when the distance between the receiver and source tend
to zero. Due to the choice of time interpolation in Eq.
(36), the time derivative of Eq. (38) can be written in finite

The dyadic ring Green's function Gz;, (rj,zl, t;ro)
denotes the effect in the ith direction at the receiver
(rj, zl, t ) due to a z-directional ring impulse load,

,lnj +—~ ~ (GN —n, Jk, lu N k, l G N n, &k—, lu N, k, l)
k l

N —n
Gm, jk, o c(m+n), k

R, zz +z
k m=0

where the target time is T=tN and

k+1
Gg,;"' "' =2m drorog (ro)

k —1

1+1
X I dzohl(zo)

l —1

(41)

X 6~ „(r,tN „;ro,zo) .

(42)

Here, the reciprocal relation for the Green's function has
been used for the dyadic ring Green's function as

G~ „(rj,tN —n ro zo) Gz;, (ro, zo, tN „;r,) . (43)

Through this procedure by assuming an initial value
for the control function ~,"'~ on the surface, the discrete
values of the state function u;"'~' in the target volume V,
are uniquely determined by direct time integration using
the BEM [Eq. (38)]. The corresponding discrete values
of the costate function P,"'J on the surface may be found
by backward time integration using the FEM [Eq. (41)].
From these values, one can calculate the objective func-
tional and its gradient with respect to the control func-
tion. Then, from the CGA, one may calculate the direc-
tion of search from past and present values of the objec-
tive and its gradient. Better values of the discrete control
function ~,"'~ for the next iteration step are determined by
a one-dimensional minimization along the direction of
search, which is always the direction of descent. Thus,
the algorithm tends to converge, and the iteration pro-
cedure is repeated until the sum of squares of the com-
ponents of the gradient vector is less than a specified
tolerance. A standard library routine has been utilized
for the CGA optimization.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we shall show how the algorithm
developed above can be used to design optimal dynamic
normal surface loads for achieving efficient subsurface
acoustic-energy focusing. We have based the calculations
upon the physical properties of an aluminum alloy for
concreteness and the relevant physical properties of Al
2024 are the mass density p=2. 77 g/cm, and Lame con-
stants l(, =0.546 g/cm tu, s, p =0.257 g/cm ps . The longi-
tudinal and shear wave velocity are, respectively,
cd =0.618 cm/ps and c, =0.304 cm/ps. The objective of
the problem is to find the temporally and spatially opti-
mized normal load that achieves as nearly as possible the
local energy E in V, below the surface at t = T by apply-
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es while generating asin relative y m1
'

1 minimal surface forces,
le s stem disturbance elsewhere.

m p bl depicted in Fig. 1,metric pro em ep'
he maximum radius of the sur ace

25 i 1- t=2.5, which is divided into

hz=0. 1. The target voolume V is a cy in erc
r=0.2 and eighei ht 0.4 centered at z, =0. , w ic

ing elements, andas ei ht axial-symmetric ring ediscretized as eig - ing e
each elemen t has nine nodal points. , s

h related to surfacerface loading, w ic is re
1 h

K
'

f 11=7.0 in order to a ow su ctaken as T=
t. In order to preserveontrol mechanisms to ac . npossible con r

h G en's function, a timethe causality property of t e reens
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Pd streams shrink to the center of the surface with the ve-

locity v, and Ud, respectively, and the Pd load is concen-
trated directly above the target volume, while the P, load
stream has a maximum load value at r -0.34. Also, the
maximum value of the P, load is about four times larger
than that of the Pd load.

In order to explain the characteristics of the optimal
load streams, we have calculated the concentric ring
loads whose shear and longitudinal wave fronts arrive at
the center of the target at the time T with the velocity of
the shear wave c, and of longitudinal wave cd, respective-
ly (i.e., neglecting the target volume size). For this pur-
pose, the loads at radius r satisfy equations
cd(T t)=(—r +z, )' for the Pd load stream and

c,(T t)=(—r +z, )'~ for the P, load stream. Thus, for
the waves transmitted from di6'erent points to reach the
target center at the same time, the load stream velocities
for Pd and P, are obtained as ud(r)= cd(r —+z, )'~ Ir
and u, (r)= c,(r +z,—)' Ir by diff'erentiating the above
equations, respectively. Figure 3 shows the contour plot
of Fig. 2(a) and the predicted r versus t load stream rela-
tions whose velocities are Ud and U, . It is seen that veloci-
ties of the optimal surface load streams and of the pre-
dicted load streams are quite well fitted by the velocity
calculations except for a small shift due to the target
volume size. Thus, it has been demonstrated that by ap-
plying minimal surface force the optimal load streams Pd
and P, with velocities vd and U, may achieve an efficient
subsurface acoustic-energy focusing by transmitting
mostly longitudinal and shear motions with constructiue
interference to produce a superposition of both waves in

phase in the target volume at the target time.
The qualitative radial variation of the optimal surface

load and the proportion of the longitudinal to the shear
wave contribution may also be predicted from the
theoretical acoustic radiation pattern for the steady-state
fields. The Fourier transforms of wave front discon-
tinuities in the transient dyadic Green's functions have
the same amplitude as the steady-state solutions, so that
these discontinuities contribute with the same intensity to
the radiation energy. Figure 4 shows the mean intensities
of the longitudinal and shear waves at the center of the
target volume produced by steady-state unit ring loads at
the diA'erent radii. It is seen that the radial variation and
the proportion of the longitudinal to the shear wave con-
tribution are in good qualitative agreement with the op-
timal surface load in Fig. 2(a) except for the dip in the
shear wave at r -0.2, which would be lost taking into ac-
count the finite size of the target volume. Also, we see
that at the target time, almost all of the acoustic energy is
localized in the target volume, however, the maximal en-
ergy density occurs before the target time (at
tIT=0.925). Because of the occurrence of high-energy
density before the target time due to the choice of the
cost function, the yield of the controlled energy focusing
is just 13%%uo. This figure means that only 13% of the ener-

gy input to the surface can be controlled to be focused
into the target volume at the target time.

Figures 5(a) and 5(b) show the same case except for the
m& =0.32 and F2=0.0, so that the objective has been
achieved with only the minimum system disturbance.
Here, the weight factor iu', in Eq. (7a) was chosen as the
time step At. Most of energy is transmitted from the Pd
load stream near the center of the surface as compres-
sional motion [note that the contour interval in Fig. 5(b)
is different from that in Fig. 2(b)]. Apparently this is the
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0.0 0.5
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FIG. 3. The contour plot of the positive constrained optimal
surface load in Fig. 2{a) and the predicted load r vs t relations
that transmit the waves to the target center at the target time
with the respective velocities cd and c, . The corresponding ve-
locities vd and v, are obtained by the slope d~/dt. It is evident
that the Pd and P, load streams transmit mostly corresponding
longitudinal and shear motions.

FIG. 4. The mean intensities of the longitudinal and shear
waves at the center of the target volume produced by the
steady-state unit ring loads as a function of radius from r =0 to
1. The solid curve is for the longitudinal wave, while the dashed
curve is for the shear wave. It shows good qualitative agree-
ment with the optimal surface load in Fig. 2(a) except for the
dip in the shear wave at r -0.2, which may be ascribed to tak-
ing into account the target volume size.
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B. Control without a positive load constraint

When we remove the positive constraint from the op-
timal surface load conditions, the role of the cost func-
tion for the total surface force will decrease relatively due
to the fact that we may exert smaller positive and nega-
tive load values instead of large positive ones to transmit
the energy into the system efficiently. Figures 7(a) and
7(b) show the optimal surface normal load and its corre-
sponding energy density contour plots for the case
w, =0.0 and w2=1. 0, so that the acoustic energy has
been focused into the target volume only by applying
minimum surface force. By comparison with Fig. 2(a), it
is seen that the magnitude of the optimal surface load is
decreased having both positive and negative values espe-

L

cially for the P, load stream. Also, we notice that the Pd
stream has a significant load value even at radii far away
from the surface center. Figure 8 shows the contour plot
of Fig. 7(a), the predicted load stream r versus t curve at
velocities Ud and U„and the additional line corresponding
to the shear wave velocity c, . It is seen that the optimal
surface load stream Pd and P, shrink to the center with
the velocity vd and v„respectively, and the extrapolation
of the earlier P, load stream moving with the shear wave
velocity meets the maximum values of the Pd load
stream. Thus, the role of P, stream can be interpreted as
(l) producing a concentric surface wave at an early state
as well as (2) directly feeding the acoustic energy into the
half space as bulk motion to be transmitted to a focus in
the target volume. Also, the stream Pd appears to play a
role of feeding energy into the half space through
compressional action by driving down the surface motion
created by the P, stream to the target volume.

When the load is moving with the shear wave velocity,
the surface waves arising at different times will propagate
with a common front. This front moves together with
the leading edge of the load. As a result, the energy
transmitted by the surface waves accumulates in the vi-
cinity of the front of the load. In order to analyze sur-
face wave effects, the radial (u„)and vertical (u, ) surface
displacements due to the optimal surface normal load of
Fig. 7(a) and their contour plots with the additional line

0.0
0.0

1.0
(b)

1.0
t/T = 0.65 t/T = 0.9

t/I = 0.925 D
CC

(L
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C)

t/T = 0.'75 t/T = 0.95

CU

C)

t/T = 0.975

0.0 0.2 0.4 0.6 0.8 1.0

t/T = 0.S5 t/T = 1.0

FIG. 7. (a) The optimal surface normal load without positive
constraint and (b) the corresponding time sequence of optimally
controlled energy density contour maps inside the Al alloy for
u& =0.0 and w& = 1.0. The contour interval is Ae/e~ =0.1, and
the target time is t/T=1. Note that by applying only minimal
surface force most of focused acoustic energy is generated
through compressional action by driving down the surface
motion created by the P, load stream as well as directly
transmitted shear wave motion.

FIG. 8. The contour plot of the optimal surface load without
positive constraint in Fig. 7(a), and the predicted load r vs t rela-
tions, which transmit the waves to the target center at the target
time with the velocity cd and c, . The corresponding velocities
vd and v, are obtained by the respective slope dr/dt. c, labels
the r vs t plot associated with the shear wave velocity. Note
that the extrapolation of the earlier P, load stream with velocity
c, meets the maximum value of the Pd load stream. It is evident
that the surface motion created by the P, load stream is con-
verted by the Pd load stream into a bulk wave to better achieve
the objective.
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corresponding to the shear wave velocity are shown in
Fig. 9. It is seen that the vertical surface displacements
due to the P, load stream shrink to the center of the sur-
face associated with the shear wave velocity c, and have a
large upward (negative value) displacement at t/T-0. 9
and are changed to downward (positive value) displace-
ments by the Pd load stream. The radial surface displace-
ment has a dominant outward (positive value) motion
moving to the center with the shear wave velocity until
t /T-0. 9 when its amplitude is decreased by the Pd load
stream. The load P, also pushes a small inward (negative
value) radial displacement ahead of its motion. The accu-
mulated surface motions are aided in their transmission
to the target volume by the load stream Pd at longitudi-
nal velocity cd. This e6'ect can be easily seen from the en-
ergy contour plots in Fig. 7(b) for times greater than
r /T -0.9.

From the above facts, apparently the most efficient way
of achieving subsurface energy focusing with a minimal
surface force is to generate a concentric surface wave and
eventually transmit it to the target by a Pd compressional
load instead of only transmitting shear wave motion
directly to the target volume by the P, load alone. Figure
7(b) shows that at the target time, most of acoustic ener-

gy is focused in the target volume without any high-

energy concentration occurring before the target time.
However, the yield of the energy focusing processes is
only 27%, but this is still twice as large as the analogous
case in Fig. 2, where a positive constraint was applied.

To increase the yield of the energy focusing further, we
studied the case with w& =0.15 and w2 =0.0, so that the
acoustic energy will be focused only with minimal system
disturbance. The corresponding optimal surface load and
energy density contour plots inside the medium are
presented in Figs. 10(a) and 10(b), respectively. Similarly
with comparison of the positive constraint cases of Figs.
2(a) and 5(a), the magnitude of Pd load stream is in-
creased from Fig. 7(a), so that most of the acoustic energy
is transmitted through the shortest path to the target by
the Pd compressional load stream. The objective is
satisfied at the target time efficiently with 68%%uo of input
energy from the surface being focused into the target
volume at the target time. However, the Pd load is
moderately high and a surface high-energy density region
appears directly over the target.

As a final case, in order to achieve the objective
efficiently without the remaining surface energy localiza-
tion, we chose weight factors m& and wz as 0.07 and 0.6,
respectively. Figures 11(a) and ll(b) show the corre-
sponding optimal surface normal loads and the time se-
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—p.04
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0.0 0.2 0.4 0.6 0.8 $.0

FIG. 9. The radial (u„)and vertical {u,) displacements due to the optimal surface normal load in Fig. 7c,a) and their contour plots
with the additional line corresponding to the shear wave velocity c, . It is evident that surface motions due to the earlier P, load
stream shrink to the center of the surface with velocity c, and are eventually transmitted to the target by the Pd load stream.
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FIG. 10. Same as Fig. 7 except for w& =0.15 and w2=0. 0.
The contour interval is 0.1. Note that with only the minimum
system disturbance cost, most of focused acoustic energy is gen-
erated by the longitudinal motions due to the highly concentrat-
ed surface load near the center of the surface.

FIG. 11. Same as Fig. 7 except for w, =0.07 and w2=0. 6.
The contour interval is 0.1. Note that by applying a surface
force as small as possible with relatively small system distur-
bance, the objective is achieved by the cooperation between
those loads in order to enhance the energy efFiciency with
moderate surface force.

quence of the optimally controlled energy density con-
tour plots inside the medium, respectively. It is seen that
the optimal surface load has the same magnitude of the
Pz load stream as Fig. 7a; however, the P, load is now
larger. As a result the cooperation between these 1oads is
enhanced to produce an energy focusing efficiently of
42%%uo. Thus, we have shown that with reasonable choices
for the weight factors of the cost functions, subsurface
acoustic-energy focusing may be achieved efficiently with
relatively minimal surface force and simultaneously
minimal system disturbance.

V. CONCLUSION

In this work optimal-control theory has been applied
to design optimal dynamic norma1 loading of a homo-
geneous elastic solid for interior acoustic-energy focusing
in a local target volume by applying a balanced minimum
of surface forces and the smallest system disturbance. It

is seen that the optimal dynamic surface loads, which
lead to successfully achieved objectives with very high
yield, are not simple intuitive structures. Although some
intuition into the operative physical processes could be
gained with hindsight, the necessary subtleties arise due
to the acoustic-wave interference nature of the control
process. The optimal surface loads need to be carefully
tailored in order to increase the controlled efficiency of
the process by the proper contribution of longitudinal,
shear, and surface waves. Thus without consideration of
tailored coherence, one would at most expect only a very
small percentage of input energy to result in the target
volume. In contrast, our optimal designs achieved up to
65% of the energy in the target. Also, in comparison
with a scalar control field alone, the acoustic vector field
has much greater ability for achieving the objective.

The work presented here can be extended to other
types of objectives involving displacements, tractions,
and/or strains either in the solid body or on one of its
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bounding surfaces. The adoption of new appropriate cost
functions and the choice of the weight factors gives the
Aexibility to take into account practical constraints.
Given the acoustic-wave velocities, it may be possible to
design a constrained optimal surface load having a
chosen functional form with a set of parameters to be
determined. For applications such as interior heating,
melting, annealing, bonding dissimilar materials, and
stopping crack propagation, a coupled thermoelastic
optimal-control problem is underway in which heat
transfer and elastodynamics are treated in a coupled way.
The presence of solid defects may also be included to pro-
duce a stochastic control problem. Robustness demands
can be included in the design process to assure that the
results are minimally sensitive to system uncertainties or
errors in load generation. The work in this area is only a
beginning, but the results are promising for practical ap-
plications.
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dinal and shear wave velocity, respectively.
The resultant stresses o.„ando,„canbe related to the

displacements by

BQ„Q BQo„=k + + +2p
Br r Bz az

(A3)

ur ~uz
o'zr p g

+ (A4)

The boundary condition for the ring load takes the form

1
o „(r,O, t ) = 5(r —a )H(t ), o.,„=O,

27Tr

and the initial conditions appear as

(AS)

P(r, z, O) =P(r, z, O) =g(r, z, O) = I(1(tr, zO) =0 . (A6)

Solutions of the wave equation Eq. (A2), which satisfy
the boundary and initial conditions may be calculated by
using Laplace and Hankel transformations and give the
Laplace-transformed displacements as

uj (r,z,p)= f M (k,p)J&(kr)JO(ka)e kdk,
0

(A7)

APPENDIX: GREEN'S FUNCTION FOR A RING LOAD

An elastic half space occupying z ~0 of cylindrical
coordinates (r, O, z) is subjected to a ring load
(1/2vrr)6(r —a)H(t) normal to the surface z=O, where
H(t) is the Heaviside unit step function. Since the load
and the medium possesses axial symmetry with respect to
the z axis, the displacement field u will also be axisym-
metric. Therefore, of the three components (u„,u e, u, ) of
the displacement field, uo vanishes, and u„and u, are
given in terms of the Helmholtz potential p and 1tj by

for a=d, s where 13=0 if j=z and P= 1 if j=r, and

M d(k, p ) =kno ll1i, M„,(k,p ) = —2kndn, /X,
M,d (k,p ) = nd no/l1l, M„(k,p ) = —2k nd IX,

n =(k +p /c )' n =(k +p /c )'

no=(2k +p /c, ), N=2vrpp(no —4k ndn, ) .

From the well-known relations for Bessel functions,

(A8)

(A9)

BP BP BP + 1 B(rg)
Br Bz ' Bz r Br

(Al) Jo(kr )Jo(ka ) = f Jo(kR )d(p,
277

(A10)
Here we write 1tj rather than pe because for axially sym-
metric motion the vector potential g only has a com-
ponent 1tjo. The two potentials satisfy the wave equations,

J (kr)JO(ka)= f J (kR) d(p,2' R

where

~2~
c2 Qt2 r~ c2 Bt2

(A2) R =(a +r —2ar cosy)'~ (A 1 1)

where the constants cd and c, correspond to the longitu-
I

The Laplace transformed displacement can be rewritten
using Cagniard's method as

u (r z p)= f dq&f (r y)f f K (q co)e d dqd~, (A12)

where

K„d(q,co)= 1qmo/L, K„,(q, co)=—2iqmdm, IL,
,K( dc')=m dmo/, LK„(q,co)= 2md(q +co )/—L,
„=(q2+~2+1)12 m (q2+~2+l2)1/2

mo=(2q +2' +l ), L=~ cdp[mo 4(q +co )mdm, j,—

(A13)

(A14)

r —a cosy
r g ' z

cs
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To evaluate Eq. (A12) by performing a contour integration in a complex q plane, we follow the same procedure used by
Gakenheimer. After inverting the Laplace transform, one finds the longitudinal motion as

dq~
uj&(r, z, t)= f dpfj(r, p)H(r 1)—f Re KJ&(q&, co) de,

2m 0 dt
(A15)

where

qq=(r r—q)'~ z/p+irR/p, p =z +R
(A16)

Tz =2—1, r=czt Ip, 1 g
—Cg +1

Similarly, the equivoluminal motion becomes

T lq
u, (rz t)= f dtpf~(ry) H(r l)f —Re K (q„co) dco

2~ 0 dt

dq, ~+H(r r,&)H—(r,'z r)H(l—p/R )
— Re K~, (q,&,co) de (A17)

where

q, =(r —r, )' z/p+irR/p, q& = —i(r, —r )' z/p+irR /p,
T, =r l, T,q =—[(r rq )p—lR + 1] —1,
r, =co +l, r,~ =R /p+z(l —1)'i /p, r,'q =(l —1)' plz,

0, for ~,„«&I
A,~= ' T„for I &~&~,'~ .

(A18)

The second term in Eq. (A17) represents the equivoluminal motion behind the head wave front at r=r, z for p/R ( l,
which is generated by the surface interaction of the longitudinal wave front at ~= 1.

All of the Green s functions of this work involve an integral that must be evaluated by numerical methods. The in-
tegrands contain a singularity at each wave front. Although it is an integrable singularity, it may lead to numerical
problems. With a simple transformation of variables one can avoid this problem. For example, the substitution
co=(r —1)'~ —

rl in Eq. (A15) gives '

(P ) )1/4
u z(r, z, t)= f dy f (r, y)H(r 1)f R—e[K z(qz, co)Q&)dr),

&P —m' 0

which no longer contains a singularity and where

Q&=r[2(r —1)' —g ]
' z/p+irlR Ip .

(A15')

(A 16')

Then, the integrals can be readily evaluated with standard quadrature methods. The Green s function for the 5-time
function ring-load can be written by diff'erentiation with respect to time as

Gz, (r, z, t;a ) = (u.&+u., ) .=a
R, jz at

(A19)

It is also apparent from the form of the Green's functions that after the integral has been evaluated numerically it must
be diff'erentiated with respect to time. However, in most cases the numerical diff'erentiation of the Green s function can
be avoided using the convolution properties.
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