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Pressure dependence of the structural properties of a-quartz near the amorphous transition
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Silicon dioxide exists in a number of structures. The lowest-energy structure is that of a-quartz. We
predict the structural properties of a-quartz as a function of pressure via total-energy calculations. The
calculations are based on recently developed pseudopotentials constructed within the local-density ap-
proximation. In addition, we examine the structural properties of a-quartz near an order-disorder tran-
sition. Quartz undergoes a gradual transition with pressure from a crystalline to an amorphous state.
The driving mechanism for this pressure-induced transition is not well understood. We suggest that
highly unfavorable interpolyhedral oxygen-oxygen distances, which occur in o;-quartz at the transition
pressure, play a key role in driving the transition.

I. INTRODUCTION

Si02 is one of the most difficult materials to describe
theoretically. Si02 occurs in a wide variety of forms
with only small energy differences between the phases.
The multitude of structures and the small energy
differences between structures demand that theoretical
methods possess high accuracy for structural predictions.
Most SiOz polytypes have a tetrahedral unit of Si(04)»z.
Each Si atom is surrounded by four 0 atoms with the
0—Si—0 bond angles being very close to the ideal
tetrahedral bond angle of 109.5. The tetrahedral units
are joined by bridging 0 atoms. Small variations in the
Si—O—Si angles tend to dominate the structural
differences between polytypes, e.g., coesite and a-quartz.
In term of total-energy differences, these differences can
be on the order of 0.01 eV/atom or less.

Adding to the problem of structural determinations,
the Si—0 bond combines strong ionic and covalent bond-
ing, and lone-pair oxygen orbitals are present. It is
difficult to treat such systems quantum mechanically as
correlation energies are large. Care must be used in
choosing a basis and obtaining a self-consistent potential.
Rather than treat the problem by a direct quantum-
mechanical approach, many workers have chosen to con-
struct more empirical approaches to the structure of sili-
cates. For example, one might envision constructing
empirical interatomic potentials to model structural ener-
gies of Si02. Unfortunately, simple interatomic poten-
tials for Si02 are difficult to construct. The covalent
component of the Si—0 bond does not avail itself to sim-
ple ionic models. Covalent contributions are known to
play an important role in determining the bond angles:
Simple pairwise forces do not reproduce the 0—Si—0
bond angles even qualitatively. Another problem with
this model centers on the fact that 0 does not exist as a
free species. Models which treat Si02 as Si4+0

2 have

ill-defined reference points with respect to isolated
species.

We note that not only is Si02 of theoretical interest, it
is one of the most technologically useful materials.
Widespread applications of Si02 range from glass to
silicon-based microelectronic devices. One of the pri-
mary reasons for the use of silicon in electronic devices is
the passivation properties of Si02. Si02 is electronically
inert, and its encapsulation properties make it the materi-
al of choice. GaAs possesses some electronic properties
which are more desirable than Si, e.g. , higher mobilities.
However, GaAs cannot be oxidized to produce similar
passivation properties.

Given the complexity of the Si—0 bond, it may not be
too surprising that Si02 exhibits an unusual order-to-
disorder transition under pressure. Hemley et al. report
that a-quartz undergoes a gradual transition from a crys-
talline to an amorphous form at approximately -30
GPa. More recent work by Hazen et al. has suggested
that there is evidence for the onset of this transition at
even lower pressures. From their study on single crys-
tals, as opposed to powdered samples, they noted at 15.3
GPa that peak broadening occurred to the extent that
weak peaks were difficult to measure. The peaks
remained broad on release of pressure even though the
"crystal was neither crushed nor otherwise mechanically
damaged. " They interpreted this irreversible crystal de-
gradation in a quasihydrostatic medium as evidence for
the onset of amorphization. The powder measurements
show no such trends until -20 GPa. Such amorphiza-
tion transitions occur in other oxides, e.g. , in ice and
AIPO4. In AIP04 the problem is compounded by a
glass "memory" phenomena. Upon the release of pres-
sure, the glassy AIP04 reverts to the previous crystallo-
graphic orientation of the crystal from which it forms.

Here we concentrate on SiOz in the cz-quartz structure.
A common interpretation for the structure of many
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forms of Si02 is that the key structural unit consists of
Si(04)&&2 tetrahedra. These tetrahedra are preserved as a
function of moderate pressure. However, the orientation
of the tetrahedra and their role in the order-disorder
transition are not well understood. Several structural
studies ' ' of a-quartz exist as a function of pressure,
but experimental uncertainties become very large near
the order-disorder transition. While theoretical
methods' have been applied to the structural proper-
ties of Si02 as a function of pressure, these methods have
often concentrated on molecular analogs as opposed to
the crystalline state. ' ' Even if these models include
many-body forces, they have not been able to describe the
pressure dependence of the bond angles and lengths in +-
quartz. A few solid-state calculations exist, ' ' ' but
these have been limited to examining the electronic prop-
erties or ambient pressure structures.

We employ recently developed ps eudopotential
methods to describe subtle changes in the structure of 0.'-

quartz as a function of pressure. The only input into our
calculations is the atomic number of the species present
and the crystal symmetry. Our procedure, while compu-
tationally intensive, has the advantage of including the
many-body forces and hybridization changes as a func-
tion of pressure directly via quantum-mechanical calcula-
tions. We find that we are able to predict the subtle an-
gular and bond-length changes with pressure in o.-quartz
which are consistent with the best experimental measure-
ments to date. In addition, we predict the structure of
the crystalline material at pressures considerably above
the order-disorder transition. For example, it has been
proposed that under pressure O.-quartz experiences
bond-angle changes to highly strained geometries. To re-
lieve such strains, the crystal transforms to a glassy state.
However, such angle changes cannot be directly observed
from experiment and one must rely on extrapolation or
other indirect probes. Theoretical methods can describe
accurately the structural parameters of hypothetical or
metastable high-pressure phases with the same accuracy
as ambient pressure structures. Thus the theoretical
structural properties of the a-quartz structure can be
probed directly in states which cannot be obtained exper-
imentally.

II. COMPUTATIONAL METHODS

A key difticulty in describing the structural properties
for u-quartz is that the unit cell is large for ab init&o cal-
culations. It contains three molecular units of Si02 and
requires the specification of several internal coordinates.
Theoretical determinations of the structural parameters
involves minimizing a multiparameter total-energy func-
tion. This is a primary reason why interatomic potentials
based on molecular-orbital methods are often employed
instead of computing the quantum-mechanical forces for
the solid state. Numerous evaluations of the forces must
be made to ensure that a global minimum of the total en-
ergy has been obtained as a function of the structural pa-
rameters. In previous work the quantum-mechanical
forces have been too complex to evaluate quickly enough

for an accurate search within the parameter manifold. '

In addition to the complex structure, SiOz is dificult to
describe in terms of the electronic interactions present.
The oxygen potential cannot be constructed as a weak
pseudopotential as oxygen has no p states within the ion
core. No orthogonality condition exists for the p states,
and the oxygen potential for this component is much
stronger than the corresponding s states. Silicon does not
present such di%culties as the cancellations for both s
and p states are similar. The large nonlocality in the oxy-
gen potential results in localized p states. In such situa-
tions local bases such as Gaussians are often employed. '

These bases usually result in rather complicated matrix
elements, which can be computationally cumbersome.
Here we use newly developed pseudopotentials which al-
low the use of a plane-wave basis. The matrix which
must be handled via plane waves is larger than the matrix
originating from a local basis, but special techniques can
be used to handle large matrix manipulations.

Our pseudopotentials were generated self-consistently
within the local-density approximation using the method
of Troullier and Martins. This method produces "soft"
pseudopotentials that allow the description of "localized"
states such as the oxygen 2p states with a plane-wave
basis. The oxygen pseudopotential was generated from
the atomic 2s 2p ground-state configuration with radial
cutoffs of 1.45 a.u. for both the s and p components of the
potential; i.e., within this radial cutoff the "pseudo" wave
function may deviate from the all-electron wave function
for the atom. The oxygen d component was neglected
owing to its high energy relative to the atomic 2s and 2p
valence states. For silicon, s, p, and d components of the
potential were included. The radial cutoff for all three
components was taken to be 1.80 a.u. The two pseudopo-
tentials were transformed using the Kleinman and By-
lander separation procedure. As is commonly done, we
take one potential component to be "local" and project
out the remaining components. For example, with the
oxygen potential, the p component was taken as the local
potential and the difference between the s and p com-
ponents is treated as a correction to the local potential.
The higher angular components are handled as if they all
experienced the same potential as the p component. Usu-
ally, the local component is chosen on the basis of in-
creasing the transferability of the pseudopotential.

In the case of a Kleinman and Bylander pseudopoten-
tial, we must make sure no "ghost" states exist for either
the s or p component of the potential. We have verified
this using the theorem of Gonze, Kackell, and Schemer
and by calculating explicitly the logarithmic derivatives
of the wave functions in the energy range of the valence
and lower conduction bands of cx-quartz. The logarith-
mic derivatives also showed that using the p component
as the local potential more closely mimics the missing d
component in oxygen than does the s component. We
took the p component as the local potential in silicon.
No "ghost" states are produced with this potential, in-
dependent of the local component choice. However, the
choice of the p component as the local potential improves
the overall transferability of the pseudopotential. In Fig.
1 we illustrate the ionic pseudopotentials for both silicon
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The coordinates for the three silicon atoms are given by

R(Sii, ))= —u (a+b)+ —,'c,
R( Sl(2) ) =u a

2
R(Si(3) ) =ub+ —c,

and the coordinates for the six oxygen atoms are given by

R(Oi, ) )=xa+yb+zc,

R(O(2) )= (y —x)a —xb+ (z + —,
' )c,

R(Oi3)) = —ya+(x —y)b+(z+ —', )c,
R(Oi4)) =(x —y)a —yb —zc,
R(Oi~))=ya+xb+( —', —z)c,

R(Oi6) )= —xa+ (y —x)b+ ( —,
' —z )c .

(3)

We examined eight volumes and determined the op-
timal internal structure for each case; i.e., we optimized
c/a, u, x,y, z for each volume. In Fig. 4(a) we illustrate
the calculated energy versus volume. A Murnaghan
equation of state was fit to these points and used to deter-
mine the equilibrium energy and volume, the compressi-
bility, and the derivative of the compressibility with pres-
sure. These values are compared to experiment in Table
I. A Birch-Murnaghan form yielded essentially the

same accuracy available as fully quantum-mechanical cal-
culations. '

To define the a-quartz structure, the lattice constants
(c,a) and four internal parameters (u, x,y, z) must be
specified. If we fix a unit-cell volume, then the total
electronic energy of the solid is a function of five parame-
ters, e.g., c/a, u, x,y, z. In terms of the basis vectors, we
have

a = (a /2)(x —&3y),
b = (a /2)(x+ &3y),

0.8-
0

0.7

Pressure (GPa)

15

FIG. 4. (a) Calculated binding energy per molecular unit for
a-quartz. The energy is referenced to the free atoms. The
volume is per molecular unit. The curve is a Murnaghan fit to
the calculated points. (b) Equation of state for a-quartz. The
volume is normalized to the ambient experimental volume. Ex-
periment 1 is from Levien, Prewitt, and Weidner (Ref. 8). Ex-
periment 2 is from Glinnemann et al. (Ref. 7). Experiment 3 is
from Hazen et al. (Ref. 4). The solid curve is the theoretical
Murnaghan equation of state from the fit in (a).

same equation of state.
As expected, our cohesive energy exceeds experiment

by —10%%uo, as is normally the case for calculations using
the local-density approximation. In general, the cohesive
energy is a good test of the basis. If the cohesive energy
is less than indicated by experiment, the basis is most
likely poorly converged. We have included spin-
polarization corrections in the cohesive-energy calcula-
tion. For silicon the energy of the pseudoatom is
—101.89 eV, including a correction of —0.65 eV for spin
polarization. For oxygen the energy is —426.60 eV, in-
cluding a correction of —1.51 eV for spin polarization.
To arrive at the binding energy in Table I, we used a heat

Theory
Experiment

35.8
37.9

22.2
19.2

38. 1

-34-37
3.9

-5—6

TABLE I. Equation-of-state parameters for a-quartz. The
experimental value of the cohesive energy is from Ref. 31; the
structural parameters are from Refs. 4, 7, and 8. The volume
and energy are per molecular unit of Si02.

Equilibrium Cohesive Bulk Pressure
volume energy modulus derivative of

(A ) (eV) {GPa) bulk modulus
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for formation of a-quartz of —217.7 kcal/mol, a cohesive
energy for silicon of —106.5 kcal/mol, and a dissociation
energy for G2 of 119.2 kcal/mol. ' We have not adjusted
the experimental values for zero temperature (and zero-
point motion), as would be appropriate in comparing ex-
periment to our theoretical results. The inherent errors
in the local-density theory probably exceeds any errors
present in ignoring the role of temperature. This may not
be true for the structural properties; however, we are not
in a position at this stage to include changes in structure
as a function of temperature.

The structural properties determined by local-density
theory are expected to be more accurate than the
cohesive energy as the cancellation of errors is expected
to be more complete. We find this to be the case as the
equilibrium volume is within -5% of experiment and the
bulk modulus within a few percent. The derivative of the
bulk modulus merits special note. This quantity is very
sensitive to the pressure-range fit and the weighting fac-
tors used. Such problems associated with determining
the pressure derivative of the bulk modulus have been
discussed by Bass et al. Specifically, they note that the
best estimates from the data of Levien, Prewitt, and
Weidner are 40.4+3.3 CxPa for the bulk modulus and
4.5+1.8 for the derivative of the bulk modulus. This is
consistent with the theoretical values of 38.1 GPa and
3.9, respectively. However, other experiments are not en-
tirely consistent with the Levien data. For example, ul-
trasonic data, which is considered more reliable, yields
values of 37.1+0.2 GPA and 6.3+0.3, respectively. We
note that similar differences exist between experiment
and theory for rutile. ' The rutile calculation yields a
smaller value for the derivative of the bulk modulus than
measured by ultrasonic methods. We also note that the
theoretical work is in accord with values of the derivative
of the bulk modulus for other solids, i.e., values which
typically range from —3—5, whereas the values for oxides
tend be larger, i.e., -7—8. At present we have no clear
explanation for these differences. Despite the differences
for the derivative of the bulk modulus, the agreement be-
tween experiment and theory for the volume-versus-
pressure curve is quite good [Fig. 4(b)].
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FIG. 5. Theoretical structural parameters for (a, c) vs the
molecular volume for a-quartz and comparison to experiment.
The volume has been normalized to the experimental volume.
Experiments 1 and 2 are as in Fig. 4.

IV. STRUCTURAL PROPERTIES
AS A FUNCTION OF PRESSURE

In Table II we give the optimized structural parame-
ters for each volume we have investigated. In Fig. 5 we
illustrate the (c,a) parameters as a function of volume
and compare them to experiment. ' ' The behavior of
(c,a) is primarily linear as a function of volume within—10% of the equilibrium. Experimentally, this ratio
changes by -2% from 1.101 at ambient pressure to
1.131 at 10.2 Gpa (or V/VO=0. 841). Theoretically, the
change is less than 1% with the c/a ratio being about

TABLE II. Structural parameters for a-quartz as for a given molecular unit volume. The parame-
ters have been determined on the basis of a self-consistent pseudopotential calculation using the local-
density approximation.

Volume
(A )

44.460
40.508
37.862
34.914
31.860
29.640
27.169
24.701

V/Vp

1.174
1.070
1.000
0.922
0.842
0.783
0.718
0.652

(A)

5.1539
4.9983
4.8861
4.7520
4.6040
4.4929
4.3516
4.2066

(A)

5.7981
5.6171
5.4944
5.3558
5.2067
5.1044
4.9704
4.8347

0.4850
0.4808
0.4688
0.4620
0.4438
0.4270
0.4157
0.4059

0.4359
0.4265
0.4176
0.4100
0.3951
0.3842
0.3717
0.3497

0.2476
0.2551
0.2740
0.2832
0.3081
0.3245
0.3366
0.3388

0.1455
0.1339
0.1184
0.1063
0.0901
0.0836
0.0765
0.0769
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1.125 at ambient pressure and about 1.131 at
V/VO=0. 842. Since the structural parameters (c,a) can
only be predicted to within a few percent, the c/a ratio
cannot be expected to reproduce precisely the small ex-
perimental changes. The primary difference between ex-
periment and theory is for the c parameter as indicated in
Fig. 5. At ambient pressure the experimental value is
5.416 A, and at V/VO=0. 841 the value is 5.207 A. The
corresponding theoretical values are 5.494 and 5.207 A.
The error in c is about 1.4%%uo at ambient pressure and
negligible at the higher pressure.

In Figs. 6 and 7 we present the variation of the internal
parameters (u, x,y, z) with volume. Theory, unlike exper-
iment, can determine the variation of these parameters
for expanded systems, i.e., negative pressures, and for
pressures higher than the transformation pressures. Un-
like the (c,a) parameters, the internal parameters exhibit
a more complex behavior; e.g., the u parameter tends to
saturate quickly at large expanded volumes. Considering
the inherent difTiculties in our calculations and experi-
ment, the agreement between theory and experiment is
very good.

Although these internal parameters define the struc-
ture, the bond angles and lengths are of more physical in-
terest. Experimentally accessible pressures indicate that
the Si—0 bond length is hardly altered with pressure. At
ambient pressure this bond length is approximately 1.61
A. ' ' Within 0.01 A the experimental x-ray work indi-
cates that the bond length remains unchanged, or sightly
shortens, with pressure up to 10 GPa. Our calculations
agree with these results in that we find little change in the
bond length. However, the theoretical bond length does
not contract, but expands slightly between ambient pres-
sure and 10 GPa. This counterintuitive finding is sug-
gested from other experiments. For example, Hemley
has suggested on the basis of his Raman work that at
modest pressures the Si—0 bond may lengthen with
pressure.

In Fig. 8 the bond angles for the Si—0—Si and 0—
Si—0 angles are given and compared to experiment as a
function of pressure (see Fig. 3 for an illustration of the
geometry). In order to establish a common pressure
scale, we have taken the equation-of-state parameters
from Levien, Prewitt, and Weidner and taken the equi-
librium volume from experiment. This assures us that
the unit-cell volumes for theory and experiment are iden-
tical when comparing the bond lengths and angles.

Our theoretical calculations are consistent with the ex-
perimental picture of cx-quartz under pressure. Namely,
with increasing pressure the tetrahedral 0—Si—0 angles
show little variation until about 8 GPa. Above this pres-
sure the tetrahedral angles show considerable distortion
from the ideal value of 109.5'. For example, the predict-
ed values for the largest and smallest angles at 20 GPa
are about 116 and 104', respectively. The bridging oxy-
gen atom between the tetrahedral units forms very pliant
bonds. The variation of the Si—0—Si angle dominates
the differences between the various Si02 polytypes and
among silicate structures. This angle shows considerable
variation with pressure, which is consistent with experi-
ment. Previous theoretical work has not been able to

0.50
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FIG. 6. Theoretical silicon structural parameter u vs the
molecular volume for a-quartz and comparison to experiment.
The volume has been normalized to the experimental volume.
Experiments 1 and 2 are as in Fig. 4.
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FIG. 7. Theoretical oxygen structural parameters x,y, z vs
the molecular volume for a-quartz and comparison to experi-
ment. The volume has been normalized to the experimental
volume. Experiments 1 and 2 are as in Fig. 4.
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FIG. 8. Theoretical bond angles in o:-quartz vs the molecular
volume and comparison to experiment. The volume has been
normalized to the experimental volume. Experiments 1 and 2
area as in Fig. 4. The bond angles are illustrated in Fig. 3.

V. STRUCTURAL PROPERTIES
NEAR THE ORDER-DISORDER TRANSITION

A primary problem in understanding the order-
disorder transition of a-quartz is that experimental mea-
surements become increasingly difficult near the transi-
tion. Moreover, surface effects can alter the nature of the
transition. ' For example, Hazen et al. find evidence
for incipient amorphization at a lower pressure than
Hemley et al. They suggest that this difference arises
from their use of a single crystal as opposed to a poly-
crystalline sample. Our theoretical methods do not suffer

yield such an accurate description of these bond-angle
changes under pressure. Pairwise interatomic potentials
have been developed to describe the ambient phases of
Si02. These potentials predict the Si—0—Si angle devia-
tion under pressure, but fail to account even qualitatively
for changes in the 0—Si—0 bond angles. These latter
angles are known to be strongly dependent on many-
body, i.e., covalent, forces. The reason that the intera-
tomic potentials work as well as they do for ambient pres-
sure has been attributed to the strong Si—0 bond and the
incompressibility of this bond. Specifically, it appears
that by constraining the Si—0 bond length to be approxi-
mately 1.6 A and preserving the symmetry for a given
crystal structure, many of the structural parameters fol-
low directly.

from such problems. By preserving the crystalline sym-
metry, we can examine cx-quartz in a perfect crystalline
form at, and far above, the transition. The accuracy of
the structural parameters for hypothetical high-pressure
forms is expected to be similar to accuracy obtained for
the ambient pressure case. Therefore, we can determine
accurate bond angles and lengths for pressure regimes
not accessible to experiment.

As a-quartz is subjected to pressure, we expect that
strain fields will be created which are at variance with the
bonding found in ambient pressure n-quartz. Eventually,
the strain will be large enough to drive the crystal into
another form of Si02. While we are not in a position to
address the precise nature of the disordered form of Si02,
we can ask whether the order-disorder transition pressure
can be related to changes in bond angles or lengths.
Hazen et al. have attempted to correlate strains in the
Si—0—Si angle with this transition. They used their
data to extrapolate a value for this angle above —15
GPa. The extrapolated angle is 120 or smaller. More-
over, they noted that molecular-orbital calculations'
suggest a sharp increase of the strain energy with Si—
0—Si angles below 120'. Thus they suggest that quartz
approaches an energetically unfavorable configuration at
15 GPa. The chief driving force for disorder is the small
Si—0—Si angle. We can test this suggestion with our
theoretical work and the previous measurements of +-
quartz under pressure. In Fig. 8 we plot the theoretical
Si—0—Si angle out to approximately 20 GPa. At 20
GPa this angle is approximately 125 . We predict that
this angle does not fall below 120 until a pressure of
above -40 GPa, a pressure well above the order-disorder
transition. Our prediction is somewhat at variance with
the Hazen et al. suggestion, but it is consistent with oth-
er data. "

While the bond-angle behavior may be in question,
there is no similar issue for the 0-0 interpolyhedral dis-
tance. A very useful approach to understanding the be-
havior of a-quartz is to envision the structure consisting
of polyhedral units. Such an approach has led to qualita-
tive predictions of the thermal expansion and bulk
modulus. Within this model the volume of empty voids
in the framework is reduced under pressure and the
compressibility of the crystal structure is much larger
than that of a single tetrahedral unit. It is common to
use the 0-0 interpolyhedral distance as a fiducial mea-
sure of the empty voids between the tetrahedral units in
a-quartz. As O.-quartz is subjected to pressure, the
volume between the tetrahedra rapidly decreases. This is
reAected in the O-O interpolyhedral distance, which is
the most rapidly varying structure parameter. Other O-
0 distances may be shorter and reAect stronger anion-
anion interactions, but they correspond to oxygens bond-
ed via a Si atom.

In Fig. 9 we illustrate the predicted separation distance
as a function of pressure and compare it to experiment.
Specifically, the minimum 0-0 separation between oxy-
gens associated with different tetrahedral units is
displayed. This O-O distance changes from 3.4 A at am-
bient pressure to about 2.8 A at 10 GPa. One can con-
trast this large change in distance with the Si—O bond
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Nonetheless, it is interesting to speculate that such a
structure might be conducive to forming an amorphous
state. In the ideal cubic-body-centered arrangement of
the oxygen anions, two types of tetrahedral structures
occur: both of similar structure, but one with a silicon
cation and one without. If the energy to switch silicons
from a "filled" tetrahedral structure to an "empty"
tetrahedral structure is small, then the barrier for a ran-
domly arranged tetrahedron with and without a silicon
cation might be small. It might be possible even in the
nonideal form of this structure to have a low barrier to
place randomly silicon atoms in the tetrahedral units and
produce an amorphous phase.

FIG. 9. Minimum O-O interpolyhedral distance vs pressure
as predicted and measured for n-quartz. Experiments 1 —3 are
as in Fig. 4.

0

which changes less than 0.01 A over a similar pressure
range. The experimental and theoretical data in Fig. 9
both suggest that the distance is less than 2.75 A above
—15 GPa. This value of 2.75 A is significant according
to Zemann. Through an exhaustive search of the crys-
tallographic literature, Zemann has concluded that the
shortest known interpolyhedral distance in silicate materi-

0
als is 2.75 A and occurs in Be2Si04. We note that at pres-
sures which exceed —15 GPa, the interpolyhedral dis-
tance in a-quartz falls below the shortest known distance
occurring in nature. We suggest that the primary driving
force for the order-disorder transition is not the bond-
angle deviation in u-quartz, but the unphysically short in-
terpolyhedral distance which occurs above 15 GPa. Our
suggestion is consistent with the Hazen et al. finding of
incipient amorphization occurring at pressures near 15
GPa.

We also note that Sowa has shown recently that a
geometric consequence of extending the trends observed
for the compression of Q.-quartz is a transition to a body-
centered-cubic arrangement of the oxygen anions. Sowa
predicts that the structural parameters for this ideal
structure should be c/a =&3/&2=1.225 with the oxy-
gen parameters given by x= —,', y= —,', and z= —,'. At the
smallest volume we examined, ( V/V0=0. 652) or at a
pressure of -80 GPa, we find c/a=1. 149, and for the
oxygen parameters, x=0.350, y=0.339, and z=0.077.
Our oxygen parameters at high pressure agree very well
with Sowa s suggestion, but the c/a ratio is significantly
smaller than what one might expect for the ideal case.
The pressure to achieve this hypothetical structure is far
above the amorphization pressure for a-quartz.

VI. CONCLUSIONS

We note that this is an ab initio theoretical examina-
tion of 0;-quartz under pressure. Only recently have
theoretical methods developed to the point of providing
the accuracy and speed necessary for this type of calcula-
tion. Because we can maintain the symmetry of the crys-
tal in our theoretical work, we can investigate a-quartz
above the amorphous transition. Unlike experiment,
which may exhibit large scatter in the structural parame-
ters near the order-disorder transition, we lose no accura-
cy in our theoretical parameters near, or even far above,
the transition pressure. Moreover, we can also predict
the structural properties of o.-quartz under large negative
pressures.

With respect to the order-disorder transition, we sug-
gest that the 0-0 interpolyhedral distance, which shows
large variations with pressure, is a key mechanism in the
transition. The shortest known O-O interpolyhedral dis-
tance is about 2.75 A, which occurs for Be2Si04. Our cal-
culations predict that above —15 GPa, this interpo-
lyhedral distance approaches the shortest known value.
Thus we might expect the o.-quartz structure to become
increasingly less stable when compared to other struc-
tures. The work of Hazen et aI. , which suggests inci-
pient amorphization at a pressure as low as 15 GPa, is
consistent with our suggestion.
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