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The interaction of a charged particle with a semi-infinite medium bounded by a flat surface is analyzed
as a problem of metal optics. The reflection at the surface of the electromagnetic fields excited by the
passing beam is investigated including retardation and spatial dispersion in the hydrodynamic approxi-
mation. The soft decay of the electron density at the metal-vacuum interface is modeled. Using mea-
sured values of the dielectric function, the calculations are found to agree with experimental results of
electron-energy-loss distributions for Ag targets in interaction at a distance. Further predictions of the

theoretical model are discussed.

I. INTRODUCTION

The analysis of the interaction of energetic electrons
with polarizable materials provides interesting informa-
tion about the collective response of the electronic system
in the exposed media. Constant improvements in the ex-
perimental techniques, both at high electron energies'
(~100 keV) and at low energies® (~1 keV), often raise
questions that existing theory is unable to answer com-
pletely. Even in the conceptually simpler experiments
where only aloof electron trajectories are monitored, and
little interference from bulk effects is expected on the
measurable electron energy losses, the variety of target
geometries investigated experimentally’ (planar targets,
cubes, spheres, cylinders, etc.) pose difficult problems for
the theoretical modeling.* The situation is further com-
plicated by the fact that a complete description of the
electromagnetic response of the medium is not always
available for those geometries. It is in this context that
we believe that a different theoretical approach to the
analysis of beam-surface interactions may be valuable.

The calculation of the energy-loss spectrum and the
stopping power for charged particles that are moving
near conducting surfaces is treated here as a problem in
metal optics. This approach is different from other treat-
ments in the literature on aloof beam-surface interac-
tions. The stopping power will be related to the
reflection coefficient at the surface, appropriate for plane
waves emanating from the moving charge. The reflection
coefficient is calculated in the hydrodynamic approxima-
tion, which is capable of including in a straightforward
manner the excitation of charge-density perturbations
near the surface, the damping of plasma waves, the exci-
tation of band transitions via a measured dielectric func-
tion, and the retardation of the field propagation due to
the finite velocity of light. A similar calculation was re-
cently published for the jellium model.® There exist
several publications that study the response of the elec-
tron gas at a jellium surface.® These calculations demon-
strate that, in jellium, the mechanism for energy absorp-
tion near the surface is caused by breaking of translation-
al symmetry at the surface. But it has been shown®°
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that the frequency dependence of the absorption proba-
bility is determined mainly by the behavior of the elec-
tromagnetic field derived via the bulk dielectric function
including the collective excitations, and not by matrix-
element effects or by the surface-induced Friedel oscilla-
tions. These results justify the use of the hydrodynamic
approximation, which treats these fields correctly, in an
attempt to study the response of Ag surfaces, which can-
not be treated as jellium. With this approach we are able
to use the measured bulk dielectric function e€(w) as a
basis for the surface response.

In a previous paper!® some of us have reported energy-
loss measurements of low-energy (30—1200 eV) electrons
which have passed through microchannels of =~20-200
nm in diameter in thin Ag foils. The dominant structure
in the loss-probability curve was a peak around the sur-
face plasmon energy at 3.6 eV. As the present calcula-
tions will show, the energy-loss probability per unit path
length traveled by the electron decays so strongly with in-
creasing distance from the surface that the losses occur at
distances to the surface which are small compared to the
diameter of the channels. Therefore, the curvature of the
channel walls is considered unimportant for the under-
standing of the measurements. In Ref. 10, the analysis of
the experiments was carried out under the following main
approximations: (a) the electrons are coupled instantane-
ously to the charges induced on the metal (neglect of re-
tardation), (b) the induced charge is a singular surface
charge, and (c) the bulk of the metal is free of induced
charge. Assumptions (b) and (c) are implied by the
neglect of spatial dispersion, whereby one describes the
response of the metal by a dielectric function which is in-
dependent of the wave vector of the exciting field. It has
been shown® that retardation effects are important for the
electron energy of interest in the experiments mentioned
above.!?

In this paper, we lift approximations (a), (b), and (c).
In essence, we find that the dispersion of the surface
plasmons shifts the main energy loss peak, which
represents a weighted average over the surface-plasmon
density of states, to higher energies, actually higher than
the measurements show. In order to explain the mea-
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surements, the soft decay of the metal charge density at
the surface has to be taken into consideration. This effect
is caused by the well-known finite screening length of the
electron gas.!! The smoothness of this density drop can
be extended by microscopic roughness, which, by averag-
ing laterally, can be modeled as a metal layer of lower
electron density. Our calculations show that such a mod-
el shifts the energy-loss peak to lower frequencies. This
conclusion also helps in understanding the fact that the
peak position found experimentally was dependent on the
condition of preparation of the perforated Ag films. The
effect of roughness on the measured electron-energy-loss
spectra has been discussed recently.?

In the following section, we derive the energy-loss
probability per unit path length for an electron flying
parallel and external (aloof) to a metal surface, including
spatial dispersion in the hydrodynamic approximation,
and also including retardation in the calculation. In Sec.
III, we compare the theoretical results with the experi-
mental data, and some model predictions are presented.
Some conclusions follow in Sec. IV.

II. ENERGY LOSS OF A TRAVELING CHARGE

Take a particle of charge q traveling outside a semi-
infinite dielectric medium and parallel to its surface, Fig.
1. If x is the direction of motion, the stopping power of
the particle, or energy loss per unit path length traveled,
is

aw
27 —E 1
o 9Ex (1)

with W the energy of the particle, and E, the x com-
ponent of the reaction electric field at the location of the
particle. This part of the total electric field is due to the
charges induced in the metal by the bypassing charge ¢
and is calculated under the assumption that the particle
velocity is constant during the interaction. Ordinary cal-
culations of the stopping power in aloof electron-solid in-
teraction are based on the semiclassical dielectric ap-
proach.>!2-!% In this paper, the calculation of E, will be
considered as a problem of metal optics. The charge
moving above the metal surface is a source of fields ac-
cording to Maxwell’s equations. These electromagnetic

q
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FIG. 1. The induced charge density near the moving elec-
tron.
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waves impinge on the metal surface with which they in-
teract and, after reflection, form the induced field at the
location of the charged particle. Due to the negative x
component of the induced field, the particle is slowed
down, Fig. 1.

The metal occupies the half-space z <0. If r=(x,y,z)
is the position vector of the charge and R=(x,y,0) is its
x-y projection, a charge with density

p(r,t)=q8(R—vt)8(z —2z,)

moves in vacuum with velocity v=(v,0,0) and at a dis-
tance z, from the metal surface (see Fig. 1). The moving
charge carries with it a field in vacuum which is given by

E-(K =__49 |@o_
oK,z2,0) 27A sz k
XexpliM|z —zy|)8(w—K-v) ()

with ¢ the velocity of light, k=(k,,k, ,tA’) a wave vec-

tor, (k,=MA" for z>z,, k,=—A" for z<zy),
K=(kx,ky,0),and
) 172
A=+ %—KZ] : 3)
c

In Eq. (2) we operate with the two-dimensional Fourier
transforms of the fields, which are defined by

Eo(r,0)= [dK [do e ®R™E(K,z,0) . (@)

Equation (4) represents the particle field as a superposi-
tion of plane waves incident on the metal surface. We
decompose these plane waves in linearly polarized waves,
which are parallel or perpendicular to the plane of in-
cidence, p or s waves, respectively. The s-polarized com-
ponent is perpendicular to both k and u, (the normal to
the target surface),

Ey, =(Ey-u;)u, (5a)
with
_ kXu, |k, k, (5b)
% kx| |k K|

and the p-polarized component is parallel to a plane con-
taining the z axis and the vector K,

(Eo'K)

=E,—Eo,=— 5 K+E, . (5¢)

EO P

P
Each component of the field is reflected by the surface.
In terms of the reflection coefficient r,, the amplitude of
the s-polarized component of the reflected field at the sur-

face is
A,=rE, (z=0). (6)

The z component of the electric field of the p-polarized
wave is reflected with an amplitude

A,=r,E, (2=0), (7)
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in terms of the reflection coefficient r,, while the ampli- Exploiting the fact that E; is divergence-free outside the
tude of the component which is tangentlal to the surface metal, we eliminate E,, from Eq. (9),
is determined by’
A A4,= ke + +
Ap,tg:——FAsz . (8) x K2 (rS rp )EOZ rsEOx . (9)

With 7, and r, given, the x component of the induced  The x component of the total induced field is
field sums up to

K, E (r,))= [dK [dwe®RTV2700 4 (K, 0). (10)
_EOykx)_—KTrpEOz .

x px

ky
A, .= Asx + A4 —_—Frs(EOxky

Equations (1)-(3), (9), and (10) combined yield the stop-
9) ping power

r

(11)

2
)”( +r,)+ 1‘1-”—

A 2

2iM'z
dx 2m} fdk Jodwe ™ -

with the integrand evaluated at k, =w/v. From the requirement that the real incoming field is reflected into a real out-
going field, it follows that

rop( =K, —w)=r}(K,0) .

k,=w/v

We take A'= —iA, or
172

K?— , (12)

2
_ 3}
A= 2

c

which is a real quantity for k, =w /v, and realize that r, and r,, for fixed k, and w, must not depend on the sign of k.
These arguments together allow us to finally write

dW _ 2g% = o -2z A 1 v?
_W_;v—zfo fo dk,dowe Tm —F(rs-i-rp)—i“)t[l—:z— r ‘o (13)
with the integrand still evaluated at k,=w/v. The o= A=k ,
Fourier coefficient in the frequency expansion of Atk (15)
—dW /dx is interpreted as the probability of losing ener- _ er—k
gy in the interval (%w,d(%w)), per unit traveled path T etk
length,
& with A defined in Eq. (12), e=¢€(w), and
172
_dW _ e d’p k= |K2—e? (16)
———d(fiw) . 14) - 2
dx fo ﬁwdxd(hm) (fic) ( ¢

Now, if retardation is neglected (¢ — ), it follows that
The excitation probability per unit path length is the

quantity that we shall compare with experimental data. A=k=K=(k}+w*/v})?,
The problem of the interaction between the traveling

charge and the metal surface has been reduced to the cal- and

culation of the reflection amplitudes for the plane waves

emanating from the charge. If we neglect spatial disper- dwW

sion, we can immediately make use of Fresnel formulas,
which, in our notation, read'”

aw _2q° - _e—1
dx g2 fo dwwlm{ }KO » a7

e+1
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a result that was first reported by Echenique and Pen-
dry.!® This is the expression used in Ref. 10 in the com-
parisons with experimental data. K, is a zeroth-order
Bessel function.!®

In this work we include spatial dispersion in the
response of the metal, and also retardation effects. In the
calculation of the reflection coefficients we include spatial
dispersion, in the so-called hydrodynamic approximation.
The hydrodynamic approximation, whereby the frequen-
cy and wave-vector-dependent dielectric function €(w,k)
is approximated up to terms in k2, includes the excitation
of charge-density perturbations in the metal, the damping
of plasma waves, the excitation of band transitions via
measured €(w), and the retardation of the field propaga-
tion. Maxwell’s equations have, within this approxima-
tion, the (longitudinal) plasma waves as additional homo-
geneous solutions to the general solutions inside the met-
al. At an interface between homogeneous media, the gen-
eral solutions in each medium are matched by additional
boundary conditions. The capabilities of the hydro-
dynamic approximation can be seen from a comparison
of the fields near the surface with those derived from mi-
croscopic calculations.?°

In the hydrodynamic approximation, the k dependence
is introduced into the longitudinal dielectric function ac-
cording to an approximation which has been used suc-
cessfully for other optical investigations.!”!® The mea-
sured complex dielectric function €(w) is separated into a
part due to free electrons and a part due to bound elec-
trons. Only the (longitudinal) free-electron system is as-
sumed to show spatial dispersion,

(1)2

h

prEE (18)
The parameter w,,, the plasma frequency of an equivalent
electron gas, is usually determined from a fit of e(w) to
infrared data, with the assumption €,(w)=1 at those fre-
quencies. For Ag, #iw, =9 eV, which corresponds to one
electron per Ag atom. The parameter 3 has been mea-
sured!® for Ag to amount to 8=2.57 X 102 m?/s2.

In order to model the soft decrease of the charge densi-
ty at the surface due to the finite screening length of the
electron gas and due to surface roughness, we assume (see
Fig. 2) a surface layer of thickness d (=~3-6 A) with

€lo,k)=¢,(w)—

", 7/ _—
i mimi

-

Zz

FIG. 2. Our surface model. The charge g moves at a distance
zo from a surface layer of density n, located on top of the bulk
of the metal of density n,.
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smaller free-electron density ng, i.e., with parameters
wl=owkin,/ny and B,=P(n,/ng)*>. n, is the bulk elec-
tron density. This two-step surface model also allows us
to investigate the response of metal layers deposited on a
substrate.” At the interface of the homogeneous regions,
boundary conditions are needed to match the homogene-
ous solutions.*2°

After having specified our surface model for the spa-
tially dispersive metal, it requires the solution of a system
of seven linear equations to find the amplitude of the
reflected wave in the case of p polarization in the two-
step model. The derivation of 7, and r; is described in
detail in Ref. 9 and the resulting expressions will be given
in the Appendix for the vacuum-metal case and for the
two-step model of the electron density near the surface.
If one takes the limit of an abrupt surface, and neglects
spatial dispersion and retardation (d —0, u— o, and
¢ — ) in the expressions obtained with this more general
approach (see the Appendix), one retrieves the expression
in Eq. (17) for the stopping power. The electrostatic re-
sult in Eq. (17) will be used as a reference in our discus-
sion.

III. ANALYSIS AND COMPARISON
WITH EXPERIMENTAL RESULTS

We shall investigate the dependence of the excitation
probability d2P /[dx d (#iw)] defined by Egs. (13) and (14)
on the distance from the surface, the energy of the parti-
cle, and the parameters of the metallic surface layer. We
shall also compare the different approximations which
have been derived for r; and r,, and the influence of re-
tardation on the energy-loss process.

We compare in Fig. 3, for the case of a sharp interface
(d =0), for two electron energies and for z,=10 A, the

0.5
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FIG. 3. The energy-loss intensity calculated with ( ) and
without (— — —) spatial dispersion for two energies 9f the in-
coming electron. For a sharp-step surface and z, =10 A.
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excitation probability predicted by the model which in-
cludes spatial dispersion in the response of the medium,
with the limit evaluated in Eq. (17). It is found that the
effect of spatial dispersion is to shift the energy-loss peak
to higher energies. The surface plasmon frequency w,(k)
is given by the zero of N4, in Eq. (A4) in the Appendix,
but this dispersion is neglected in the calculation that
leads to the result in Eq. (17). Without spatial dispersion
being accounted for, all surface plasmons lie at the fre-
quency g, given by the zero of the denominator in the
loss function in Eq. (17), i.e., by €(w,y)= —1, while the in-
clusion of the k dependence in the dielectric response
leads to the (linear) increase of w; above w,,, with grow-
ing k. The shift of the loss peak becomes smaller with in-
creasing velocity of the charged particle because the rela-
tion k, =w /v carries the weight for surface plasmon exci-
tation toward smaller values of k_; that is, toward fre-
quencies which are closer to w,. The position of the res-
onance peak does not change with the distance from the
electron to the surface as we shall see below.

The measured peak is at a lower energy than the peaks
calculated for a surface with a sharp electron-density
step. In order to bring the calculated peak position to the
measured peak, it has been argued that the density gra-
dient of electrons near the surface and surface roughness
lower the resonance energy. In Ref. 2 the roughness has
been modeled by spheres the size of which was adjusted
and averaged. The model used here simulates the soft de-
crease of the free-electron density leaking out of the posi-
tive background.!! The model consists of a layer of re-
duced density on top of the bulk density (Fig. 2), there-
fore approximating the density gradient by two steps.
This model was successful previously.”?® The parameters
of the selvedge (d in A and n, /n, see Fig. 2) can be inter-
preted as also accounting for some averaging over rough-
ness.

Figure 4 shows the dependence of the loss spectrum on

G

c

5| s,=(5,05)
o | S,=(6,05)
8| s2=(7,05)
> S,=16,06)
G | S.=(6.04)
[

k5

<

25 27 29 31 33 35 37 39 41 43
Energy Loss (eV)

FIG. 4. The dependence of the loss spectrum on the model
parameters of the surface density step. All curves normalized to
the peak value. The electron energy is 900 eV, and z,=10 A.
The step parameters are d in A and ng/ng.
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the parameters of the soft-surface model. The shift in the
peak position depends essentially on the decrease in total
charge in the surface layer, Ao =d(n,—n,). The peak of
the loss distribution is shifted toward lower energies
whenever the width of the surface step increases for a
given reduced surface density, or when the density is de-
creased for a given layer thickness.

Intensity (arb. units)

2.5 3.0 3.5 4.0

Energy Loss (eV)

4.5

Intensity (arb. units)

P

2.0
Energy Loss (eV)

PR
3.5

FIG. 5. Dependence of the loss spectrum on electron dis-
tance from the surface. (a) Decrease of loss intensity. (b) The
same shape for all distances. Step parameters: 6 and 0.5,
E,;,=900eV.
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For reasonable values of the parameters d and n, /n,,
the best fit of the calculated peak position with the exper-
imental data of Ref. 2 is obtained for a surface step 6 A
wide, with half the bulk density (6]/0.5). This set of pa-
rameters is to be adopted in the following calculations.
Furthermore, all theoretical curves, except those in Fig.
3, are broadened with the experimental resolution of
Refs. 2 and 10.

Next we study the dependence of the loss distribution
on the distance z, from the particle to the surface. We

M T LA AL R AL A L B A
(a)
73 EEMn
——
c 1500 eV
- |
i 900 eV
0
[ S
52 500 eV
'_‘? 100 eV
(7]
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2.5 3.0 3.5 4.0 4.5

Energy Loss (eV)

39

Peak position (eV)

35
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5100 51000
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FIG. 6. (a) Dependence of the loss spectrum on electron ki-
netic energy. (b) The peak position vs kinetic energy of the elec-
tron.
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choose our optimized step d =6 A and ns/ny=0.5 and
an electron energy of 900 eV (Fig. 5). The loss intensity is
strongly decaying with increasing distance [Fig. 5(a)], but
when the curves are normalized to the same peak value
they all have the same shape in the distance range of
relevance, Fig. 5(b). We exploit this fact by neglecting
the averaging over distances when comparing our predic-
tions with the experimental results of Refs. 2 and 10.

The influence of the electron kinetic energy E,;, on the
excitation probability is shown in Fig. 6(a). For increas-
ing E,;,, the position of the peak, Fig. 6(b), first moves to
smaller energy losses #w, then goes through a minimum,
and finally increases again, but even for E;, =10 keV the
peak still lies far from the position predicted by the
abrupt-surface electrostatic model, Eq. (17). The
minimum in peak position is directly related to a
minimum in the surface-plasmon dispersion because, as
mentioned earlier, the high velocity particles excite the
small-k, plasmons. The minimum in surface plasmon
dispersion is due to the decay of the electron density at
the surface.” Looking at the experimental results in Fig. 4
of Ref. 10, one can notice the shift of the loss maximum
toward higher loss energies for increasing particle veloci-
ty.

We compare in Fig. 7 the predictions of the soft-
surface model developed in this paper with the experi-
mental data from Refs. 2 and 10. The agreement between
theory and experiment is very good. In the calculation
presented in Ref. 2 the electrons lost energy to metallic
spheres and the peak position was adjusted by choosing
spheres 13 nm in diameter. These spheres should approx-

Intensity (arb. units)

N A P
3.0 35 4.0
Energy Loss (eV)
FIG. 7. Comparison of the loss spectrum calculated for the

surface model 6 and 0.5 with the experimental results of Refs. 2
and 10.
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FIG. 8. Dependence of the integrated loss spectrum on the
kinetic energy of the electron. Step parameters 6 and 0.5.

imate protruding roughness. Our model is equivalent to
averaging over roughness of size smaller than the
plasmon wavelength. Furthermore, our model takes into
account the dispersion of the surface plasmon.

We have seen in Fig. 6(a) that the probability of excita-
tion of the resonance mode increases with electron ener-
gy. The experimental work of Ref. 10 included a presen-
tation of integrated probability with respect to impact en-
ergy. In order to compare that result with the predic-
tions of our model, we have applied a similar procedure,
as described in Ref. 10, to treat our theoretical results:
the differential excitation probability in Fig. 6(a) has been
integrated over the range of 2.5-4 eV, subtracting a
straight-line background formed by connecting those two
points. The results, shown in Fig. 8, reproduce the be-
havior seen in Fig. 5 of Ref. 10. The integrated excitation
probability increases by an order of magnitude when the
electron energy changes from 100 to 1500 eV. Since
there are some uncertainties®! in the procedure used for
background subtraction in Ref. 10, a more quantitative
comparison is not attempted here.

IV. CONCLUSIONS

We have analyzed previous measurements of the
energy-loss probability of electrons passing through nar-
row channels in a Ag foil by a calculation which takes
into account the spatial dispersion of the response func-
tion of the metal. The calculation is done in the hydro-
dynamic approximation. The corresponding dispersion
of the surface plasmon results in a shift of the loss peak
toward higher energies compared to the results predicted
by standard optics.

The fact that the measured loss peak lies even lower
than the nonlocal calculation predicts can be understood
by taking into account the decrease of the free-electron
density at the surface. This decrease is due to the elec-
trons leaking out of the positive background, as well as
due to the existence of roughness on the surface on a mi-
croscopic scale. A fit of the model parameters to the ex-

F. FORSTMANN et al. 4

perimental points gives a measure of the roughness. It
should be interesting to check this prediction by compar-
ing to measurements done on foils prepared at lower eva-
poration temperatures, where one expects rougher sur-
faces.

In conjunction with further experimental studies, one
hopes that the previous discussion of the effect of the
variations of the model parameters on the excitation
probability will contribute toward clarifying the respec-
tive ranges of applicability of the present theory and the
model developed in Ref. 2. Further calculations based on
the present model, for different materials and including
calculation of the image force, are in progress.
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APPENDIX: EXPRESSIONS FOR r; AND 7,
IN THE HYDRODYNAMIC APPROXIMATION (REF. 9)

1. One interface: Vacuum-metal

re—k+(K?/n)(e—ey) /€]
r,= ’
P he+k— (K /m)(e—e€p) /€]

(A1)

where now e=¢,—w? /w? A is given by Eq. (12), k by
Eq. (16), and
o 172

Be,

The result for r; is not modified from the one given in Eq.
(15).

n= |K?

(A2)

2. Two interfaces: Vacuum-surface layer—bulk metal

The results for a two-step surface model of a metal are
given here. As shown in Fig. 2, we take a layer (thickness
d) of lower electron density (n;) on top of a semi-infinite
bulk metal (density n,). The reflection amplitude for s
polarization is not affected by spatial dispersion. It has
the simple form

_ A+ k)O—k)e " —(A—k)O+k)
r = — (A3)
(A—k)(O—k)e ~d— (A +k)(O+k)

with k =[K?*—(0?/c?)e;]'"?, in the surface layer, and

0=[K2—(w?/c?)e,]'"?
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in the bulk. The resulting expression for p polarization is
more cumbersome

rp =Nnum /Nden (A4)

with

Npum =Crag F1 + Cpp Fre "%+ CpypFre ~ 21
+CPPF4e —2(k +77)d_F5e-(k+77)d ,
Ngen =CppF+CppFje _de+CPMF3e ~2nd

+CMMF4e —2(k +11)d+F5e —(k +n)d ,

F.=|1+1 +£”_€_2t£1_ﬁ13_

! K €, €,—€, Bp ’
F,=1+1 B_M+iﬁBﬂ
2 n|Bp € €—€ Bp ’
Fy=rF —21

S

B €,—€

Fy=F,—2 1% F=gkk?—>—*
© Bp uBp
2 €,—€

Crpiamn=Ae +(—)k (B
n &

2
BPP(MM)=k€2+(—)961+(—)5”—(62—61) ,

BP(M)=k62+(_ )961 ’

w’ng/ng
el(cu)=6,,(a>)————-—2———— ,
@
2
n
62(w):eb(a’)-——2—=emeasured ’
1/2 1/2
= |g2— w? €1 _ , 0 €
n= o y M —_—
B; € B €
Note also that, as indicated after Eq. (11),

K?=w?/v?+K?. The parameters B and B, are defined
after Eq. (18). (As a mnemonic help, in the expressions
above P stands for plus sign and M for minus sign.)
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