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Finite-cluster multiple-scattering theory of x-ray bremsstrahlung isochromat spectra
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A real-space finite-cluster multiple-scattering method for the calculation of x-ray bremsstrahlung iso-

chromat spectra is presented. This method makes it possible to calculate the spectra in both the near
and the extended energy region even for materials lacking full translational syrnrnetry. Various approxi-
mations can be introduced within the multiple-scattering formalism very naturally so that an optimal ra-
tio between the computational effort and the accuracy can be achieved. We illustrate the efficiency of
this method by calculating the isochromat spectra of Cu and Pd and comparing them with experiment.
Both the dipole and the quadrupole contributions to the bremsstrahlung transition-matrix elements are
quantified and the latter are found to be negligible. The choice of the most suitable one-electron poten-
tial is discussed. The spectra calculated by using a non-self-consistent Mattheiss potential are very close
to the results obtained using a self-consistent potential. The energy-dependent Dirac-Hara exchange
term gives better results than the energy-independent Kohn-Sham exchange potential.

I. INTRODUCTION

X-ray bremsstrahlung isochromat spectroscopy (XBIS)
has attracted a considerable interest in recent years. This
interest was caused partly by the effort to understand the
physical nature of the XBIS process (importance of XBIS
matrix elements, ' validity of the one-electron descrip-
tion, ' ' etc. ), partly by the endeavor to clarify its rela-
tion to x-ray-absorption spectroscopy (XAS). '

XBIS is predominantly used in two energy regions: (i)
in the near energy region up to -40 eV above the Fermi
level EF, and (ii) in the extended energy region
—100—500 eV above EF. In the near energy region XBIS
has become a valuable tool for investigating the unoccu-
pied electron states, and in many respects is analogous to
XANES (x-ray-absorption near-edge structure). In the
extended energy region XBIS refIects mainly the structur-
al properties of the investigated material, and is analo-
gous to EXAFS (extended x-ray-absorption fine struc-
ture).

It was shown that one-electron theory describes the
XBIS spectra satisfactorily. " ' The relevant quantities
related to the electronic structure (e.g. , the density of
states or the scattering matrix) can be calculated either
taking the whole infinite crystal into account, or limiting
one's attention only to a finite cluster of atoms. The
latter approach, though formally not as accurate as the
former, can be of great importance in studying XBIS of
noncrystalline materials and/or in an extended energy
range.

The aim of this paper is to present the finite-cluster
multiple-scattering (FC-MS) theory of XBIS and to dis-
cuss its various aspects. We draw an intuitive picture of
the XBIS process, trying to pick out the main physical
ideas which form the "inner philosophy" of the FC-MS
approach to XBIS. The detailed derivation of final equa-
tions, which can be used for calculating XBIS spectra, is
presented. Since the validity of the dipole approximation

in XBIS was questioned, "we quantify the dipole and the
quadrupole contributions to the XBIS matrix elements,
finding that the quadrupole term is negligible. We show
that making use of a non-self-consistent Mattheiss poten-
tial' ' results in XBIS spectra which are very similar to
those obtained using a self-consistent potential. We test-
ed two choices of exchange potential, namely the widely
used Kohn-Sham potential'" and the energy-dependent
Dirac-Hara potential, ' over a broad energy range, and
found that making use of the Dirac-Hara potential affects
the peak positions in the extended part of the spectrum
significantly.

II. BASIC THEORY OF XBIS

A. Intuitive picture

Bremsstrahlung isochromat spectroscopy is based on
the following process: A sample made of investigated
material is subjected to a bombardment by electrons of
known energy E,-. These electrons are decelerated inside
the sample and the bremsstrahlung radiation ("continu-
ous spectrum") arises.

The energy of the initial electron state E, , the energy of
a particular final electron state Ef, and the energy of the
bremsstrahlung radiation emitted during this particular
transition Ace are bound by a simple relation

Aco=E; —Ef .

In order to map the density of unoccupied states of ener-
gy Ef, the initial electron energy E; is varied while the in-
tensity of the bremsstrahlung radiation of fixed energy Am

(so-called isochromat energy) is measured.
It is convenient to choose the experimental conditions

so that the energy of the registered radiation Acu would be
large in comparison with the energy of final electrons,
1.e.)
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E; —E~ ))E~ —EF, (2)

E.
I(E; )-w(E; )+ f w(E')L(E, E')dE', —

F
(3)

where L(E) is the electron energy-loss function. If no
sharp (e.g. , plasmon) peaks occur in L(E), the second
term in (3) can be substituted by a smooth energy-
dependent background. Subtracting this background
from the experimental curve, the remaining oscillations
are directly comparable with the calculated probability
w(E). This paper deals exclusively with the problem of
calculating this one-electron probability w(E).

where EF is the Fermi energy. It is obvious that such a
great deceleration of the initial electron must be caused
by an enormous electrostatic field, which occurs only
near the atomic core. Hence, the final-state electron be-
gins its path throughout the crystal in this region. As a
result of this, unoccupied electron states "as seen from
the core region" of a particular atom (referred to as the
central atom in the following text) are investigated in
XBIS.'

The probability w(E; ) of a radiative transition of the
incident electron of known energy E; into the final state
of energy E& can be calculated within the one-electron
theory (see Refs. 1, 6, 9, and 10 and Sec. II B). Since the
incident electron can lose some portion of its energy prior
to the final bremsstrahlung transition, the intensity I(E; )

of XBIS radiation induced by an incident electron beam
of energy E, is' '

e& is the polarization vector, q is the impulse of the emit-
ted photon (cq=A'co), P is the impulse operator of an
electron, and the constant C depends upon units and nor-
malization conditions.

We assume that the potential inside the solid has a
muffin-tin form. The solution Iitj; & of the Lippman-
Schwinger equation

lg; & =Ip&+G, (E;)&' P; &,

where Go(E; ) stands for the free-electron Green function

1
Go(E) =

0

(the operator Ho is a free-electron Hamiltonian
Ho =P /2m), is taken for the initial electron state. Since
we do not consider interaction of the incident electron
with any other atom than the central one, ' the potential
V is equal to the spherically symmetric part of the
muffin-tin potential inside the central muffin-tin sphere
and is zero everywhere else. Therefore, the wave func-
tion g;(r) has the form'

P,(r)=g», , exp[i5, .(k')]R„,.(r)P, .(k' r), (9)
(2l'+1) 1 . 0, 0

4~a'" k'

where k' is the wave number of the incident electron
(E; =A' k' /2m), Pi, is the Legendre polynomial, and
Rk.&. is a solution of the radial Schrodinger equation in
the presence of potential V, matching on to

B. Fundamental equations &2/~k [JI (k'r )cos61 nI (k'r—)sinai ], (10)

We want to study an electron, the development of
which can be described by an effective one-particle Harn-
iltonian H. In order to evaluate the intensity of the
bremsstrahlung radiation, we must calculate the proba-
bility of a transition from the initial state

I
0 & I t/; &

(describing the photon vacuum
I
0 & plus the incident elec-

tron state
I g; &, which must itself be an eigenstate of H)

into any of the states
I qA, & I tP„& (where

I qA, & describes the
presence of one photon with an impulse q and a polariza-
tion A, , and If & is any vector of some complete set of
eigenvectors of H). This probability is according to the
golden rule

g f dvl &01 & it; IHtl@. & lq~& I'&(E; —&~—E,),

(4)

where HI is the Hamiltonian of the radiative electromag-
netic interaction. Since the polarization of the brems-
strahlung radiation is usually not measured, both in-
dependent polarizations must be added in order to obtain
unpolarized spectra. Equation (4) can be rewritten into

where the Green function is defined as

G(E)= 1

E—H +tv.
(12)

Covering the whole infinite crystal by nonoverlapping
cells of arbitrary shape, each of them containing one
atom ("scattering center"), we can write (11) in the form
(see Fig. 1)

w= ——lm&g f d'r f d'r'&q, l&~+ Ir+R&&
p s

X G(r+R~, r'+R')

X & r'+R'l&i litj; &, (13)

which is its exact solution in the constant potential region
outside the muffin-tin sphere.

It is convenient to introduce the Green function G(E)
of the final-state electron into Eq. (5), obtaining (cf. Ref.
19 for an analogous formula in the case of XAS)

w = ——Imp& /, IKi+G(E, —A'~)Ki IQ; &,
2

where

„gf dvl & g, l~, lg. & I'~(E, —ir~ —E.), (5)
where the sum g runs over each of the nonoverlapping
cells and the symbol f d r denotes integration over the

p
cell, the center of which is Rp. We also decompose the
effective one-electron potential H

1 e iKg=c exp ——q-X e&.P .
VQQ) m

(6) H(r)= — V ++V~(r),
2m

(14)
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FIG. 1. An example of a coverage of the solid by a set of
nonoverlapping cells, each containing one scattering center.

FIG. 2. An example of a coverage of the solid by a set of
nonoverlapping cells arith inscribed rnuKn-tin spheres.

where V~(r) is equal to the spherically symmetric part of
the muffin-tin potential inside the sphere around Rp and
is zero outside this sphere. The index 0 refers to the cen-
tral atom of the cluster in the whole paper. For p =0, the
potential of the central atom is obtained. The basic idea
of the FC-MS approach is to insert the "multiple-
scattering expansion" of the Green function
6(r+R~,r'+R') into Eq. (13). For r, r' inside "muffin-
tin spheres" (see Fig. 2), we can write this expansion in
the form (the symbol L is a multiindex, L =

I lm I)

G(r+R, r'+R")=G, (r, r')5

+ g 2 Q I (r)G I.L, Q 1.(r'), (15)

The transition-matrix element t I ~ is defined as

2k
t z~, .= f d rjI(kr)YL (r) V~(r) Q~z (r)

and

g IL, = —4m(1 —5 „)ik
Xgi'+' 'h', +'(k~R —R"~)YL-(R —R")

L"

XCLL'L" ~

where the Gaunt numbers are defined as

CII.L-= f d n YL(n)Yt. (n) Y~„(n) .

(19)

(20)

(21)

where G, (r, r') satisfies

6, (r, r')=Go(r, r')+ f d r"Go(r, r")V (r")6, (r",r') .

(16)

The function Q L (r) is determined by the equation

Q P(r)=j, (kr}Y(r)

+ f d r"60(r, r")V (r")Q I (r")

[YL (r) is a real spherical harmonic], and G P. satisfies

rnn —mn 2~ —m ~ -p —
pn6 Ll. , =g LL, , + g g g Lg„ t L-t.„.G I,:.I,

L" L"' p 2k
7

There has been a vivid controversy about the condi-
tions which must be satisfied for the expansion (15) to be
valid. ' ' Although the results of many authors seem to
indicate that the condition of confinement of r, r' inside
the muffin-tin spheres can be abandoned, this is not a
generally accepted opinion. In order not to interfere with
this discussion, we circumvent the whole problem by in-
troducing additional nonoverlapping "empty" spheres
(Fig. 3): Taking the number of these spheres sufficiently
high, we can reduce the volume of the remaining non-
spherical part of the original cell below any arbitrarily
small value. Thus, using the expansion of the Green
function 6(r+R~,r'+R') inside each of such spheres, we
can write (with an arbitrary accuracy)

w= ——Imps f d r f d r'(f, (Kz ~r+R~)6(r+. R~, r'+R')(r'+R'~Kz~g;),
sph(p) sph(s)

(22)

5,bG;(r, r')~5, bG, (r, r'), (23)

where g, sums over all inscribed nonoverlapping spheres
and I, z~, ~

denotes integration inside such an inscribed
sphere with center R'.

The next step consists in creating an approximate ver-
sion of Eq. (15), replacing

(24)

The physical interpretation of the substitution (23) and
(24) is that we neglect the deceleration of the incident
electron in the field of all atoms but the central one. This
is a reasonable assumption: the initial-state electron must
lose a great portion of its energy in the XBIS process and
hence it is highly improbable that such a loss could be



FINITE-CLUSTER MULTIPLE-SCA I I'ERING THEORY OF X-. . . 4835

translation symmetry of the problem, transforming Eq.
(26) into the reciprocal, lt space and solving the Fourier-
transformed equation. ' The FC-MS approach does
not rely on the translation invariance and cuts oft' the
infinite sum over lattice points R~ to some finite number
of terms. Further analysis of Eq. (26) can be found in
Sec. IV.

III. THE MATRIX-ELEMENT PRC)BLEM

FICx. 3. An example of inscribing additional empty spheres
into nonspherical cells (see also Figs. 1 and 2).

caused due to interaction with distant atoms. A more
quantitative argument in favor of this so-called "single-
site approximation" can be found in Ref. 22.

Inserting (23) and (24) into (22), the final expression for
the XBIS transition probability can be obtained in a tedi-
ous but straightforward manner,

The matrix element mL /. defined by Eq. (33) poses two
nontrivial problems: (i) There is a question whether the
dipole approximation can be used in this case and (ii)
there is a problem of numerical evaluation of the matrix
element mL /, since the region of integration in (33) is
infinite.

It has been already suggested that the dipole approxi-
mation should be valid in XBIS since the large energy
difFerence E, —E& implies the localization of the brems-
strahlung transition region. Particularly, it can be argued
that the most important contribution to XBIS matrix ele-
ments comes from the region within the distance less
than""

2 2 00

t

(25) Ip; —
pal

(34)

The matrix ~LL is determined by the equation

rLi =&1'5;,4i +&X&/'GLL &i'i
k L"

where

Ak
t/ = — sin5J/exp[i51/(k)],

m.m

GpL = —(1—5 „)

(26)

(27)

from the atomic center (p; and p& are, respectively, the
impulses of the initial- and final-state electrons). This dis-
tance (typically 0.01 —0.1 A) is much smaller than the
wavelength of the x-ray isochromats (being 8.3 A for the
1487-eV isochromat and 2.3 A for the 5415-eV iso-
chromat). Hence, the validity of the dipole approxima-
tion is generally presumed.

This presumption immediately makes it possible to
bypass the problem related to the infinite boundaries of
the integral (33): Neglecting the exponential factor in (6),
we can express the matrix element mL &

as

X gi '+' ' ii '+ '( k
I
R —R"

I ) YL-(R —R")
L tt

X f d n YL*(n) YL.(n) YL-(n) (2&)

[Y/ (r) is a usual complex spherical harmonic] and

~, /
=y fd'r ~k/(r) ~g (r)&, PX/'(r)

which can be rewritten to obtain (see, e.g. , Ref. 24)

(35)

i, = fd" ~;,(r)Y/*. (r)&,P;(r) . (29) f «&k/(r) YL*, (r)&i, g/ (r)i 3 0 ~ dV
CO 81

(36)

y/ =d/ (k )&/, / (r)~/ (lt 'r), (30)

The initial wave function P;(r) is determined by Eq. (9).
Having defined

or

mL /
= icof f d r Rk/(r)Y—L(r)e/ rg/(r), (37)

d/, (k') = i, exp[i5/ (k') ],(2l'+1) . / 1

4~X'"

we can write

(31)

where

and

(38)

pL(k) —gmL / (32)

f d r R/, /(r)YL*. (r)IC/, y/(r) . (33)

Equations (25)—(29) can be directly used for the calcu-
lation of XBIS spectra. The crucial equation is Eq. (26).
The band-structure methods profit by the use of the full

fCO—
fi

(39)

The meaning of the symbols is explained in the text fol-
lowing Eq. (6). The first choice (36) has an advantage of
avoiding numerical problems connected with the integra-
tion: Since the potential V (r) is of finite range, its gra-
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dient is zero outside the muffin-tin sphere and hence the
region of integration of this expression is finite.

However, there is still lack of a rigorous proof of the
localization of the bremsstrahlung transition region with
respect to the wavelength of emitted radiation, which is
crucial for the validity of the dipole approximation. In
order to make sure that the dipole approximation is real-

I

ly valid, it is necessary to calculate the higher multipole
terms.

We concentrate on the dipole and the quadrupole elec-
trical terins (the dipole magnetic term must be zero in a
spherically symmetric potential). After substituting for
y& (r) from (30) to (33), the following expression for mL &.

can be obtained:

mL, i
= im—cadi(k') f r dr Ri,i(r)rR~. i (r) f d n YL'(n)(ei n)P&(k' n)

co di(k') f r dr R&&(r)r R&.&.(r)2c f d n YL*(n)(q.n)(ei. n)P&.(k' n) (40)

(we denote r=rn). The first term corresponds to the di-
pole transition, the second one to the quadrupole transi-
tion. The integration over an infinite region can be
avoided in the dipole term, choosing (36) instead of (35).
However, the infinite region in the quadrupole term
remains.

In order to perform integrations in (37) and (40), re-
spectively, a special integration method must be used.
The details of the procedure we used are described else-
where; its principle consists in performing the integra-
tion numerically to some Ro RMT (RMT is the muffin-
tin radius) and analytically in the outer region. The
main advantage of this procedure is its universal applica-
bility to any multipole terms.

In order to test the importance of the quadrupole elec-
trical term in (40), we have calculated the atomiclike
XBIS spectra of Cu [i.e., taking t, 5LL inste.ad of rLL in
Eq. (25)] using the matrix elements (40) for various iso-
chromat energies. Analyzing theoretical XBIS spectra of
atoms instead of solids is a well-founded procedure for
this purpose, because the matrix element mL &. is an
atomiclike quantity (cf. a similar analysis of electron
energy-loss spectroscopy matrix elements in Ref. 27). We
found that the quadrupole contribution to this spectra is
negligible for both 1487 and 5415-eV isochromats: The
relative changes of the bremsstrahlung radiation intensity
caused by the inclusion of the quadrupole terms are
smaller than 0.2% for the 1487-eV isochromat and less
than 0.5% for the 5415-eV isochromat. As a result of
this, the XBIS spectra calculated using matrix elements
(40) agree within the thickness of the line with the spectra
calculated using elements (37).

The negligibility of quadrupole terms confirms retro-
spectively the assumption that the radius of the brems-
strahlung transition region is smaller in order than the
wavelength of x-ray isochromats (which is typically
—2 —8 A). In other words, this indicates that the de-
celerated electron of energy E& comes from the core re-
gion, which is a necessary condition for Eq. (25) to be val-
id.

Another estimate of the spatial extension of the brems-
strahlung transition region can be made, examining the
development of the "gradient" matrix element (36) with
the extension of the integration region. It was demon-
strated that the matrix element reaches its definitive
value inside of the sphere of RD =RMT/4 around the ori-
gin with a great accuracy. ' However, this result cannot

I

be accepted as an exact proof of the localization of the
transition region, since it was obtained within the frame-
work of the dipole approximation, which already antici-
pates this localization.

We calculated also the atomiclike "XBIS" spectrum
for isochromat energy 10 eV. This is the energy of pho-
tons which are registered in ultraviolet BIS (inverse pho-
toemission). Regarding that the bremsstrahlung transi-
tion region is now expected to be significantly larger than
in the case of x-ray BIS, the doubts about the validity of
the dipole approximation could arise. The calculation of
uv BIS by means of our method has no direct physical
meaning, because multiple scattering of the incident elec-
tron would also have to be taken into account for a realis-
tic calculation at these isochromat energies. Neverthe-
less, it may serve as a quantitative test for the adequacy
of the dipole approximation, which is commonly used in
uv inverse photoemission. Our calculation of the Cu
spectrum showed that for such small isochromat energies
the quadrupole term really can be neglected, too —the
relative changes of the bremsstrahlung intensity caused
by the inclusion of quadrupole terms are smaller than
0.02%. This means nothing else than the fact that the ra-
dius of the effective bremsstrahlung transition region in-
creases more slowly than the wavelength of the emitted
radiation.

IV. MULTIPLE-SCATTERING TECHNIQUE

The size of the matrices entering Eq. (25) is formally
infinite. In order to be able to use the FC-MS approach,
we must cut off their dimensions at some finite value.

The physical interpretation of these equations suggest
that they describe all multiple-scattering events between
all atoms present in the crystal. Since various many-
particle processes limit the lifetime of the scattered elec-
tron, the effective length of the scattering path is also
finite. Hence, in most cases it must be sufficient to limit
our investigation to some finite cluster of atoms sur-
rounding the central one. This cuts off the sum gz over
lattice points.

Also the double sum QL L can be cut off at some finite
value I =l „,since the semiclassical trajectory would be
outside the region of a nonconstant potential around the
scattering center for higher l numbers and hence the
probability of a scattering event would be very small.

Thus limiting the dimensions of all matrices entering
Eq. (25), this equation can be solved by matrix inversion.
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Solving Eq. (25) by iteration and retaining only a few
terms in the series

L,. t—t5)L +tiGLL. ti'(I 5L,L, )(1 /i )

kj+ggtiGLL ti-Gt„t, t/+
k L"

(41)

various approximations to the full multiple scattering can
be introduced.

Inversion of large matrices is a computationally
di%cult task. In order to speed up the calculation, it is
very convenient to divide the whole cluster into several
concentric shells and to calculate the intrashell and the
intershell scattering events separately. Using the expan-
sions

k L"
a D"', IR IR',

k L"

(42)

(43)

Drt, =+4 ' + j „(k~R'—R~~)Y .(R' —R~)
LII

X f d n YL (n) YL (n)YL .(n), (44)

V. RESULTS AND DISCUSSION

In order to test the ability of the FC-MS approach to
describe XBIS spectra, a comparison of computed spec-
tra with experimental oscillations is presented in this sec-
tion. We analyzed XBIS spectra of Cu and Pd for iso-
chromat energies 1487 and 5415 eV, because the experi-
ment for a large energy extent is available for both ele-
ments. Since the theoretical FC-MS curves presented in

we obtain a set of equations which enable us to assemble
the ~LL. matrix of the whole cluster from several particu-
lar r)L, matrices of difFerent shells. '

Since the number of atoms contained in a single shell is
considerably smaller than the number of atoms in the
whole cluster, the size of matrices which have to be in-
verted due to Eq. (26) is now also smaller and a
significant part of CPU time can be thus saved.

Moreover, the separate calculation of intrashell and
intershell multiple scattering enables us to use different
approximations to multiple scattering for different types
of scattering. Thus, the ratio between the accuracy of
the calculation and the necessary computational effort
can be optimized.

The concept of using Eqs. (42) and (43) for exploiting
the division of the cluster into shells poses a new prob-
lem: another formally infinite sum over L" occurs in the
expansion (42) and (43). Since this sum must be cut oIF at
some finite value l"=l,„„another convergence problem
arises. To our knowledge, there does not exist any gen-
eral method how to make an estimate of /, „, (contrary to
the "centrifugal barrier prescription" for the case of l „
in Eq. (25)—see, e.g., Ref. 30). We took /, „,=12 in our
calculations; the convergence in l,„, is tested in Appendix
A.

this paper show only the transition probability calculated
from (25) and not the full XBIS intensity [which is to be
calculated according to Eq. (3)], a smooth background
was subtracted from the raw experiment to get the exper-
imental oscillations (this procedure was already done in
Ref. 31). If the corresponding electron energy-loss spec-
tra do not exhibit sharp peaks, these experimental XBIS
oscillations should be directly comparable to the transi-
tion probability (25).

A cluster of 79 atoms divided into five concentric shells
(identical with the coordination spheres of a crystal) was
taken into account in all the calculations presented here.
The maximum /, „(see Sec. IV) varied from 3 to 6 with
respect to the final-state energy E& (greater E& generally
requires higher /, „). We took /, „=3 for E&(36 eV,l,„=4 for E~ &56 eV, l,„=5 for E& &142 eV, and
l „=6for higher final electron energies in the case of Cu
spectra and l,„=3 for E& &33 eV, l „=4 for E& &63
eV, and 1,„=5 for higher final electron energies in the
case of Pd spectra. These energy ranges were chosen on
account of the energy dependence of the magnitudes of
scattering amplitudes ti(k). The convergence in /, „was
tested in those energy regions, where the values of l „
changed.

The theoretical FC-MS approach curves presented in
this paper were calculated according to formulas
(25)—(29) for a single-crystal sample and for the angle a
between the incident electron-beam direction and the reg-
istered bremsstrahlung radiation direction of a =90'.
Since both Cu and Pd are cubic symmetrical materials,
the electron structure-related quantities (e.g., the scatter-
ing matrix &LL.) are practically the same for both a single
crystal and a polycrystal sample. As a result, the XBIS
spectra are very similar for both types of a sample and we
can thus compare our single-crystal results with experi-
ments made on polycrystals (see Appendix B for a quanti-
tative analysis). Nor is the value of the angle a
crucial —the varying of o. over a broad energy interval
causes a mere decrease or increase of overall XBIS inten-
sity and does not change the shape of XBIS spectra. This
is demonstrated in Appendix C.

We decided not to perform any corrections of our
theoretical spectra due to the lifetime broadening in or-
der to display the theoretical results undisturbed by any
optional parameter. Nevertheless, it is obvious that a
suitable smearing procedure would improve the visual
agreement of our theory with experiment.

We can distinguish two main sources of discrepancy
between theory and experiment. First, the discrepancy
may be a consequence of using an inaccurate potential.
Such an effect can arise also within the band-structure
approach. We discuss the choice of the potential in Secs.
VA —VC. The second source of discrepancies is the re-
striction of our calculation to a finite part of the crystal.
This restriction is inherent in the FC-MS approach and
thereby cannot be avoided.

From this point of view, the agreement between the
FC-MS theory and the experiment can be regarded as a
test, whether the cluster is large enough. Calculations of
Cu XANES suggest (see, e.g. , Ref. 32) that the inclusion
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of 79 atoms should be sufficient. We did not perform an
entire analysis of the inhuence of the cluster size on XBIS
spectra because of the large CPU time it would require.
However, the inner resemblance between XBIS and XAS
processes indicates that such an analysis should provide
similar results as an analogous analysis of XAS spectra.

A. Self-consistent potential —comparison
with band-structure approach calculation

In order to separate these two sources of errors, we cal-
culated at 6rst XBIS spectra using a self-consistent elec-
tron potential taken from Ref. 34. This choice enables us
a comparison of our calculations with the band-structure
results, ' where the same potential is used. These spectra
are presented in Figs. 4 and 5. Identical energy scales
were chosen for both isochromats in order that the
changes caused by the use of different isochromat ener-
gies could be displayed. We see immediately that the
FC-MS approach describes all signi6cant features of
XBIS spectra fairly well for all energies for which the ex-
periment is available. The greatest difference between the
FC-MS spectrum and both the experiment- and the
band-structure-based results is in the close-to-edge region
(Ef ( l 0 eV above EF). Since the band-structure ap-
proach describes XBIS correctly in this energy region, ' '
we assume that a larger cluster should be used in order to
properly calculate XBIS also for small energies.

Apart from the full multiple-scattering calculation, a

single-scattering approximation [analogous to curved-
wave EXAFS (Ref. 35)j was also tested (dashed curves in
Figs. 4 and 5). Although this calculation demands rough-
ly two orders less CPU time than the full multiple-
scattering calculation, the resulting spectrum still exhib-
its a considerable resemblance to the original full
multiple-scattering curve. This is in agreement with
analogous XANES calculations —it was demonstrated
that a single-scattering calculation can describe XAS
spectrum of Cu even in the near energy region fairly
well.

B. Comparison of a self-consistent
and a non-self-consistent potential

All theoretical curves presented so far were calculated
for the same self-consistent potential, which was obtained
after a self-consistent band-structure calculation. In or-
der to check the possibility to investigate, e.g., amor-
phous materials, it is necessary to verify that the
knowledge of a self-consistent potential is not crucial for

Pd 1487 eV

erinent

QS theory

Cu 1487 eV

perimeat

-structure theory

QS theory Pd 5415 eV

Cu 5415 eV

tructure theory

50 100 150 200
energy abave gr (ey)

20 40 60 80 100 120 140
energy abave Er (ey)

FIG. 4. Experimental XBIS oscillations of Cu for two iso-
chromat energies compared with theoretical results. The exper-
iment is taken from Ref. 5 (1487 eV) and from Ref. 31 (5415 eV).
The solid FC-MS theoretical curves represent a full multiple-
scattering calculation; the dotted-dashed FC-MS theoretical
curves represent a single-scattering calculation. The self-
consistent potential was used for calculation of the theoretical
curves.

FIG. 5. Experimental XBIS oscillations of Pd for two iso-
chromat energies compared with theoretical results. The exper-
iment is taken from Ref. 5 (1487 eV) and from Ref. 31 (5415 eV).
The solid FC-MS theoretical curves represent a full multiple-
scattering calculation; the dotted-dashed FC-MS theoretical
curves represent a single-scattering calculation. The lower
theoretical curves calculated by a band-structure approach were
taken from Ref. 10. The same self-consistent potential was used
for calculation of all of the theoretical curves presented here.
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Cu 1487 eV
results obtained for both types of potential are almost
identical for final-state electron energies Ef ) 10 eV
above EF. Thus, we can conclude that it is not necessary
to use a self-consistent potential in order to get a reason-
able theoretical spectrum in that energy region where the
FC-MS approach is valid.

C. Energy-dependent potential

20 40 60
energy above gr (eV)

80

FIG. 6. Theoretical XBIS spectra of Cu (isochromat energy
1487 eV) calculated for a self-consistent potential taken from
Ref. 34 and for a non-self-consistent potential constructed ac-
cording to the Mattheiss prescription.

the calculation of XBIS spectra.
We decided to calculate a XBIS spectrum for the so-

called Mattheiss potential, since this type of potential is
widely used in EXAFS and XANES studies and was
shown to provide satisfactory results. This potential
is constructed via superposition of charge densities of
neutral atoms located in the lattice points. ' ' The ex-
change effects are treated in the same manner as in Ref.
34, i.e., approximately by using the Kohn-Sham exchange
potential'

e2
V,„(r)= —3a

4~@()

3n(r)
8a

1/3

h(k), (46)

where

The discrepancy between the theoretically predicted
and the experimentally observed positions of spectral
peaks is usually attributed to the omission of the energy
dependence of the effective electron potential, i.e., to the
neglect of self-energy effects. ' Little is known about op-
timal construction of such a potential and the prescrip-
tions for it used so far do not lead to a full agreement be-
tween theory and experiment. We had tested the sim-
plest form of an energy-dependent potential, namely the
Dirac-Hara exchange potential. ' This potential is con-
structed so as to describe exactly the ground state of a
homogeneous electron gas as calculated within the
Hartree-Fock approximation and its energy-dependence
is extrapolated into the excited states energy region. It
has the form

2

V,„(r)= —3a
4~EO

1/3
3n(r)

8~
(45)

1 —X(k)
1

1+X(k)
2X(k) 1 —X(k)

where a= —,', Eo is the vacuum permittivity, and n(r) is

the electron density.
The results are shown in Figs. 6 and 7. Since we did

not perform a band-structure calculation with the
Mattheiss potential to find the Fermi level, the horizontal
alignment of the corresponding spectrum was made in or-
der to get the best accordance with the self-consistent po-
tential spectrum. It is obvious from Figs. 6 and 7 that the

X(k) =
Eo(r )

Eo(r)=A' /2m[3vr n(r)] is "the local Fermi energy"
and Ek is the Anal-state electron energy measured with
respect to the same "zero level" as Eo(r) (see Ref. 15 for
a more detailed discussion).

Figure 8 presents the experimental Cu spectrum to-

20 40 60 80 100
energy above gr (eV)

120

100 200 300
energy above gv (eV)

400

FIG. 7. Theoretical XBIS spectra of Cu (isochromat energy
5415 eV) calculated for a self-consistent potential taken from
Ref. 34 and for a non-self-consistent potential constructed ac-
cording to the Mattheiss prescription.

FIG. 8. Comparison of theoretical FC-MS XBIS spectra of
Cu (isochromat energy 1487 eV) for a Kohn-Sham exchange
term (dotted-dashed lower line) and for an energy-dependent
Dirac-Hara exchange term (solid lower line). The experiment
was taken from Ref. 4; the potential was constructed according
to the Mattheiss prescription.
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phous materials).
Finally, application of the FC-MS formalism in XBIS

and XAS calculations can help us to understand the pro-
cesses underlying XAS: e.g. , an interesting possibility of
evaluating the role of the core-hole effect in XAS arises
from calculating the XAS spectrum (including the core-
hole effect) and the XBIS spectrum (where no core hole is
present) by means of the same method.

APPENDIX A' CONVERGENCE IN lout

The division of the cluster into several shells and subse-
quent assembling the total ~LL matrix from the scattering
matrices of particular shells [see Eqs. (42) and (43)] intro-
duces another formally infinite sum over L. All results
presented in Figs. 4—8 (and also in Figs. 9 and 10) were
calculated cutting off this sum at I,„,=12. In order to
test convergency in this cutting, another XBIS spectrum
of Cu was calculated for l,„„=16(Mattheiss potential
was used). A comparison of both spectra (for l,„„=12
and for /, „,=16) is displayed in Fig. 11. It demonstrates
that adding more terms to the I." sum in Eqs. (42) and
(43) (i.e., increasing of l,„,) does not affect the result
significantly.

APPENDIX B: XBIS SPECTRUM FOR POLYCRYSTALS

The FC-MS spectra presented in Figs. 4—8 were calcu-
lated according to Eqs. (25)—(29), i.e., for a single-crystal
sample. In order to compare these theoretical spectra
with experiments on polycrystals, ' ' the averaging of cal-
culated spectra over all possible orientations of a single-
crystal sample is necessary. Corresponding equations are
similar to Eqs. (25)—(29), since only the matrix elements
pL(k) are involved in such an averaging. We do not
present them here because they are formally too compli-

cated. They follow directly from the integration of Eq.
(25) with respect to the orientation of vectors q and k',
holding the angle between them fixed [see Eqs. (33), (6),
and (30)].

The averaged spectrum of Cu is presented in Fig. 9 (the
self-consistent potential was used here). It is very similar
to the single-crystal spectrum, which is not surprising:
Since the muffin-tin potential was used, the atomiclike
matrix elements m& L must be invariant with respect to
any rotation of the sample, and since both Cu and Pd
crystals are cubic symmetrical, the electron structure
must be rotationally invariant for l ~1. As the matrix
elements mt I. are negligible for l ~ 3 (Ref. 2), only the d
states can introduce some rotational asymmetry. Figure
9 indicates that this effect is very small. Hence, it is
reasonable to compare the experiments made on poly-
crystals with theoretical spectra calculated according to
Eqs. (25)—(29) which are strictly valid only for single
crystals.

APPENDIX C: ANGULAR DEPENDENCE
OF XBIS SPECTRA

All theoretical spectra presented in Figs. 4—9 and 11
were calculated for the angle u between the incident
electron-beam direction and the detected radiation direc-
tion of a =90 . This is true for the experimental spectra
of 5415-eV isochromat energy, but not of 1487 eV,
where this angle is near to =40 (Ref. 47). Figure 10
shows calculated polycrystalline-sample spectra of Cu for
several angles e. The structure of these spectral curves is
almost identical for a) 20. Hence, varying the angle a
causes a mere overall multiplicativelike shift of the XBIS
intensity, which is not the subject of comparison between
the computed and the experimental spectra.
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