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Nonuniversal critical behavior and first-order transitions in a coupled XF-Ising model
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We study, by a Migdal-Kadanoff approximation and Monte Carlo simulations, the phase diagram of a
two-dimensional coupled XY-Ising model. This model can describe phase transitions in different systems
with underlying continuous and Z2 symmetri. es. Depending on the parameters, we find separate XY, Is-
ing and first-order transitions. Also, a line of continuous transitions is found with simultaneous loss of
XY and Ising order and varying critical exponents. The fully frustrated XY and Josephson-junction sys-
tems can be considered to lie along different paths in the model which can result in nonuniversal behav-
ior if the transition is a single one.

I. INTRODUCTION

Statistical mechanical models with continuous U(1)
and discrete Z2 symmetry have attracted much attention
in recent years as they can display phase transitions,
which can be found in various physical systems of experi-
mental interest. ' ' In general, as the temperature or
some other parameter is varied, two successive transi-
tions can occur and, in the case of strongly coupled exci-
tations, a single transition may also take place. The na-
ture of the single transition is one of the most important
issues, but, not surprisingly, it also presents some particu-
lar difhculties in either numerical or analytical ap-
proaches. In numerical studies by Monte Carlo methods,
for example, one has to be able to detect very weak first-
order transitions, and in the renormalization-group ap-
proach, the region of interest lies outside the range of va-
lidity of the recursion relations. A simple model display-
ing most of these features consists of coupled XY and Is-
ing models of the form

= —g [(A +Btr;o )cos(8; —8 )+Co;tr ],H

(ij)
where o =+1 and 8= [0,2m ]. Besides being of interest in
its own right as a particular model with a very rich criti-
cal behavior in the parameter space A, B,C, this model is
also relevant for the critical behavior of fully frustrated
XY (FFXY) models. The latter model can be physically
realized as a square or triangular array of Josephson
junctions of large capacitance in a perpendicular magnet-
ic Geld corresponding to a half-Aux quantum per pla-
quette. These physically distinct models, however, turn
out to have the same lowest-order Ginzburg-Landau ex-
pansion, differing only by irrelevant operators. From the
universality hypothesis one may expect them to be in the
same universality class, although the particular mecha-
nism driving the phase transition in each case is com-
pletely different. Isotropic arrays are described by the
model of Eq. (1.1) in the special plane A =B, and an an-
isotropic square array in which every other column of the
lattice has a coupling differing from the others by a con-
stant factor can be described by the more general case

AWB. ' The model in Eq. (1.1) can also be related to
other interesting systems, as, for example, to a
Josephson-junction ladder with a half-Aux quantum per
plaquette undergoing a zero-temperature superconductor
insulator transition, ' to two-dimensional helical XY
models' and, in a Gaussian approximation, to the antifer-
romagnetic restricted solid-on-solid model. '

We will be concerned in this work with the critical be-
havior of the coupled XY-Ising model of Eq. (1.1), defined
on a square lattice, in the particular subspace 2 =B,

= —g [A (1+o;ol)cos(8;—8 )+Ccr;o ],H

&ij)
(1.2)

which is relevant for the isotropic FFXYmodels. We will
argue that the square and triangular FFXY models can be
considered to lie along different initial points (A, C) in
the parameter space of the same coupled XY-Ising model
(1.2). A previous study of this model' revealed a bifurca-
tion point occurring at C =C*, where C =0. For
C & C*, there is a double transition with an XY followed
by an Ising transition as temperature in increased. For
C (C* a single transition occurs of an unknown nature.
An identical topology of the phase diagram has also been
found in a generalized Coulomb-gas representation of the
FFXY model containing fractional charges. ' An impor-
tant feature of the phase diagram is that there is no phase
with Ising disorder and XY order thus indicating that Is-
ing disorder induces also XY disorder in this model. This
can be seen by noting that the parameter space 2 =B has
a rather special symmetry: a domain wall in ihe Ising
variables leaves the XY spins uncoupled, since
1+o.;cr . =0 in this case. This is similar, although physi-
cally different, to the proposed mechanism for a single-
phase transition in the FFXY model. '" According to
this, the corners of the Ising domain walls act like frac-
tional vortices (or charges in the Coulomb-gas represen-
tation), which are estimated to be unbound at the melting
of the domain walls thus triggering an unbinding of in-
teger vortices destroying the XY order. The role played
by the unbound corner charges in the fully frustrated XY
model is played in the model of Eq. (1.2) by the domain
wall itself. Other scenarios are also possible by allowing
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FIG. 1. Possible phase diagrams of the coupled XY-Ising
model of Eq. (1.1) in the A, B plane showing disordered, fully
ordered, and partial ordered (XYor Ising) phases.

independent parameters for the unbinding of corner and
integer charges as well as the melting of the domain walls
in a generalized FFXY model. However, in the original
model these are related in such a way that the most likely
scenario is either a double transition with an XY followed
by Ising transition as temperature increases or a single
transition in agreement with that expected from the mod-
el in Eq. (1.2). Note, however, that in the case of the an-
isotropic frustrated XY model, ' which corresponds to
2 AB, a double transition is expected to occur in an or-
der determined by the value of C. For C (C*, this dou-
ble transition is expected to be in reverse order, and it can
be shown that the signature of the Ising transition ap-
pears as a logarithmic singularity in the helicity
modulus. On the other hand, for C )C*, both scenarios
are possible. These distinct behaviors of the two cases
have given rise to some misleading interpretation in the
literature. In Fig. 1 we indicate possible schematic phase
diagrams in the A, B plane for C )C* and C (C' illus-
trating the various possible sequences of transitions. The
details of how the transition lines join in each case will re-
quire further investigation. Here we concentrate in the
critical behavior along the A =B line.

In this work we study in some detail the critical behav-
ior of the model of Eq. (1.2) along the line of single transi-
tions. Using a Migdal-Kadanoff renormalization-group
approximation, ' ' we obtain the global phase diagram,
and by generalizing the model into a lattice-gas model in-
cluding the presence of vacancies we are able to locate
first-order transitions using a prefacing transformation
to generate an initial density of vacancies. From exten-
sive Monte Carlo (MC) simulations we find a segment of
continuous phase transitions starting at the bifurcation
point, which eventually becomes first order for large neg-
ative C. To determine the location of first-order transi-
tions and critical exponents along this line, we make use
of a recently developed numerical method. We also use
Binder's MC renormalization-group method for an in-
dependent evaluation of the critical exponents. From the
numerical study we find, on the segment of continuous
phase transition, nonuniversal critical behavior as critical
exponents associated with the Ising order parameter vary
systematically as a function of A and C. Starting at the
bifurcation point, the Ising correlation length exponent
decreases from the pure Ising value v= 1 to v=0. 85(3)
and, as one moves away from this point, remains almost
constant initially but decreases more rapidly for large de-
viations. At the same time, 2P/v starts with a value
2P/v=0. 24(3) consistent with the pure Ising model but
increases systematically further from the bifurcation
point. It is sufficient to study the Ising variables, since, if
v%1, the transition cannot be a decoupled Ising XY or
one branch of a double transition and must be single.
Moreover, the interpretation of helicity modulus data in
a model of this nature is not obvious. In addition to the
critical exponents, this line can also be characterized by
its central charge. Calculations employing a MC transfer
matrix give a rather surprising result. The central
charge appears to increase continuously along this line
from c =1.5 close to the bifurcation point to c =2 near
the tricritical point. Some of the results presented in
this paper have been summarized in Ref. 27.

These results have direct implication for FFXY models,
which, being in the same universality class, should have
critical exponents different from the pure Ising ones if the
transition is found to be a single one. We also expect
slightly different exponents for the square and triangular
cases, since they lie along close but distinct line of initial
points. According to these new results, the critical be-
havior of the FFXY model is nonuniversal. In a recent
Monte Carlo simulation of the FFXYmodel on a triangu-
lar and square lattice, employing the same numerical
methods, we found v=0. 83(4) and 0.85(3) for the tri-
angular and square lattice, respectively. They agree with
each other within the estimated uncertainties but differ
significantly from the pure Ising exponents and agree
reasonably well with the exponents of the coupled XY-
Ising model near the bifurcation point. Recently,
Thijssen and Knops' have determined the central charge
c for the FFXY model using a Monte Carlo transfer ma-
trix and found c =1.66(4) consistent with the corre-
sponding value for the coupled XY-Ising model near the
bifurcation point.

The paper is organized as follows. In Sec. II we
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present the phase diagram obtained from a Migdal-
Kadanoff type of approximate recursion relation includ-
ing vacancies. In Sec. III a finite-size-scaling analysis of
Monte Carlo data is used to study the first-order segment
of the single transition and obtain the critical exponents
on the rest of the line. In Sec. IV we make contact with
the FFXF model, which initially motivated this work,
and hope to clarify some confusion in the literature. Fi-
nally, Sec. V is devoted to the conclusions and final re-
marks.

II. PHASE DIAGRAM

In this section we use a Migdal-Kadanoff real-space
renormalization-group approximation ' ' to obtain a
qualitative global phase diagram of the coupled XF-Ising
model defined in Eq. (1.2). For the standard XY model it
does not reproduce a true line of fixed points at low tem-
peratuers, although it gives an indication of it in the form
of a line of almost fixed points. This apparent fixed line
can often be used to identify the XF-like ordered phases
in more complicated models, and we shall use this pro-
cedure in our case.

To locate the first-order transitions within the Migdal-
Kadanoff approximation we generalize the procedure of
Nienhuis et al. , which reproduces the known first-order
transition of the q-state Potts model when q )4. The
procedure consists of enlarging the parameter space of
the original model by including vacancies, which can give
rise to first-order behavior. A prefacing transformation
is then used to generate an initial density of vacancies
and locate the first-order transitions in the coupled XY-
Ising model. The details are described in the Appendix.

The phase diagram obtained from the Migdal-
Kadanoff approximation is indicated in Fig. 2. There are
four different phases: (a) a disordered (high-temperature
phase); (b) an intermediate Ising-ordered and XY-

disordered phase, (c) a fully ordered phase (low tempera-
ture), and (d) an antiferromagnetic Ising-ordered and
XF-disordered phase. The segment TF along the line of
single transitions PF is a first-order line when vacancies
are allowed in the renormalization-group procedure. The
bifurcation point P cannot be located with precision be-
cause the ordered XY phase is not a true line of fixed
points within this approximation. It seems, however, to
lie close to the line of initial points C =0, but we find no
special syrnrnetry along this line, which could suggest the
location of P. Moreover, a mean-field analysis of this
model gives the position of this multicritical point occur-
ring at C )0.

III. MONTE CARLO SIMULATIONS

In this section we turn to a detailed numerical study of
the critical behavior near the bifurcation point P of Fig. 2
in the region of single transitions. Here we are faced with
a typical problem in MC simulations, which arises when
studying an unknown model: one needs to identify the
order of the transitions in an unambiguous way. There
are many methods available to distinguish numerically
between continuous and first-order transitions. They usu-
ally depend on observation of hysteresis near the transi-
tion or finite-size scaling of the form L ", where L is the
size of the system in units of the lattice spacing and d the
dimensionality. However, hysteresis is dificult to detect
in an anambiguous way and finite-size scaling L will
set in only for large system sizes L &g, where g is the
correlation length. Recently, a new technique has been
developed, which suffers less from these deficiencies,
and we shall then apply it to our problem. Once the loca-
tion of the first-order transitions is identified, we will turn
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FIG. 2. Phase diagram obtained from a Migdal-Kadanoff'ap-

proximation for the model of Eq. (1.2). The segment TF is a
first-order line when vacancies are allowed in the
renorrnalization-group procedure.

FIG. 3. Phase diagram obtained by Monte Carlo simulations.
The lines through the data are guides to the eyes. Continuous
and first-order transitions are indicated by solid and dotted
lines, respectively.
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to a careful determination of the critical exponents along
the rest of the line, assuming that the transition is con-
tinuous. When possible we will also compare with the re-
sults of applying Binder's method of MC renormalization
group. In Fig. 3 we show a portion of the phase dia-
gram obtained by Monte Carlo simulations. We find a
segment of continuous transitions along the phase bound-
ary separating the fully ordered phase from the fully
disordered phase, starting at the bifurcation point, which
eventually turns into a line of first-order transitions for
large 2 and roughly constant A +C in qualitative agree-
ment with the analysis of Sec. II. But, more surprisingly,
the numerical evaluation of the critical exponents shows
that they vary continuously.
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A. Monte Carlo method

B. First-order transitions

In order to locate the first-order transitions in the
phase diagram we made use of a recently developed
method based on the scaling behavior of the free-energy
barrier between ordered and disordered states. First we
obtain the histogram of the energy distribution

N(E.P L) RZ (P L)Q(E L)e——~ —
e E (3.1)

where R is the number of MCS, Z
=gz Q(E,L)exp( pE) the par—tition function, and
Q(E, L) the degeneracy of the energy E. At a first-order
transition N develops a characteristic double-peak struc-
ture in the vicinity of T, . This arises because of the bulk
free-energy barrier EFE(L) between ordered and disor-
dered states. This free-energy barrier at T, can be ob-
tained from the histogram of energy distribution [Eq.
(3.1)] as

The MC simulations were performed using the stan-
dard Metropolis algorithm with the combined variables
(o.;,8;) being updated once in each sequential sweep
through the lattice. We have chosen small system sizes
to perform long runs in order to achieve good statistics
and used periodic boundary conditions on square lattices
LXL for 10(L (32 with a vectorized version of the
program code. Most of the data on critical exponents
and the location of first-order transition, were obtained
from single extensive simulations, typically of 5X10
Monte Carlo steps (MCS), after discarding (1—2) X 10
MCS for equilibration. The histogram method was
used to extrapolate to nearby parameters in the phase di-
agram. Preliminary simulations with fewer MCS were
also used to approximately locate the transition lines.

E,

—0.5 0 0.5 1

Ising

the maximum. Note that b,FE(L) is independent of R.
For a first-order transition it grows slowly at a rate con-
trolled by the critical point for L «g and as L ' for
L ))g. If AFAR(L) as measured from simulations of the
energy distribution is found to increases with L, then ac-
cording to this method the transition is unambiguously
first order. A typical diagram of hFE obtained from the
histogram is shown in Fig. 4. The histogram at the pseu-
dotransition point is found by adjusting the parameters in
the Hamiltonian until the two peaks are at the same
height.

To construct the energy histograms we rewrite the
Hamiltonian (1.2) as

where

PH = AExr+ CEI (3.3)

Exr= g (I+o;o.j)cos(8; —HJ. ),
(3.4)

FIG. 4. Typical plot ofbFE obtained from A(F. ;p, L,N) as a
function of energy.

bFE(L)=HE (p, L,R)—AE (p, L, R), (3.2)

where E, (L) is the energy corresponding to one of the
equal depth minima of AE and E (L) is the position of

The histogram at nearby couplings A ',C' can be obtained
directly from the data at A, C. From Eqs. (3.1) and (3.3)
and the normalization +EN (E)=R,

N (Exr, El; A ', C' ) = (3.5)
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This extrapolation is feasible as long as the additional fac-
tor =e' + ' in the Boltzrnan weight is sufficiently
small compared to Q(E). Typically A ' —A, C'
—C = 10 and Q(E) = 10 in our extrapolations, which
clearly satisfy this requirement. To find AFE, we con-
struct histograms as a function of Ez, which is a discrete
variable and therefore more convenient for the purpose of
storing the data.

In Sec. II we found that for sufficiently large negative
C the line of single transitions may become first order
(Fig. 2). To locate these transitions we performed Monte
Carlo simulations at different values of A =3.0, 5.0, 6.5,
with roughly constant 2 +C=0.7 at a particular system
size L =16. To locate the transition we extrapolate in C
following Ferrenberg and Swendsen. No double-peak
structure appears for A =3.0 and 5.0, but for A =5.0 a
shoulder in the histogram can be noticed, as indicated in
Fig. 5. However, when adjusting C to obtain the histo-
gram at the transition no double peak appears for the L
values used in our simulations. We note that this behav-
ior is very similar to that observed in the q =4 Potts
model in two dimensions, which is known to separate
second-order transitions (q ~4) from first-order transi-
tions (q )4). So this behavior suggests we are in the
neighborhood of a tricritical point. Indeed, finite-size
scaling of AFE at 2 =6.5 shows a monotonic increase
with the system size L as indicated in Fig. 6, which is a
definite signal of a first-order transition. We also checked
that the histograms in terms of EI and E~~, both show a
double peak structure separately as they should at a
discontinuous phase transition. Note that this transition
is between the fully ordered phase and the disordered
phase. In Fig. 7 we show the staggered magnetization
histogram at the transition. A sharp single peak at zero
appears indicating that this transition lies outside the an-
tiferromagnetic ordered phase as indicated in Fig. 2.

It is not possible to locate the tricritical point with any
precision. The method can unambiguously determine
that a transition is first order from the monotonic in-
crease in AFE with increasing L. However, the absence
of a peak in EFE for the available system sizes does not

A=6.5

h, FE

0.0 I

0.05
1/L

0. 1

FIG. 6. Finite-size behavior of AFE for A =6.5 indicating a
first-order transition.

C. Critical exponents

We now turn to the determination of the critical ex-
ponents along the segment PT of assumed continuous
transitions in Fig. 3. In principle, there are at least two
kinds of critical exponents to be determined, since we

preclude a very weak first-order transition, since a peak
may develop for yet larger sizes. Thus, the absence of a
peak does not guarantee that the transition is continuous.
From these simulations, our best guess for the location of
the tricritical point is A =5, C = —4.3. However, the es-
timates of the critical exponents for 3 & 5 under the as-
sumption that the transition is continuous show some
strange behavior, which leads us to suspect that the tri-
critical point may be as low as A =3. Also, a preliminary
study of the central charge by MC transfer matrix
method, which approaches the tricritical point from
A & 3 suggests that this latter value may be a better esti-
mate.
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FIG. 5. Energy histogram at A =5.0 as a function of C near
the transition point.

FIG. 7. Staggered magnetization histogram at the same
values of A, Cof Fig. 6.
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have Ising and XY type variables. However, here we will
be concerned only with the evaluation of the first kind.
The reason is that these can be obtained quite accurately
by studying the finite-size scaling of the bulk free-energy
barrier between states with discrete symmetry. This free
energy, bF (L), is defined in a similar way as in Eq. (3.2)
by constructing the histogram as a function of the mag-
netization m =(1/L")g; cr;. At the critical point,
b.F (L) becomes a constant for large L. For T (T„
hF (L) increases with L as L'~ for L ((g and for
T) T, approaches zero. This change of behavior near
T, can be used to determine the critical parameters with
good precision. However, the exponent itself can be ob-
tained quite easily from the slope of a log-log plot of
(dbF /BC) as a function of L, which yields 1/v from a
one parameter fit without requiring a precise determina-
tion of T, . The exponent 2P/v can be obtained from the
scaling of the location of one the peaks in the histogram,
which should scale as L P at the critical point. This,
however, will depend on a precise location of the critical
point and hence will be subject to larger uncertainty. In
Fig. 8 we show some of the exponents obtained by the
method described above at a point along the hne of single
transitions and also on the Ising transition line.

It is interesting to note that b,F (L) reaches a max-
imum in the form of a cusp, at a particular value of A as
indicated in Fig. 9. It is quite natural to assume this is
the location of the bifurcation point in the phase dia-
gram. In fact, its location coincides with the point where
1/v sharply increases from its value along the Ising tran-
sition line to a significantly larger value along the bound-
ary between fully ordered and fully disordered phases.
At present we do not know how to analyze the behavior
of hF (L) near the maximum but we expect that it

should provide some information about the critical ex-
ponents associated with the bifurcation point itself.

In Fig. 10 we show the variation of the exponents with
A near the bifurcation point. It is quite clear from this
figure that the exponents deviate significantly from the
pure Ising values (v= 1, 2P/v= —,') and seems to vary sys-
tematically with the parameters A and C indicating a
nonuniversal critical behavior.

We have also obtained independent estimates of the
critical exponents using Binder s phenomenological re-
normalization group of Monte Carlo data. There are
two versions of this method. In one of them, the finite
system is divided into blocks, while in the other a set of
independent blocks each with periodic boundary condi-
tions is considered. We found that the first version gives
rise to large errors and inconsistency of the data so we
choose to work with the second version, which has the
additional advantage that it can be easily combined with
the histogram method, which gives much better results.
The method makes use of the size-dependent moments
& m &I, & m &I of the order-parameter probability distri-
bution. The central quantity to calculate is the fourth-
order reduced cumulant UL defined as

(3.6)

It can be shown that UL ~—', for T )T, and UL ~0 for
T & T, . Also UL ~U*, where 0 & U* & —', at T = 1,. The
critical exponents 2P/v and 1/v can be determined by
comparing moments and cumulants for two different lat-
tice sizes L and L'=bL. At T =T„UL = UL = U', and
it results in

4O-
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FIR. 8. Data used in the determination of the critical exponents from the finite-size scaling of hF . The curve indicated by + has
been reduced by 100 in order to use the same ordinate axis.
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and disordered phases plotted as a function of A.
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ing exponents.
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The exponents for the infinite system are obtained by ex-
trapolating the values obtained from Eqs. (3.7) to
lnb ~~, which sometime can be quite ambiguous. Also
the final exponents require a rather precise determination
of T, . Typical results of these calculations are indicated
in Fig. 11, where we also compare with the values ob-
tained from the previous method based on the finite size
scaling of b,I' (L). We observe an overall qualitative
agreement.

Additional information on the critical behavior along
this line is provided by the central charge c. From con-
forrnal invariance, this quantity is related to the finite-
size amplitude of the singular part of the free energy in a
L X ~ strip. For periodic boundary conditions in the L
direction, the free energy per site behaves assymptotically
as f (L)= f(ac )+mc/6L . Numerical calculations using
a MC transfer matrix to evaluate the free energy in the
strip geometry gives a value of c varying between 1.5 at
the bifurcation point to approximately 2 where the line of
first-order transitions start. This range of values is
much larger than would be expected (c =

—,
'

) if the critical
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FIG. 11. Same critical exponents as in Fig. 8 obtained by a finite-size scaling of the cumulants UL for L = 10 and L'=bL. The ar-
rows indicate the exponents obtained from Fig. 8.
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behavior were a simple superposition of a critical Ising
and Gaussian model. ' As far as we know, it also does
not correspond to any known model, but it is not com-
pletely inconsistent with a line of continuous varying crit-
ical exponents as suggested by the MC calculations.
These results for the central charge are rather prelimi-
nary and should be interpreted with caution. In particu-
lar, the variation of c along the critical line could be an
artifact of crossover or finite-size effects. Further investi-
gation is necessary to resolve this issue.

With all these results in hand, the phase diagram of
Fig. 3 can now be constructed. By monitoring the Ising
magnetization and the free-energy barrier AF, the
decoupled Ising transition with v= 1 and the single tran-
sition PT with v&1 are identified. The first-order section
is obtained from EFz. The decoupled XY part is not
directly simulated, but is obtained by studying the Ising
magnetization m in the C )Cz region and, where m =1,
finding A~~ by equating 2 2~~ with the standard XYcrit-
ical value. Then this line is simply continued to the point
P, which is identified by the sudden decrease in v from its
pure Ising value. We did attempt to identify the XY tran-
sition by studying the helicity modulus, but this was sub-
ject to just as large uncertainties.

IV. FULLY FRUSTRATED XFMODELS

In this section we will relate the fully frustrated XY
model, on both a triangular and square lattice, to the
same coupled XY-Ising model. According to this rela-
tion, the triangular and square cases are just different
points in the same global phase diagram and the results
found in the previous sections concerning the nature of
the transitions near the bifurcation point should have
direct implications for these models.

The fully frustrated XY model can be defined by the
following Hamiltonian

A,~
=n.x, (y, —

yj ) (square lattice), where (x, ,y, ) is the po-
sition of a lattice site, one immediately arrives at the
model in Eq. (4.1). Real Josephson-junction arrays are
more complicated because one has to include disorder,
charging effects, and dissipation. In particular, positional
disorder can lead to a double transition if there is a single
one in the ideal system. Here, however, we will only be
concerned with the ideal case.

On the basis of the universality hypothesis, one expects
that models with Ginzburg-Landau-Wilson effective
Hamiltonians differing only by irrelevant operators are in
the same universality class. For the fully frustrated XY
model in Eq. (4.1), Ginzburg-Landau expansions can be
constructed using symmetry analysis or Hubbard-
Stratonovich transformations. ' ' '

Starting from Eq. (4.1) one can apply the Hubbard-
Stratonovich transformation in the usual way by intro-
ducing an unconstrained auxiliary complex field 4; cou-
pled linearly to exp(i8; ). To fourth order in ip this yields
an equivalent Hamiltonain

(4.2)

A Ginzburg-Landau free energy can now be construct-
ed by introducing Fourier transforms and expanding
about the most Auctuating modes. For the triangular lat-
tice, J(q) has two minima at +Q with Q =(4'/3, 0) and
for the square lattice, after diagonalizing J(q, q') one
finds two minima at (0,0) and (O, rr). In each case, one
needs two order parameters, +& and %2. Retaining these
modes only, the quartic term in Eq. (4.2) will couple
%„42 and gives in the continuum limit a free density for
the square lattice case on the form

(4.3)

= —g J,"cos(8, —8 ),H

(ij )
(4.1) where u, v )0 and gradient terms have been ignored.

Similarly, for the triangular lattice it gives

where J,- =+J subject to the constraint that in each pla-
quette of the lattice the product of J, - is negative. For
the square lattice, this can be accomplished by ferromag-
netic horizontal rows and alternating ferromagnetic and
antiferromagnetic columns and for the triangular lattice
by isotropic antiferromagnetic couplings. This gives rises
to frustration and results in a ground state with continu-
ous U(1) and discrete Z2 symmetry. This model can de-
scribe Josephson-junction arrays in a magnetic field with
half a Aux quantum per plaquette by noting that the
Josephson coupling between neighbor superconducting
grains is of the form cos( 8; —81

—
A;~ ), where A;~

=(2m/40) fJ A.dl, 8; is the phase of the superconduct-
ing order parameter, and @0 is a Aux quantum. The vec-
tor potential A must satisfy V X A=8, the external per-
pendicular field, which results in the constraint that the
directed sum around a plaquette g A;. =2~f, where
f =@/@o is the number of ffux quantum per plaquette.
The fully frustrated case corresponds to f =

—,'. Choosing
an appropriate gauge, A,"= vr (triangular lattice) and

(4.4)

where u, v )0, and no coupling between phases arises in
the quartic term. Note, however, that Eq. (4.4) can be
transformed into the same form as Eq. (4.3) by the
change of' variables 0'i~'Pi+i +2 and %2~i iPi+iPi {see
also Ref. 34). So up to fourth order in O'„'Pz both the
square and triangular FFXY models has a free energy
precisely of the same form (4.3) but with a diff'erent rela-
tion between ro, u, and v. In both cases we find u, v )0.

If the free energy (4.3) is extended to general dimen-
sions d and number of components n, an e =4—d
renormalization-group analysis reveals the existence of
a stable fixed point for some range of n and d. The criti-
cal exponents diff'er from those of the pure 0 (n) model
and suggest a new universality class. We thus expect a
rather nontrivial behavior in d =2 dimensions.

A similar result for the Ginzburg-Landau free energy
was obtained by Yosefin and Domany using a symmetry
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but they assumed w )0. From a renormalization-group
analysis in 4—e dimensions they concluded that a first-
order transition is expected, since all stable fixed points of
the recursion relation were found to reside in the region
w &0. Note, however, that (4.5) reduces to the form
found in (4.3) when w = —v, precisely the opposite sign
from what was assumed. In this region a stable fixed
point is possible, as discussed in Ref. 34. We believe that
the free energy in the form given by (4.3) is the appropri-
ate one for the square and triangular FFXY models, since
it can be obtained by a Hubbard-Stratnovich transforma-
tion, which gives explicitly the coe%cients u, w, and u

without any particular assumption on the sign or magni-
tude of these quantities. Near d =2 where amplitude
Iluctuations can be ignored both (4.3) and (4.5) leads to
the same result.

In two dimensions the phase transition occurs well
below the mean-field critical temperature and fluctuations
in the magnitude of the order parameter are usually
irrelevant. So we can approximate these magnitudes
by their corresponding mean-Geld values

r0/(4u ——2U) obtained by minimizing Eq. (4.3) and
consider only phase fiuctuations. One then obtains an
e6'ective lattice Hamiltonian in the form of two coupled
XYmodels

H = —g [a cos(8, ,
—8, )+P cos(82, —82, )]

(ij)
—g g cos(Oi; —

Oz;
—8,~. +8&~ )

&~'j&

—h g cos2(8„—82, ) (4.6)

with g =0 and a=P initially. For convenience we define
the model on a square lattice.

In Ref. 6 a difFerent conclusion was reached with
respect to the triangular case, which was found to be de-
scribed by two coupled XY models with a coupling term
cos3(8, —Oz) instead the one in Eq. (4.6). They arrived at
this conclusion by assuming a phase only approximation
starting from the free energy in the from (4.4) and noting
that coupling between the phases Grst appears in the
sixth-order term. However, since u &0, the last term in
(4.4) favors either 'Pi =0 or 9'2=0, which invalidates this
kind of approximation, since the magnitude of the order
parameter must be nonzero. If one instead performs a
change of variables, as described above, one obtains (4.3),
which is an appropriate starting point. Similar con-
clusions to ours were also obtained in a slightly different
way in Refs. 7, 34, and 35.

Berge et al. ' have studied by Monte Carlo simulations
an anisotropic version of the fully frustrated XY model
on a square lattice by introducing antiferromagnetic cou-
plings di6'ering by a factor g from the ferromagnetic

analysis. They also reach the conclusion that both square
and triangular cases are described by the same free ener-

gy, which however, dier slightly from (4.3) in the last
term. They find instead a more general form

(4.5)

ones. Ginzburg-Landau expansions similar to Eq. (4.3)
can also be constructed for this case and leads to cou-
pled XI'models in Eq. (4.6) with aAP when g%1.

The model in Eq. (4.6) has been studied by
renormalization-group methods using a Coulomb-gas rep-
resentation. It was found that g becomes negative and h
is very relevant under renormalization. Also a =iO is only
preserved under renormalization if they are initially
equal. For a&P, a double transition is found with an Is-
ing followed by an XY transition as temperature is in-
creased in agreement with the Monte Carlo simulations. '

It can also be shown in this case that the signature of the
Ising transition appears as a logarithmic singularity in
the helicity modulus, which also seems to agree with
Monte Carlo simulations. No definitive conclusions,
however, could be obtained by these methods in the re-
gion of single transitions of interest for the isotropic fully
frustrated XY model (g=1) because too many parame-
ters become relevant and the renormalization-group ap-
proximation breaks down. We can imagine, however,
performing a rescaling of the lattice until h is large
enough so that we can take the limit h ~~. In that case
02~ =Oi„+7T7y where ~=0, 1 and an e6'ective Hamiltoni-
an is obtained in the form of coupled XY-Ising models
(o „=2~„—1):

= —g [A,s(1+o.„o„)cos(8„—8,.)+C,so.„o„.],H
kT

(4.7)

where A,z and C,~ are efFective couplings both depend-
ing on the initial values of a and h and consequently have
a different relation for the square and triangular FFXY
model. However, the critical behavior of both models
can be described using the same efFective lattice Hamil-
tonian. The same result has been obtained by Yosefin
and Domany from a Ginzburg-Landau type of expan-
sion obtained from symmetry analysis. They assumed,
however, C =0 for both models.

The precise relation between the renormalized parame-
ters A,s, C,s in Eq. (4.7) is diKcult to obtain because the
limit h ~ 00 of Eq. (4.6) is outside the range of validity of
the renormalization-group approximation. However,
from a numerical iteration of the recursion relations we
expect that ~C,s~ &&A,s but of negative sign. The pa-
rameters of the square and triangular cases should lie
close to the bifurcation point, and they are likely to be in
the region of single transitions in the phase diagram.
There is no special symmetry in the model (4.7), which
would indicate the position of this bifurcation point so
this question can only be answered by performing numer-
ical simulations on the original fully frustrated XY model
and detecting either a single or a double transition. The
result will also dependent on the form of interaction be-
tween the XY spins as this will inhuence the relative
values of the parameters controlling the XY and Ising
transition.

A similar situation also occurs in other approaches. In
the Coulomb-gas representation of fractional charges, '

one finds a phase diagram with identical topology as in
Fig. 3, where A corresponds to the coefficients K of the



4828 JOOYOUNG LEE, ENZO GRANATO, AND J. M. KOSTERLITZ

logarithmic interacting charges and C to a nearest-
neighbor Ising coupling J of the antiferromagnetic ar-
rangement of positive and negative charges. The authors
assumed that the original model corresponds to J =0 but
the Coulomb-gas representation is obtained from a Vil-
lain approximation to the cosine interaction of the origi-
nal model. The value of Jcontrols the relative position of
the XY and Ising-like transitions, and there is no special
reason for this relation to remain the same within this ap-
proximation. This is possibly the reason why the numeri-
cal simulations in the Coulomb-gas representation and in
the original phase variables disagree regarding a double
or a single transition.

Recently, we have performed Monte Carlo simulations
for the FFXY model on a square and triangular lattice.
From a finite-size scaling analysis of the data, using the
same methods as those described in Sec. III, we obtained
v=0. 83(4) and 0.85(3), and 2P/v=0. 28(4) and 0.31(3)
for the triangular and square lattices, respectively. They
agree with each other within the estimated uncertainties
but are significantly different from the pure Ising model,
suggesting they lie in the region of single transitions in
the phase diagram of the coupled XY-Ising model. These
exponents are also consistent with the values obtained
from the simulations described in Sec. III. In addition, a
recent evaluation' of the central charge of FFXY model
by a Monte Carlo transfer matrix gives a result
c =1.66(4) within the range of the corresponding result
from the coupled XY-Ising model along the line of vary-
ing critical exponents. The estimates of 2P/v of Refs.
17 and 28 agree within numerical uncertainties but not
for v. In the latter, v was determined by a very indirect
method and found to be consistent with unity. Our
Monte Carlo evaluation, which involves a one parameter
fit to the data, is definitely inconsistent with v= 1.

V. CONCLUSIONS

We have investigated by real-space renormalization-
group methods and Monte Carlo simulations the phase
diagram of a coupled XY-Ising model. This model can
describe the critical behavior of various physical systems
of theoretical and experimental interest. In particular,
the fully frustrated XY model on a square and triangular
lattice was analyzed in some detail, and arguments were
given showing that these two cases can be considered to
lie along different paths in the same coupled XY-Ising
model. The same result also applies to Josephson-
junction arrays in a magnetic field with a half Aux quan-
tum per plaquette. In either case, changing the tempera-
ture will drive the system through a double or a single
transition. In the former there will be an XY followed by
an Ising transition as temperature is increased, and in the
latter a single transition will occur, which can either be
continuous or first order depending on the parameters.
This line of continuous transitions has varying critical ex-
ponents, and so different paths will lead to different criti-
cal behavior. This may be the case of the FFXY model
on a square and triangular lattice, which have the same
symmetries. In fact, a calculation of the critical ex-
ponents of FFXY from Monte Carlo simulations, using

the same methods described in this work, gives results
very different from the pure Ising model, indicating that
they lie in the single transition region, and a nonuniversal
behavior is expected.

The line of single transitions, which we have investigat-
ed in this work, is expected to be of critical behavior of a
new universality class. In addition to varying critical ex-
ponents, a calculation of the central charge shows that
this quantity appears to vary continuously along this
line. Although the results for the central charge are
very puzzling and are currently under further jnvestiga-
tion, they do seem to support the conclusion that this
line is expected to show a rather nontrivial critical behav-
ior, which cannot be described as a superposition of a
critical Ising and XY model. The FFXY model on a
square lattice, which we expect to undergo a transition
corresponding to some point along this line, has already
been found to have critical exponents and central
charge' within the range of the values obtained for the
coupled XY-Ising model.
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APPENDIX

In this Appendix we use a Migdal-Kadanoff
renormalization-group approximation to obtain a qualita-
tive global phase diagram of the coupled XY-Ising model
defined ln Eq. (1.2).

To apply the method we first consider a more general
form of Eq. (1.2),

= —g [(1+a';oi)V(8, —8J)+Co,-o j],H

&ij )
(A 1)

A, (8)=f u (P)u (8—P),

A =f u (p).
0 2K

where V(8) has periodicity 2m. and initially have the form
V(8) = A cos8. Grouping the unit cells of the square lat-
tice into large cells with scale factor b, and moving the
internal bonds to the perimeter we can integrate out the
sites in one dimension obtaining effective interactions be-
tween the remaining ones. Using for simplicity b =2, in
terms of u (8)=exp[V(8) —V(0)], z =exp[ V(0)+C]),
we obtain renormalized parameters (primed) as

(z') =[z A, (0)+z ]/2A

(u') (8)=[z"A,(8)+z ]/[z A, (0)+z ],
where
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+Ct, t, o-, tr, +Kt, t, ]+t5, g t, . (A3)

The C~ ~ of this model has been studied in a different
context in Ref. 38.

Applying the same Migdal-Kadanoff approximation to
this model we obtain in terms of
u (8),z, w =exp[IC+ V(0)] and y =exp(h), the following

Numerically, it is more convenient to follow the recur-
sion relations for u(8) using its Fourier components
u (s). The effective coupling of V(8) can be identified as
A,s =g, s u (s). For the standard XY' model at low tem-
peratures, u (8) relaxes after a few iterations to a Villain
potential, with Fourier components u (s) ~ exp( —s /23).
For the Villain potential A,z=J as can be seen by replac-
ing summation by integration. This function is nearly in-
variant under the renormalization-group transformation
when A,s )2/n. , since the change per iterate is rather
small. So will identify the critical A, in our case by re-
quiring that after a few iterations A',&= 1/m, which gives
the known result for the XY model in the limit C~ ~ in
Eq. (Al).

The phase diagram obtained by iterating numerically
Eqs. (A2) is indicated in Fig. 2. We find four different
phases: (a) a disordered (high-temperature phase where
C, Adr~O, (b) an intermediate Ising-ordered phase where
C~ ~ but A,s ~0, (c) an ordered (low-temperature
phase where C~ ~ and Adt~ A *, and (d) an antiferro-
magnetic Ising-ordered phase where 2 ~0, but C —+ ~.
In the last phase, C—+ ~ because, by using the scale fac-
tor b =2, the decimation procedure maps the antiferro-
magnetic ground state into a ferromagnetic one. We
have performed the calculation with b =3, which avoids
this problem and get C~ —~ in this phase. However,
we found it less time consuming in this case to use a
transfer matrix implementation of the decimation pro-
cedure.

The line joining point P to F in the phase diagram is
not actually a single line within our renormalization-
group approximation. This comes as no surprise, since
A is not a true fixed point where the line of almost fixed
points at low temperature terminates, as one would ex-
pect, in the limit C~ ao. However, within an uncertain-
ty of about 1% they are very close, and so we will hereaf-
ter consider it as single line and regard this effect as a
shortcoming of the Migdal-Kadanoff approximation.
Also for the same reason, we cannot locate point P with
precision, although it is close to the line of initial points
C =0.

To investigate the first-order transition within our
real-space renormalization-group analysis, we generalize
the procedure of Nienhuis et al. , which reproduces the
known first-order transition for the q-state Potts model
when q )4. The procedure consists of enlarging the pa-
rameter space of the original model by including a local
variable t; =0 or 1 corresponding to presence or absence
of a vacancy state. The Hamiltonian in this lattice-gas
version of our coupled XY-Ising model takes the form

= —g [(1+o;o )t;tJ. V(8; —8i)
0

(ij)

recursion relations

2w y+z +z A, (0)
(z') =

2u 4y+2W,

2w 'y+z '+z'W, (8}
(u') (8)=

2w y +z +z A, (0)

2w y+z +z A i(0)
(w'} =8(1+y) (w y+ A~)

(2w y+z +z Az)

2 w (1+y)
(2w + + A )

To obtain the above equations, in the bond moving
procedure we chose to distribute the site term At; equally
between the adjoining bonds in order to preserve the den-
sity of sites after each decimation. This turns out to be
important to obtain the correct fixed points at K~(x),
where phase separation can occur.

The first-order line appears in the limit K, h, z~~
where one finds an almost fixed line when

y'(w') (z') =4y w z /[ 3 *, (0)] (A5)

To obtain (A5) we have used the Villain form into Eqs.
(A4) and replaced summations by integrals. Along the
unstable direction we find, for small deviation, an eigen-
value A, =b"=4, where d is the dimension of the lattice.
This is in accordance with the Nauemberg-Nienhuis
criterion for a first-order transition to occur. By numeri-
cally iterating Eqs. (A4) we can construct a phase dia-
grarn as a function of the vacancy fugacity e, and we
find a first-order transition beyond a finite value of this
fugacity, which decreases as C gets large and negative.
This suggests that along the line PF of Fig. 1 a first-order
transition can appear.

The original Hamiltonian, however, corresponds to
6—+ —~ in the lattice-gas version, and this limit is stable
under the renorrnalization-group transformations of Eqs.
(A4). This stability, however, is a deficiency of the
Migdal-Kadanoff approximation, which leaves invariant
the number of states at each site after decimation. In the
case studied by Nienhuis et al. a Niemejier —van
Leeuwen type of real-space renormalization group was
used, which can generate vacancy states after the first
step of the renormalization procedure. To correct this
deficiency we first apply a prefacing transformation,
which allows the generation of vacancy states and then
use the resulting Hamiltonian as defining initial parame-
ters from which we continue with the renormalization-
group transformations given in Eqs. (A4). This type of
hybrid approach has also been used by Mizrahi and
Domany ' in a study of the Z (5) model.

Our prefacing transformation consists of dividing the
square lattice into cells of four sites each and projecting
the configurations of the site variables within a cell into
cell variables u', 0', and t. This results in a new restruc-
tured Hamiltonian in terms of cell variables with
nearest-neighbor couplings 3', C' and vacancy fugacity
e . There is a certain freedom in choosing the projection
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operator. We choose the one that generates the
minimum number vacancy state, as follows: (a) if the
sum of the Ising spins is different from zero, there is no
vacancy ( t = 1 ), and we then assign a cell Ising spin
o'=+1 according to the majority rule and an angle cell
variable 9' as an average over the coupled sites; (b) to the
remaining configurations we assign vacancy state t =0.

This prefacing transformation can be viewed as a first
step of a Niemejier —van Leeuwen type of
renormalization-group transformation. To evaluate the
new coupling parameters we use a cumulant expansion.

I

A'=2J(e Ch, +2h2+h3)/(e f+4g)
C'=2L (e" f+2g) /(e f +4g)

e = [4I&(2A)+2e ]/(e f +4g),

where Io is the modified Bessel function and

(A6)

This consists in dividing the initial Hamiltonian into in-
tracell and intercell parts and developing a cumulant ex-
pansion in the intercell couplings. Within a first-order
cumulant expansion we obtain

h, = +,. f 'd9; expI2A [cos(9,—82)+cos(8z —93)+cos(93—8~)+cos(84 —8, )]]cos(8&—8'),

h2= Q,. f 'd9; expI2A [cos(9,—92)+cos(82 —83)]]cos(8,—8'),

h = Q,. f 'd8; expI2A [cos(9,—9 )+cos(9 —8 )]]cos(8 —9'),

f = Q, f 'd9; e pI2A [cos(8, —9,)+«s(8,—8, )+«s(8, —9,)+«s(8„—8, )]I,

g = Q, f 'd9; exp I2A [cos(9,—82)+cos(8z —83)]} .

(A7)

The primes to the integrals imply that the integrals are to
be carried out under the constraint of 0' being the aver-
age over the variables 9;. The functions h;, f, and g have
an implicit dependence on the cell angle 0' because of the
constraint. We follow Lublin and take an average of
these coefficients over the cell angles in order to obtain a
0-independent result.

Using Eq. (A6) to obtain initial values of A', C', and

e, we continue with the renormalization-group transfor-
mation using Eqs. (A4). We find a tricritical point T
along the line C &0 located at 3 +C=0.49, 3 =1.5,
where a line of first-order transitions TF starts. The loca-
tion of this point is only approximate, since it will depend
on the choice of the projection operator used in the pre-
facing transformation.
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