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In the late stages of phase separation in liquids or solids with negligible coherency stresses, the struc-
ture function S(k, t) is known to follow a scaling behavior in the form S(k, t)-k (t)F(k!k (t)),
where k (t) is the value of k that maximizes S at a given t. Previous work has shown that, for many real
systems and for three-dimensional computer models, the scaling function F(x) depends only on the
volume fraction P of the minority phase but not on the temperature T for a given P. Results from a
Monte Carlo simulation of the two-dimensional Ising model, and also from a recently published numeri-
cal solution of the two-dimensional Cahn-Hilliard equation, are shown here to give a scaling function
that can be fitted, as in the three-dimensional case, by an analytical expression containing just one adjust-
able parameter y, independent of T but dependent on P. We analyze and interpret some universal
features of these scaling functions, including their behavior at small x and at large x, and their depen-
dence on P. Our discussion is based on a two-phase model, i.e., a mixture of two types of domains
separated by thin interfaces, with kinetics based on the Cahn-Hilliard equation. We introduce an as-
sumption of self-similar evolution (in the sense of self-similar probability ensembles) and show that it
leads to the well-known t' growth rate for the average domain size and to the above-mentioned univer-
sal properties of the scaling function. Simple geometric considerations also allow the calculation of the
parameter y, so that the scaling function may be obtained without any adjustment of parameters. The
inhuence of droplet-size distributions on the scaling function, the limit of very dilute alloys, and the tem-
perature dependence of the coarsening rate are also considered.

I. INTRODUCTION

The kinetics of phase separation after quenching into
the miscibility gap have been studied in a variety of two-
phase systems ranging from liquid mixtures to solid al-
loys. ' The dominant processes observed are the demix-
ing of the homogeneous system into single phase regions
and the subsequent increase in the average size of these
regions, known as coarsening. The origin of this coarsen-
ing behavior is the tendency of the interfacial energy to
decrease. ' Other forces, such as elastic interactions in
solids, may strongly alter the coarsening kinetics and
produce anisotropic cluster structures, for example, thin
plates' but in this paper we consider only cases where
the surface energy provides the only driving force for the
coarsening.

In the late stages of this coarsening process the spheri-
cally averaged structure function S(k, t), which can be
measured experimentally using small-angle scattering of
neutrons, x rays, or light, ' '" has been found to satisfy
a scaling relation. This scaling behavior was first ob-

served in computer simulations' and appears to be a
"universal" feature of the late stages of coarsening with
(in three dimensions)

S(k, t)-k '(t)F{klk (t)),

where F is a function of one variable and k (t) is the
value of k at which S(k, t) has its maximum. It was fur-
ther shown recently, ' that for many different systems, in-
cluding polymers, liquid mixtures, solid alloys, and
theoretical models studied using computer simulations,
the scaling function F(x) can always be fitted by a formu-
la that contains just one adjustable parameter, related to
the volume fraction of the minority phase. That is, when
the volume fraction is kept constant, F(x) does not vary
appreciably either with temperature or from one system
to another. This "universality" of the structure function
suggests that (for a given volume fraction) the spatial ar-
rangement of the phases in the late stages of coarsening is
also in some sense universal, systems as different as an
acid-water mixture or an aluminum alloy having a similar
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geometric arrangement of phases. This should be true at
least over the ranges of distances corresponding to those
where the structure function is measured and compared:
for the acid-water mixture these distances would be of the
order of micrometers and for the alloy of the order of
nanometers.

Although there are various theoretical derivations of
some properties of the shape of the scaling function F(x),
such as its small-x (Refs. 14 and 15) and large-x (Refs. 16
and 17) behavior, it is still far from clear what the essen-
tial features of the geometric arrangement of the phases
leading to the universal shape of F(x) are. What is clear
from experiments' '" and computer simulations' ' is
that the patterns at small volume fraction correspond to
isolated droplets, whereas close to the critical mixture
one observes interconnected spongelike structures. This
description is, however, not precise enough to explain the
universal character of the scaling function and its
volume-fraction dependence. It is the aim of this paper
to investigate, from both a theoretical and an empirical
point of view, possible causes and implications of various
apparently universal features of the scaled structure func-
tion. We give an outline of the contents of the paper at
the end of the next section where we present definitions
of the basic quantities.

II. DEFINITIONS

A. Structure function and scaling function

Consider any system of particles in which the ith parti-
cle scatters radiation with an amplitude u, . For the
binary mixtures we consider here, u; takes one value u „
if the ith particle is an 2 particle and a different value uz
if it is a B particle. The scattering at any nonzero wave-
number shift k is proportional to the structure factor

2

s(k)=((/N)( pe '(u) —u) ),j=1

where r is the position vector of the jth particle, X is the
total number of particles in the system, and u is the aver-
age value of u,

N
u =(1/N) g u. .

The angular brackets signify an averaging over a suitable
statistical ensemble; this averaging avoids mathematical
difhculties when we take the Fourier transform to get the
pair-correlation function. Of course the ensemble has to
be chosen in such a way that the observed behavior of
our macroscopic system is "typical" for the ensemble.

For the phase-separating systems considered in this pa-
per, it is found experimentally and in computer simula-
tions that for large times t and a certain range of values
of k the spherically averaged structure function at time t,
which we denote by S(k, t), takes a particularly simple
"scaling" form, namely,

S(k, t)=S(k (r), t)F(k/k (t))

for 1/L «k «1/e and large t, (3)

where k~(t) is (for each value of t) the value of k at
which S(k, t) takes its maximum value; L is the linear
size of the system, and e is some upper bound on the sizes
of any microscopic structures in the system, such as lat-
tice spacings, short-range interatomic correlations, and
the thickness of the interfaces between phases. Most im-
portant of all, F is a function of one variable only, which
we shall call the scaling function.

The pair correlation function g ( r ) may be defined as
the (inverse) Fourier transform of the structure function
S(k):

g(r) =(2m) f e '"'S(k)d'k (r&O), (4)

where g(r, t) denotes the spherical average of G(r) at
time t, R, (t) is the location of the first zero of g (r, t) con-

sidered as a function of r, and g(O, t) is to be understood
as some limiting value of g (r, t) when r is of order e.

B. The two-phase model

Much of the theoretical discussion to be given in this
paper will be based on the so-called two-phase model, al-
ready implicit in the work of Porod. ' This model de-
pends on the idea that at late times the system consists of
two large regions Q~ and Qii (neither of which need to
be connected) whose local properties are similar to those
of the equilibrium 3-rich and B-rich phases, respectively,
together with a thin interface region separating them.
The thickness of the interface region, represented by a
time-independent parameter e, is much smaller than the
length scale characterizing the sizes of the A-rich and 8-
rich regions. The two-phase model is an idealization ar-
rived at by taking the limit e—+0, that is, approximating
the interface by a mathematical surface. At the same
time, the system is also assumed to be infinite in extent,
so that the finite-size effects disappear.

The structure function in the two-phase model, which
we denote by S, is given by

2S(k)= lim
~

V~
' f [uo(r) —u je' 'd'r

v
(6)

where V is a region of space with some speci6ed shape,
say a sphere or a cube,

~
V~ is its volume, uo(r) is a func-

tion taking some specified constant value u z if r is in 0, z
and a different value u~ if r is in O,~, and u is now the
space average of uo(r):

u = lim
~

V~
' f u()(r)d r (7)lvl-- . V

Ideally, uz and u~ should be chosen equal to the aver-
age scattering intensities per unit volume for bulk A-rich
and B-rich phases. However, the structure functions S
obtained from different choices of u ~ and u~ differ only
by a constant factor and therefore give the same scaling

where the integral goes over all of v-dimensional k space.
A scaling relation may be written for the pair-correlation
function in the form'

g(r, t)=g(O, t)G(r/Ri(t)) for e«r «L and large t
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function I". For convenience we shall usually take
u„=l, u21=0; then u, as given by (7), becomes the
volume fraction of phase 3, which we denote by P:

u =i/= llm ( fI ~/~V~)
/
V[~ m

where ~A„denotes the volume of 0&.
The derivation of this model from the microscopic one

in a suitable hydrodynamic limit e~O and the proof of
its validity as a good approximation in the late stages of
coarsening is a central problem of the theory. Progress
on this has been made recently by Pego and others
starting from the Cahn-Hilliard equation. This will be
discussed in Sec. IV after we give in Sec. III an exnpirical
fitting function for the F(x), which incorporates all the
experimentally (including computer simulation) observed
features. We also discuss there the r ' growth of k '(t)
All these properties can be derived, with varying degrees
of conviction, from the statistical solutions of the Cahn-
Hilliard or related equations, once we assume that the ap-
propriate solutions are self-similar in time. The discus-
sion of these points is the main content of Sec. V and the
appendixes. Section VI contains some additional con-
cluding remarks.

The derivation of Cahn-Hilliard-type equations from
microscopic dynamics is currently an active area of
research within the general context of the derivation of
hydrodynamical equations from microscopic models. We
shall not discuss these in this paper, but we refer the in-
terested reader to Ref. 28.

III. THE SCALING FUNCTION
IN TWO AND THREE DIMENSIONS

A. Construction of the model scaling function

L (x)=S(xk ) IS(k ),
where k is the value of k that maximizes S(k). The
function L has a simple analytical form for both v=3
(Ref. 13) and v=2 (Ref. 32).

a x 4

L (x)= „P„(x),x'+c.
b3

P3(x) =
b3+(x —1+d3)

(12)

(13)

tical to the correlation function used by Teubner and
Strey ' to model the structure of microemulsions.
Indeed, the structure of a dispersion of oil and water sta-
bilized by surfactant molecules is qualitatively similar to
the domain structure of a decomposing system. In the
case of rnicroemulsions, however, the structure corre-
sponds to equilibrium and the correlation function (10)
was obtained in Ref. 31 as the fluctuation spectrum for a
phenomenological free energy.

The v-dimensional Fourier transform of the right-hand
side of (10) appears to give a good approximation to the
experimental structure functions for wave vectors k near
to or greater than k . However, for small values of k
(corresponding to large distances) the scaled structure
function should be proportional to k —this behavior will
be discussed in more detail later (Sec. V A). As the third
stage of constructing our model, therefore, we multiply
the Fourier transform of the right-hand side of (10) by a
factor k /(k +const), which is proportional to k for
small k and is close to 1 for large k.

Let us denote by L,(x) the approximate scaling func-
tion constructed in this way; in accordance with (3) it is
calculated from the formula

In an earlier paper' we showed how to construct a
model scaling function for the three-dimensional case.
Here we extend these arguments to two dimensions.

We build up the model scaling function in three stages.
The first stage is a two-phase model in which the inter-
faces are randomly placed lines in the plane. For the
mathematical specification of this probability distribu-
tion, and of its three-dimensional analog, see Ref. 29.
The two-point correlation function for this model is

g(r) =P(1—P)e

2P2(x)=-
2)[~ +(3++2)1/2] j

1/2

x 12

with y=
b2

—1+d2, (14)

and a,b,c,d are constants depending on k and h.
According to the definition (11) the maximum value of
L should be 1 and should occur when x=1. These two
conditions fix a and c as functions of d and b . In
three dimensions this argument gives'

where A, is a constant proportional to the amount of in-
terface per unit area.

Next, to allow for the fact that the Fourier transform
of g has a maximum at some positive wave number k
so that g itself is likely to have some kind of heavily
damped oscillation, we multiply g by an oscillating but
decreasing function, to obtain

d3 d3
c3 and a3=(1+c3)1+

3

while in the two-dimensional case it gives

c2 [3+(1—d2) ]' —2(1—12)
1+c2 4b, [3+(1—d, )']

(15)

(16)

g(r) =P(1—P)
sin(2m. r /5 )

e " (e«r «L),
2~r /b,

(10) and

where 6 is a "wavelength, " which may be thought of as
some kind of domain size.

It should be mentioned that the expression (10) is iden-

a 2

1+c2
([3+(1—d2) ]I[3+(1—d2) ]'

—1+d, I
)'" .
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The scaling function L is thus characterized by two free
parameters, b, and d„which may be used for the fitting
of experimental data. It should be noticed that for d =0
the x correcting factor in I disappears, because c =0
and a =1 in this case, and the remaining expression for
the scaling function just corresponds to the Fourier trans-
form of Eq. (10). The parameter d, is therefore a mea-
sure of the strength of the x correction at small x.

structure functions S(k) at values of r or k corresponding
to the period of the superlattice used in the multispin
coding, which indicates that additional correlations intro-
duced by the multispin coding are not very important.

Using the multispin algorithm, data were obtained up
to 100000 Monte Carlo steps (MCS), where the structure
function is known from a previous study to exhibit
time-scaling behavior, and S(k, t) was calculated by

B. Fitting of experimental scaling functions

Many three-dimensional data have been fitted in our
previous paper. ' It was found that the parameter d3
could be given the value 0.06 in all the cases considered.
A broad range of data are well described by this model
scaling function, ' and the agreement is much better than
with earlier models. ' ' It is therefore natural to fix

d3 to 0.06 in order to leave only one free parameter for
the model scaling function.

In order to see whether a similar procedure is also pos-
sible in two dimensions we have performed Monte Carlo
simulations of the Ising model on a 512X512 square lat-
tice using the multispin updating algorithm of Amar, Sul-
livan, and Mountain. For details of the implementation
of this algorithm on a parallel computer, and a further
description of the algorithm, see (Ref. 37). The algorithm
is not mathematically equivalent to Kawasaki dynamics
but is sufficiently similar that one may hope to obtain the
same long-time behavior in the spherically averaged
correlation and structure functions. Indeed, no irregular-
ities appear in the correlation functions g(r) or in the
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4
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k (t)

0.19
0.12
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0.312
0.20

0.535
0.405

S(k (t), t)

5.6X10-4
1.34 X 10

1.1X10-4
2.4X 10
5.8 X 10

7.42 X 10
1.4X10-'
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0.18
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0.296
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3.36 X 10-'
8.5 X 10

1.53 X 10-'
3.5 X 10

TABLE I. Scaling parameters of the structure functions for
the 2D Ising model.
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FIG. 1. Snapshot pictures of the two-dimensional Ising mod-
el (see Sec. III B) after 10' Monte-Carlo steps at the temperature
T=0.8T, obtained using a multispin algorithm, which approxi-
mates Kawasaki dynamics. The volume fraction of the minority
phase is in (a) /=0. 25 and in (b) /=0. 5. The square added
onto each of the snapshot pictures has an edge length of 2m. /k
where k is the maximum position of the corresponding struc-
ture function S(k) (see Table I).
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averaging over typically 20—100 runs. Typical snapshot
pictures of the two-dimensional Ising model at 100000
MCS are shown in Fig. 1. Nine scaling functions were
obtained at the temperatures T/T, =0.34,0.5,0.8 and the
volume fractions /=0. 125, 0.25, and 0.5, by normalizing
the structure functions according to Eq. (3). Some
characteristics of these structure functions are shown in
Table I. The scaling functions are shown in Figs. 2(a),
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FIG. 3. Scaling function F(x) for the solution of the Cahn-
Hilliard equation from Ref. (19). The solid line is a fit to the
data using Eqs. (12), (14), (16), and (17) with the values for the
constants as given in Table II.
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2(b), and 2(c). For each volume fraction s)s, the data cor-
responding to di6'erent temperatures superpose, but for
difFerent volume fractions they are difFerent. The results
agree well with our finds' for the three-dimensional case.
Some deviations from superposability are, however, to be
seen in the region of very small x (Fig. 2), where the data
show some scattering and do not even approach 0 when
x —+0. This may due to a finite-size efFect, in the sense
that the left-hand inequality of Eq. (3) is violated for the
values of k corresponding to the smallest values of
x =k/k (t) plotted in the graph. In Figs. 2(a), 2(b), and
2(c) we also show the result of fitting the scaling functions
in the range 0.2 x ~4 using the expression for I.z [Eq.
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FIG. 2. Scaled structure functions of the two-dimensional Is-
ing model for all temperatures, times, and volume fractions P
listed in Table I. The scaling functions for /=0. 5 are shown in
(a), for /=0. 25 in (b) and for /=0. 125 in (c). The solid lines
are fits to the data with Eqs. (12), (14), (16), and (17) and the
values for the constants in these equations are given in Table II.

FKr. 4. Scaling function G(y) for the solution of the Cahn-
Hilliard equation from Ref. 20. The solid line is a fit to the data
using the Fourier transform of Eqs. (12), (14), {16),and (17) with
the values for the constants as given in Table II.
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TABLE II. Summary of the parameters for the 2D model

scaling functions.

I I I
[

I I I
)

I I I
)

I I I
]

I I I
]

I I I

70

Ising model
Present work

Cahn-Hilliard Equation
Ref. 20 Ref. 19 50

0.5
0.38
0.40

0.25
0.51
0.48

0.125
0.88
0.66

0.5
0.30
0.36

0.21
0.40
0.42

40

30

20

10

(12)] by a least-squares procedure. It turns out that the
parameter d2, characterizing the strength of the x
correction at small x, is not very critical for the fit and
may be fixed at the value 0.60, leaving b2 as the only free
parameter. The values of this free parameter are given in
Table II.

Numerical solutions of the two-dimensional Cahn-
Hilliard equation have been published recently. ' ' The
data for /=0. 21, ' as well as for /=0. 5, ' ' were also
fitted using L2 and fixing dz=0.60. The results may be
seen in Figs. 3 and 4, where the Fourier transform of L2
has been used to fit the scaled correlation function. The
corresponding values of b2 are listed in Table II. One
will notice that the statistical variations of the data in the
peak region (Fig. 3) are much stronger than in the case of
the Ising model (Fig. 2). Nevertheless, the values of b2
given by the Cahn-Hilliard equation are close to the cor-
responding values for the Ising model. From this
analysis it seems, in contrast to earlier claims, ' that the
scaling function depends on volume fraction even for the
Cahn-Hilliard model.

C. Dependence of k on time and temperature
for the two-dimensional Ising model

As the scaling function for the two-dimensional Ising
model at a given volume fraction is practically the same
for all temperatures, it must be possible to absorb the
whole temperature dependence of the decomposition pro-
cess into the scaling parameter k (t) listed in Table I.
Surprisingly enough, one observes only a very small
volume fraction dependence of k (t) and a very simple
temperature dependence: k depends on the time t and
the temperature T only in the combination of M(T)t
where

(18)

where J is the Ising-model coupling constant and where
we have taken k~ T, /J =2.2692 for the two-dimensional

Ising model.
To illustrate this we give, in Fig. 5, a plot of the scaling

length 2'/k against the quantity [M(T)t ]' . For each
volume fraction P the data points, regardless of tempera-
ture, lie close to a straight line. This shows that the
dependence of k on t and T at fixed P is approximately
given by

I I i t I i i i I I i i I i i i I

0 0.2 0. 4 0. 0 0.8 1.0 1.2

(N(T) 1]

= 2+8(P)[M(T)t]'",
k t, T,

(19)

with

39 for /=0. 5

3 =8 and 8= 41 for /=0. 25

47 for /=0. 125 .
(20)

As far as the dependence on t at fixed T is concerned,
these results agree with theoretical ideas due to Huse
and with earlier observations of a time dependence pro-
portional to t ' +const. For large T they also agree with
the t ' behavior of the domain size predicted by Lifshitz
and Slyozov. This t ' behavior will be discussed further
in Sec. IV C. The reason why the dependence on T has
the particular form shown will be discussed in Sec. V D.

IU. THE TWO-PHASE MODEL:
A MATHEMATICAL FRAMEWORK

A. Time evolution of the two-phase model

In this section we formulate a theory of the late stages
of coarsening. We would like our theoretical picture to
help us answer two questions: First of all, why does scal-
ing work at all, and second, why does the scaling function
depend on so few parameters?

Our discussion is based on the two-phase model, al-
ready described in Sec. II B. Space is divided into two re-
gions 0~ and Q~ representing the two phases, separated
by a mathematical surface, not necessarily connected,
representing the interface. We shall call this surface I .
The rule describing how the interface moves has been for-
mulated by Mullins and Vinals using a physical argu-
ment, and by Pego using the Cahn-Hilliard equation.

FIG. 5. Plot of 2~/k, where k is the maximum position of
the structure function for the Ising model (Table I), vs
[M( T)t]'~', where t is the time measured in 10' MCS and M( T)
is given by Eq. (18). All data from Table I are included. The
solid lines correspond to Eqs. (19) and (20).
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Here we follow Pego's version. The Cahn-Hilliard equa-
tion is

anal

at
=cV [f'(u) —e V u], (21)

D~=cf"(u„), DB=cf"(uB) . (22)

To obtain the time-evolution rule for the interface, we
consider the asymptotic behavior of the Cahn-Hilliard
Eq. (21) in the limit of small e and large t. This is done
by rewriting (21) in the form

aQ
e =V p',

at]

where p' is defined by

p f(u)GVu

(23)

(24)

where f(u) is the equilibrium free-energy density when
the order parameter is u. The function f has two local
minima, and its convex envelope has a linear part on the
interval [u„,uB] but is otherwise strictly convex. The
constant e is proportional to the equilibrium thickness of
an interface, and c is a rate constant, which is related to
the interdiffusion constants D~ and D~ in the two phases
A and B. The relationship, which can be obtained by
linearizing (21) about u =u~ and u =uB, respectively,
and setting e=O [see Eq. (4.1) of Ref. 23], is

Qgr= J &2[f(u)—(u —u„)f'(u„)]du, (29)

which in this theory is e ' times the surface tension.
To obtain the normal velocity on the physical t time

scale, the value given in Eq. (27) should, because of (25),
be multiplied by ec.

It could be argued that the Cahn-Hilliard equation is
not a sufficiently accurate model of the phase separation
process; for example, it does not include the phenomenon
of diffusion along the interface, which according to
Huse is important at intermediate times. Nor does it
include fluctuations, for which a stochastic model such as
the Cahn-Hilliard-Cook equation would be necessary.
However, in the very late stages of phase separation, the
Cahn-Hilliard equation does appear to be adequate, at
least so far as determining the scaling function goes.

The Cahn-Hilliard equation is intended for the case of
solid solutions, where the mechanism for the transport of
the order parameter is diffusive and the thermal conduc-
tivity is high enough to keep the temperature constant.
For other situations, for example in phase transitions in-
volving fluids, the kinetic equations, and consequently the
scaling behavior, may be different. However, one such
case where we might still expect the same behavior is the
demixing of a solution of two liquids of high thermal con-
ductivity; in this case the combined Navier-Stokes and
interdiffusion equations for the two components would be

and t& by

t, =crt . (25)

ap~
+(w V)pa =DERV (pa pB), —

at

v =[n.vpi], (27)

where ep, is the leading term in the e expansion of the
chemical potential, n. Vp& is the normal derivative of p&,
and [n Vp&] is the discontinuity in n.Vp, across I . The
rule for determining p, is

V'p, =0 in n„and n~,
p)= —vz in I

(28)

where K is the local mean curvature of I and ~ is defined

A formal asymptotic expansion in powers of e indi-
cates that for small e the solution u'(r, t, ) is close to its
e~O limit uo(r, t& ) in most parts of space but that there
are large deviations in certain layers of thickness O(e)
close to the interface. The existence of the e—+0 limit of
u '(r, t& ) has not been proved rigorously, but in the corre-
sponding problem for the related but simpler Cahn-Allen
Eq. (39), written in the form

e =e V u' —f'(u'),2a&
at2

where t2 =const Xe t, the existence of the corresponding
limit has been proved, for suitable initial conditions, dur-
ing the part of the motion where the surfaces remain
sniooth.

The normal velocity v of the interface I (as measured
on the t, time scale) is determined by the (nonlocal) law

ape +(w'V )PB DBV (PB PA )
at

aw +(w V)w= —Vp+vxV v,2

(3O)

d(p~ —pB)
at

=DV (P~ PB) (31)

so that we can apply arguments based on Eq. (21) to the
order parameter u =p& —pz, while treating p ~ +p~ and
w as constants.

B. Self-similar ensembles

Although the time evolution rule (27) is deterministic,
our model is statistical because (in the mathematical
model) the initial conditions are random. The actual sur-
face configuration I at any positive time t can be thought
of as drawn from a probability ensemble II„analogous to
the ensembles used in equilibrium statistical mechanics,
though in the present case the analog of phase space is
infinitely dimensional.

where p~ and p~ are the densities of the two com-
ponents, p~ and p~ their local chemical potentials, w the
quid velocity, D~ and D~ are interdiffusion coefficients, p
is the pressure and vz the kinematic viscosity. Provided
that D~=D~ and p depends on p~ and p~ only in the
combination p~ +p~, these equations have solutions for
which w is constant, while p „and p~ vary in such a way
that pz+pz =const and
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Just as in equilibrium statistical mechanics, there is no
rigorous argument for choosing the right probability en-
semble. In equilibrium statistical mechanics the standard
hypothesis is based on the use, for sufficiently large times,
of the simplest ensembles of all, that is, the ones in which
the probabilities are independent of time. In the present
case we shaB adopt an analogous hypothesis and use, for
large t, the simplest time-dependent ensembles, namely,
the self-similar ones: that is to say, ensembles where the
probabilities at any two different times are not identical
but can be obtained from one another by spatial scaling.
Some visual evidence in support of such an assumption
can be obtained from pictures such as Fig. 1 of Ref. 20 in
which typical configurations of interfaces for the two-
dimensional Cahn-Billiard equation for a given volume
fraction at different times look very similar apart from a
scale factor.

Unfortunately, in contrast to equilibrium statistical
mechanics where the chosen ensemble is automaticaBy
consistent with the dynamics (being stationary with
respect to the Hamiltonian fiow), we have no proof at
present that a self-similar ensemble actually exists, which
is consistent with the asymptotic interface dynamics
given by (21) and (28). We shall nevertheless assume that
such an ensemble does exist and proceed to see what
consequences follow.

To be precise, we shall say that a time-dependent en-
semble II of interface configurations I is self-similar if,
given any two positive times t' and t", one has a scaling
factor p(t, t") such that

C. Some mathematical properties of self-similar ensembles

In this section we collect some mathematical conse-
quences of the definition of self-similarity.

(i) For any self-similar ensemble, there is a function h
such that

P(t', t")=h(t')/h(t") . (34)

To prove this statement, let t', t",t"' be any three posi-
tive times; then it follows from definition of p that

p(t', t"')=p(t', t")p(t",t"') . (3&)

Fix t"', define h(t) =p(t, t'"), and the proof is complete.
(ii) Let @ be a length scale (defined below), and let the

time-dependent ensemble Il be self-similar. Then C&(II, )

is proportional to h ( t).
By a length scale we mean a nonvanishing functional N

of the probability distribution H, at time t, which is
homogeneous of degree 1, i.e.,

@(aeII, ) =a@(II,) (36)

for all positive a, where ae H, denotes the dilated proba-
bility distribution defined by

probability assumptions can be formulated in a simple
and precise way and the resulting theory developed in a
way that ensures mathematical consistency without (for
example) having to make special allowances for excep-
tional events of zero probability.

(32) a+11,(aA )=II,(A) (37)

for any set of configurations 3 having a definite probabil-
ity. Here II, ( A ) denotes the probability that at time t the
interface configuration I belongs to the set A, and pA
means the set obtained by dilating all the configurations
in the set A by a factor p; that is,

for all sets A, with aA defined as in (33). For example,
1/k is a length scale. To prove this result we note that
the definition (32) of a self-similar ensemble can be writ-
ten II,.=p(t', t")+II,-. The definition (36) of length scale
then gives

PA =IPI: I EA], where PI =IPr: r&I ] . (33)

The fundamental hypotheses of our mathematical
model are these: (i) in the limit of large t the actual time-
dependent probability ensemble approaches a self-similar
one (we shall call this hypothesis asymptotic self
similarity) and (ii) the limiting self-similar ensemble is
universal in the sense that (apart from trivial scale fac-
tors) it depends only on the conserved dynamical vari-
ables of the system —which, in the present case, means
just the volume fraction.

The use of self-similarity as in ingredient in theoretical
treatments of phase separation and coarsening has a long
history —for references see Ref. 41. For example Mul-
lins ' (see also Ref. 6) uses a hypothesis that "consecutive
configurations of the structure are geometrically similar
in a statistical sense. " %Shat we believe to be new about
the formulation given here is that our self-similarity hy-
pothesis is applied to the time evolution of probability en-
sembles of interface configurations rather than that of in-
dividual interface configurations. The use of ensembles
has the same advantages here as it has in other branches
of statistical mechanics, namely, that the underlying

Use the formula (34) for p(t', t" ), replace t' by t, and the
result follows.

By similar methods we can prove that any functional,
which is invariant under dilations, is independent of time:
if C&(aell)=@(II) for all positive a, then 4(II, ) is in-
dependent of t. This property corresponds to one used by
Mullins ' (see also Ref. 6) as part of the description of his
concept of statistical self-similarity.

(iii) For a self-similar enseinble of surface con-
figurations the spherically averaged structure function
defined as in (6) exactly satisfies a scaling relation analo-
gous to (3):

S(k, t)=S(k (t), t)F(k/k (t))

(for all t and all k &0), (38)

where k (t) is the value of k (assumed unique for simpli-
city) that maximizes the left-hand side at fixed t. More-
over, k (t) is proportional to [h(t)] ' and S(k (t), t) is
proportional to [h (t)],where v is the dimensionality.

Proof of (38). For any positive t', t", the definition of
self-similarity and the definition (6) of S imply
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S(k, t')=P S(Pk, t"), (39) V. PROPERTIES OF THE SCALING FUNCTION
AND THEIR INTERPRETATION

S(xk (t), t}=F(x),
S(k (t), t)

(40)

which is equivalent to Eq. (38). In the case where the en-
semble is only asymptotically self-similar, Eq. (40) will
hold in the t~~ limit:

where p means p( t ', t"). Combining with (34) we see
that, given any positive number g, the expression
[h (t) ] S(g/h (t), t ) has the same value, call it %(f),
whether t = t" or t = t', and hence is the same for all posi-
tive values of t, so that we may write

S(k, t)=[h(t)] %(h(t)k) .

Let g be the value of g that maximizes 0'(g); then we
have from this last equation k =g /h(t), proving one
of the statements in the result (iii), and S(k, t)
=[h(t)] %(g ) proving another. Finally, defining
I'(x) ='P(xg )/%(g ), we have

A. Small x behavior

1. The observations

limF(x}=0, giving limS(k)=0,
x —+0 k~p

(45)

Experimentally it is found " that F(x) usually de-
creases to 0 when x —+0 and, as pointed out recently by
Yeung and Furukawa, ' ' in many cases it is approxi-
mately proportional to x in this limit. Small-angle
scattering experiments and computer simulations are not
always conclusive because there are natural limitations to
the resolution which, in many cases, make it impossible
to extend the measurements to very small x. Within
these limitations, however, it has been found that many
experimental data are indeed consistent with x behavior
at small x.' Assuming this x law to be correct, it fol-
lows that not only

S(xk (t), t)
lim =F(x) .

S(k (t), t)
(41)

but also

a
lim
x OX ~ BX

ax ' F(x)=0,
Bx

(iv) For a self-similar ensemble of surface con-
figurations, which obeys the time-evolution rule (27) and
for which the expectation of the interface area per unit
volume (defined below) has a finite nonzero value, there is
a constant tp such that

giving lim V S(k) =0 .
k~p

2. Geometrica1 interpretafion

(46)

p(t', t")=
—tp

tp

1/3

(42)

~(r)= »m lvl-'f da(r)l~l-- . V
(43)

(after Mullins and Vinals ). By the interface area per unit
volume we mean here

(49)

Then it follows from (6), (45}, and (46) that

To interpret these two equations, imagine a region V of
given shape (e.g., the interior of a sphere) somewhere in
the system, and define

Mo= f [u(r) —P]d"r, (47)

M, =f [u(r) —P]rd'r, (48)

M2= u r — rr r.

h(t) =(t+const)' (44)

(v) For an asymptotically self-similar ensemble of surface
configurations obeying the time evolution rule (27), any
length scale [for example 1/k (t)] is asymptotically pro-
portional to t'~ . [Proof: use (44) in the result (ii).] The

law was discovered by Lifshitz and Slyozov, for the
case of small volume fractions P.

where dH(I ) denotes the element of area on the interface
surface I and V is as in (6).

The proof of Eq. (42) is given in Appendix A. To ob-
tain the result (42) is not actually necessary to assume
that the surface area per unit volume exists —any length
scale will do instead —nor is it necessary to assume the
particular time-evolution rule (27)—any rule which
scales in the same way under space dilations will do-
but the more general proof is longer. Equation (42) is
equivalent to the statement that we may take the h in (34)
to be

lim (M ) = limS(k)=0,1

I vl
(50)

lim (MoMz —Mi) = —
—,'limV S(k)=0 .

Ivl
' ' ' 'k o

(51)

Here I Vl denotes the volume of V.
The following simple morphological model may help to

interpret these two equations. Suppose that the space oc-
cupied by the system can be divided into subregions V.
(we shall call them "boxes") which make independent
random contributions Mo~', M& ', and M2J' to the in-
tegrals in (47), (48), and (49). Then, by taking the region
V in (50) to be a union of subregions V and passing to
the limit we find that (within this model) the expected
value of (Moj') is zero; that is, MOJ'=0 with almost com-
plete certainty. Then, using this result in (51), we find
that expected value of (M',J' ) is also zero, so that
M ] =0 almost cel tainly. In physical language the fr ac-
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tion of the A phase within every box is the same (we may
call this condition "local conservation of matter"), and
the centroid of the 3 phase within each box is at the cen-
troid of the box.

In the case where the volume fraction is small enough
for the minority phase to consist of isolated droplets or
nuclei, each box comprises one nucleus together with the
"depletion region" surrounding it. The condition
MOJ'=0 then has the physical interpretation that, on
average, all the superfluous B atoms in the depletion re-
gion within V- have been eaten up by the nucleus at its
center, rather than escaping into other boxes. The condi-
tion M', '=0 then has the interpretation that the nucleus
is at the centroid of V rather than being at its edge: as it
grows, the nucleus draws in matter even handedly from
all sides.

To make these ideas more quantitative, let us consider
a one-dimensional example. In this case the two-phase
model consists of alternating segments of the two phases,
the lengths of the segments being chosen according to
some probabilistic rule. These segments correspond to
the boxes defined above. The simplest case to consider
would be one where the lengths of the di6'erent intervals
are independent [Fig. 6 (i)]. However, as we have just
seen, such a model cannot give the right behavior for
small x: because the condition Mo'=0 is not satisfied,
S(0) is bound to have a positive value. For example, if
the lengths have a Poisson distribution, then g(r) is ex-
ponential and S(k) is a Lorentzian. In general, the expli-
cit calculation shows [see Appendix C 1] that for indepen-
dent intervals S(0) always has a positive value, violating
the condition (45).

O A

The condition of local conservation of matter may be
introduced into the linear model by requiring each
MOJ' =0 [see Appendix C 2]. In Fig. 6 (ii) the left part of
each box is colored black and the rest is white. The cor-
responding scaling function is calculated in Appendix C2.
Now the global shape of the scaling function is already
obtained, but because the centroid condition is still
violated the function is proportional to x rather than x
at small x.

The introduction of the centroid condition M& =0 into
the linear model is achieved by simply shifting the black
phase into the center of each interval (Fig. 6) The corre-
sponding scaling function then has, indeed, the right x
behavior at small x (Appendix C 3).

3. Theoretical explanation of the x law

The observation that F(x) is proportional to x at
small x can be understood qualitatively from the follow-
ing argument, due in essence to Yeung' and Furukawa. '

Let u j, and pk be the Fourier transforms of u and p, re-
spectively. Then the Cahn-Hilliard equation (21) implies

(52)

This suggests that u& is likely to be proportional to k at
large times and hence that S(k, t ), which is the expecta-
tion of ui, I, is likely to be proportional to k at fixed t.
From this behavior of S the x behavior of F(x) would
follow.

However, to make the argument work, we need to
know something about the behavior of pi, (t) for small k
and large t. Yeung' assumes, in efFect, that pi, (t) times a
certain function of t is bound as k —+0 for all t, but he
does not give the justification for this assumption.
Furukawa's derivation' also depends on an assumption,
multitime scaling, some evidence for which is given in
Ref. 43. A derivation of the x law, which does not re-
quire any fresh assumptions, is given in Appendix B.
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white. In model (ii) the left part of each interval is black, and in
model (iii) the center part of each interval is black.

B. Large x-behavior

Porod's land

g(r, t)=P(1 P) Ko(t)r+—o(r—) as r~0, (53)

where E, is a constant depending on the number of di-
mensions (K2 = 1/w, K3 = —'), o'(t) is the area of interface
per unit volume, and o(r) denotes a quantity (for example
r ), which goes to 0 more rapidly than r as r +0. By us-—
ing the Fourier transform relation (4), Eq. (53) can be
shown' to imply [provided that g(r) is twice
diff'erentiable for r&0] that

S(k, t)-K'o(t)k ' as k~~, (54)

where K2 =2 and K3 =2m. Comparing the definitions (4)

The theory of the behavior of S(k) for large k is due to
Porod. ' ' He showed that the two-point correlation
function of the two-phase model (with uz =1, u~ =0)
behaves for small r according to
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C. Dependence of the yeak width on volume fraction

1. The observations

From the fits of experimentally determined scaling
functions in three' and two dimensions (Sec. III) it has
become apparent that there is a well-defined dependence
of F(x) on the volume fraction P but that, for a given P,
the scaling function is essentially independent of tempera-
ture. The main dependence on volume fraction is an in-
crease of the peak width when ((1 is decreased. Similar
conclusions were also reached from investigations of
aluminum alloys with different compositions.

cr(t)k '(t)

2rp( 1 —
((1 )

(58)

where o(t) .is the amount of surface area per unit volume.
To use this formula we need values for k (t) and cr(t).
We estimate k (t) as

(59)

Using ideas already introduced in Ref. 13, we can cal-
culate y theoretically, once ((1 is known, and hence deduce
b and the entire scaling function via the relationship be-
tween y and b just mentioned. The key is the relation
(55), which when combined with (57) gives

2. Theoretical interpretation

As a measure of the width of the graph of F(x), we in-
troduce a quantity y defined by

lim [x +'F(x)]

I x 'F (x)dx
0

(57)

A small value of y corresponds to a narrow peak; for ex-
ample if F is a 5 function, then y is zero. Using (57), the
value of y can be calculated for any of the model scaling
functions I. developed in Sec. III; some examples are
shown in Table II. In this way y' can be expressed as a
function of the parameter b characterizing the function
I. .

where b(t) is the average linear dimension of the boxes
V. introduced in Sec. IVB2. [This identification would
be exact if the boxes were all identical, forming a lattice
with period b,(t).] To calculate o (t) we need an assump-
tion about the shape of the interface. At low volume
fractions the minority phase is assumed to consist of
spherical droplets, one to each box [see Fig. 1(a), where a
box of size 22rlk is drawn on a typical snapshot picture
for the two-dimensional Ising model at /=0. 25]. It
should be mentioned that, in the Ising model, the drop-
lets are not completely spherical due to the anisotropy of
the surface tension [Fig. 1(a)]. This weak nonuniversality
is, however, washed out in the spherically averaged struc-
ture factors considered here. The average radius R(t) of
the (spherical) droplets is related to P by

TABLE III. Calculation of y=k 'rr/2rp(1 —(()). o is the interphase surface per unit volume. ((1 is
the volume fraction of the minority phase.

Dimension 3
2m. /6

Dimension 2
2m/6

Morphology Sphere of radius R
'2

R
4m

3
4 R

7T
3

1/3 ' —1
5

y1/3( 1
9

Disk of radius R

R27T—

R

[ 3/2y1 /2( I y) ]
—

1

Morphology Cylinder of radius R

R2&—
2

[ 3/2y1/2( I y) j
—1

Stripe of thickness 2R

R2—

Morphology Plate of thickness 2R
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constX[R(t)] =P[b(t)]'
and to cr(t) by

const X [R (t)]' '=cr(t)[b(t)]',

(60)

(61)

stripe is smaller than that of the droplet for P &0.31 (see
Table III). The calculation thus provides a rough quanti-
tative explanation of why nature favors an interconnected
structure rather than isolated droplets at the higher
volume fractions.

so that, eliminating R(t), we obtain cr(t)=const
X P' '/ /A(t) Thus by substitution into (58), using (59),
our theoretical formula for y at low densities takes the
form

y =const XP ' '(1—P) (62)

For the value of the constant see Table III.
At higher volume fractions this droplet picture is no

longer correct, and the regions occupied by the two
phases become interconnected. A rough representation
of the interconnected patterns may be obtained by assum-
ing that in each box of size A(t) there is now a cylinder,
or in two dimensions a stripe, crossing the box. A typical
box is shown in Fig. 1(b), a typical snapshot picture of the
configuration of the two-dimensional (2D) Ising model at
/=0. 5. As the stripes (or cylinders) in adjacent boxes
may have di6'erent orientations, this would describe a
highly interconnected structure. For three dimensions
one may also imagine an arrangement consisting of inter-
connected plates rather than cylinders. The relevant cal-
culations are summarized in Table III.

It is interesting to note that the total interface surface
for a given volume of the B phase inside the box is, in
three dimensions, ' smaller for the cylinder than for the
droplet if the value of P is larger than about 0.15, and
even smaller for the plate if P )0.31 (taking P + 0.5
throughout). In two dimensions the surface area of the

3. The case of injrnite dilution

P(R) =p(R /R (t) )/R (r),
where R (t) is the time-dependent average radius and

(63)

In the infinite dilution limit, the droplets will be spheri-
cal because of surface tension and their separation will
become extremely large. Consequently, there will no
longer be any interference between droplets and the
structure function will have its maximum at (or at least
very close to) k=O. ' This fact is in contradiction to ex-
perimental data for systems with finite P, ' but seems to
be supported by some recent experiments with extremely
dilute systems. According to the model outlined in Sec.
III and Table III the width of the graph of F(x) diverges
as $~0, which also indicates that the maximum of the
structure function should be located at k =0 in the limit
when /=0.

An explicit expression for the size distribution of the
monophase domains in the limit $~0 is given by the
theory of Lifshitz and Slyozov (LS). Using this expres-
sion, the limiting structure function can be calculated ex-
plicitly, and we give the result here.

For $~0, the probability P (R)dR that a droplet has a
radius between R and R +dR, is calculated by LS (Ref. 5)
as

p(x)= .
342 —3/3 2( +3)—7/3( 3

)
—11/3 1 —[1—(2/3)x) for x ( 3

2
—2

0 forx~ —,
' .

(64)

Assuming spherical droplets with this size distribution
and no interference between these droplets (i.e., P—+0),
the corresponding structure function S(k, t) can be com-
puted using the Rayleigh function =

Oped@
0

S(xR '(tl, t) I " (xu)p(u)du
FLs(x) — o

S(O, t)
(67)

R:- (kR )P(R)dR
S(k, t)=S(O, t)

J R P(R)dR
0

where

SlllX X COSX
3x

A scaling function according to Eq. (3) cannot be defined
in this case because k =0, but one may define in analogy
the function FLs by

F„s is plotted in Fig. 8 together with the Rayleigh func-
tion " corresponding to a monodisperse system of spher-
ical droplets.

Several properties of FLs appear on this graph. First,
the maximum of FLs is located at x =0, as already men-
tioned. Then, there are some shoulders appearing at
large x, which are the remains of the maxima of the Ray-
leigh function, slightly smoothed by the averaging over
P(R). In fact, these shoulders correspond to oscillations
around the average decrease x 4 (Porod's law). Finally,
it is easy to imagine that on averaging the Rayleigh func-
tion using broader size distributions than the one predict-
ed by LS (Ref. 5) the oscillations will disappear complete-
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For the Ising model at temperatures low enough for
the minority phase to be effectively an ideal lattice gas,
we can calculate c explicitly. In this calculation we
depart from our usual convention of taking u z = 1,
u&=0. Taking u instead to be the concentration of 3
atoms in a B-rich phase, we can write the free energy of
the system approximately as

Pf 'lI =E —TS =Au 6E —k~Tln (70)
(Xu)![X(1—u)]!

FIG. 8. Scaled structure function for isolated spherical drop-
lets (dashed line) and after averaging with the size distribution
predicted by Lifshitz and Slyozov for very dilute systems (Ref.
5) (solid line). The solid line corresponds to FLs(x) as given by
Eq. {67)and the dashed line to = (x) as given by Eq. (66).

where E is the energy, S the entropy, kz Boltzmann's
constant, X the number of lattice sites, and 6E the energy
increase on replacing one A atom by a B atom when all
the neighboring atoms are A. The free energy per site is
therefore

f(u)=u 5E+k&T[u lnu+(1 —u)ln(1 —u)] . (71)

Hence, by (22), the interdiffusion coefficient is

Dz ——ckz T/u . (72)

ly, leaving only the x decay. Indeed, all extensions of
the original LS theory to finite (but still small) volume
fractions P (Ref. 48) predict broader distribution func-
tions than LS. This might explain why oscilIations
around the x decay (Porod's law) are usually not found
in experiments where (() is finite. ' Recent data on very
low-density systems (P (0.01), indeed, suggest the disap-
pearance of the interference maximum in the structure
function when $~0 and give experimental evidence for
oscillations around the x decrease.

D. Dependence of length scale
on temperature for the Ising model

In Sec. III C we noted that for the two-dimensional Is-
ing model k depended on T and t only in the combina-
tion M ( T)t, with M ( T) given by (18). Here we show how
this result can be understood as a consequence of the
theory developed in this section, particularly Sec. V D 4.
There we saw [Eq. (25)) that the time scale appropriate
for describing the motion of the interfaces in the two-
phase model was

t, =crt .

Imagine two systems started with the same probability
ensemble (and hence the same value of the volume frac-
tion P) and then allowed to evolve at different tempera-
tures. By the time that t& has reached a value, which is
0 (1) [so that t =0(1/e)], Eq. (27) is predicting that on
the t

&
time scale the velocities of a given surface I in the

two ensembles are in proportion to the values of ~
[defined by Eq. (29)]. If we used instead rt& as our time
variable then the surface would have identical velocities
in the two ensembles. Thus the theory predicts that, for a
given P, the value of k depends on T and t, only in the

Since we also have, at low temperatures,
—5E/k~ Tu=e

it follows that

(73)

—5E/k~ T
c =(D„/kT)e
= (D~ Ik~ T)e (74)

for the two-dimensional Ising model. Thus the right
combination of t and T at low temperatures is, by (69),

—8J/k~ T
rt, =(~eD~ IkT)e r .

This is of the form used in Sec. III C, with

—8JI'k~ TM ( T)=const X (~eD„ IkT)e (76)

For Kawasaki dynamics using (for example) the Metrop-
olis probability rule the interdiffusion coe%cient D„ is in-
dependent of temperature at low temperatures, and the
surface tension ~e will vary with temperature much more
slowly than the exponential factor; so we expect the sim-
ple formula for M(T) given in (18) to give good results
provided the temperature is not too high.

Although the derivation given above is based on the
Cahn-Billiard equation, the result does not stand or fall
by that equation, since it really depends only on the inter-
face evolution law (27). The essential point is that the ve-
locity of a given interface is proportional to the product
of three factors: (a) the ratio (surface tension)lkT, which
determines the excess density of minority atoms near a
surface of given curvature, (b) the equilibrium density of
minority atoms, and (c) the interdiffusion coefficient.
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VI. CONCLUSION ACKNOWLEDGMENTS

Some apparently universal features of the scaling func-
tion for liquid or solid systems (with negligible coherency
stresses) undergoing phase separation were analyzed, and
the following conclusions were reached.

(a) For the two-dimensional Ising model, we see evi-
dence that the scaling function depends on the volume
fraction P but not on the temperature. This confirms an
earlier investigation of three-dimensional systems (real
systems as well as computer simulations). '

(b) The 2D scaling function for the Ising model and for
the solution of the Cahn-Hilliard equation can be fitted,
as in the three-dimensional case, ' by a simple analytic
expression containing just one adjustable parameter relat-
ed to the volume fraction P.

(c) The temperature dependence of the decomposition
process in the late stages of coarsening is found to be ab-
sorbed into the temperature dependence of the scaling
length 2m/k as a function of time. For the case of the
2D Ising model with Kawasaki dynamics, 1/k (t) is only
slightly dependent on P, and its temperature dependence
is mainly due to the temperature dependence of the densi-

ty of minority atoms in a thermodynamically pure phase.
(d) A theoretical interpretation of some features of the

scaling function F(x) was given, based on Pego's asymp-
totic analysis of the Cahn-Hilliard equation and on the
hypothesis of asymptotic self-similarity. This includes
the following.

(i) The universal character of F: the fact that F is
determined by just one parameter, the volume fraction, is
interpreted as a consequence of the hypothesis that the
asymptotically self-similar ensemble of interface con-
figurations is completely determined by the one invariant
of their time evolution —the volume fraction.

(ii) The large-x behavior of F(x): Porod's law
[F(x)-x as x~~] is observed because in the late
stages of coarsening the typical domain size becomes
much larger than the thickness of the interfaces.

(iii) The small-x behavior of F (x): a dependence
F(x)-x~ as x —+0 follows from the hypothesis that
domain growth is governed by the Cahn-Hilliard equa-
tion. For the morphology of the two-phase system this
implies a local conservation of the order parameter as
well as a kind of "local symmetry. "

(iv) The P dependence of F(x): a broadening of the
maximum in the graph of F(x) versus x is found when P
decreases. With the approximation that the conservation
of order parameter holds exactly within boxes of a size
(several times) 2vr/k (t), k being the maximum of the
structure function, it is possible to predict the only free
parameter in the analytical expression for the scaling
function, and hence the P dependence of the width of the
scaling function.

Taken together, these points give some explanation for
the universal character of the scaling function and, know-
ing the phase diagram, allow the prediction of a model
scaling function, without any adjustable parameter,
which can be directly compared with experiment.
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for its hospitality during a visit where part of this work
was done.

APPENDIX A: PROOF OF EQ. (42)

Lemma. Let X(I ) be a function of the interface
configuration, which is homogeneous of degree n for
some nonzero integer n, i.e., X(aI )=a"X(I ). Then
(X)'r" is a length scale and (X) is proportional to
[h (t)]".

Proof of lemma. The value of the functional in the en-
semble as II is, by definition,

(X).g. „——J X(I )d(aeII(I. ))

= fX(I )d(II(a 'y)) by (36)

=fX(al ')d(IIy') defining I =aI"

d o(I (t))= lim J UrcdH(I'(t))
dt i Q~oo

(A2)

since the contributions to (d /dt) f zdH (I ) from pieces
of surface entering or leaving at the boundary of V con-
tribute negligibly in the limit of large V.

Now, the right-hand side of (43) is a homogeneous
functional of degree —l because if we dilate I by a factor
a then

~
Vi ' is multiplied by a and the surface area by

cx '; therefore, by the lemma, the expectation
(cr(I (t))) is proportional to [h(t)] . Similarly, the
right-hand side of (A2) is a homogeneous function of de-

gree —4 because if we dilate I by a factor cz, then the
product of

i Vi
' and f ~dH ( I ) is multiplied by a ' as

before, ~ is multiplied by a, and U is multiplied by one
factor a ' arising from the gradient in (27) and a further
a ' arising from the factor v in (28); therefore, by the
lemma, the expectation (d/dt)(cr(I (t)) ) is proportional
to [h (t)] . Combining these last two results we obtain

d
dt

[[h(t)] '] =constX[h(t)] (A3)

since X(I ) is homogeneous

=a"(X)„by definition .

This proves the first part of the lemma, and the second
part then follows at once from the theorem (ii) in Sec.
IV C.

Proof of Eq (42). Con. sider the surface area per unit
volume 0., defined in (43). Its time rate of change is, in
terms of the normal velocity U of the interface and its lo-
cal mean curvature ~,
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Solving this difFerential equation, we find that [h(t)]
must be a linear function of t, and then substitution into
(42) completes the proof.

APPENDIX B: THE SCALING FUNCTION AT SMALL x

We start from the Cahn-Billiard equation in the form
(23), but with the symbol t, replaced by t for typographi-
cal reasons. Integration with respect to t gives

u'(r, t)=u(r, o) Vy—'(r, t),

where

y'(r, t)=e 'f p'(r, t')dt'. (82)
0

Defining 5 '(k, t) to be the approximate structure func-
tion obtained by using u in place of u0 in the definition
(6), and substituting from (81) into that definition, we ob-
tain

&'(k, t)=S(k, o)—2(P'(k, t))+(Q'(k, t)), (83)

where we have defined

and

2P'(k, t)= lim V~
' f [u'(r, o) —P]e'"'d r f V y'(r, t)e '"'d'r+c. c.

JV] V V

Q'(k t)= lim
~ V~

' f V y'(r t)e' 'd r
V

(84)

(85)

The Schwartz inequality applied to the definition of P' gives

~(P'(k, t))
~

~S(k,o)(Q'(k, t)) . (86)

To estimate Q'(k, t ), which is the dominant term in (83), we use Green's theorem in (85). Since the surface terms do
not contribute in the V~ ~ limit, we obtain

k (Q'(k, t)) = lim
~ V~

' f f (y'(r, t)y'(r', t))e'"" ''d rd "r'
~/~a V V

(87)

=
l
v)))l ' E '1 f y. '(r, ) )d rd) )'by ())''2) .

V(t)

To estimate the integral over the region V(t) in this last formula we divide the region into two parts. One part is a
layer of thickness O(e) near the interface I (t ); within it p(t') is O(1) and so the contribution of this part to the in-
tegral is of order ecr(t')~ V(t), where o(t') is the surface area per unit volume at time t' The other p. art of V(t) is out-
side this surface layer; in this part, by (28) and the maximum principle for Laplace s equation, tu, is of order e)M„where
)M, is of order m=O(1)O(k (t')), and so the contribution of this part to the integral is of order ek (t')~ V(t) . Substi-
tuting these estimates into (88) and using the estimate 0.(t) =O(k (t) '), we obtain

2
k '(Q'(k, t)) =constX

~
V(t)~ f k (t')dt' [k «C 'k (t)] . (89)

0

In the limit of large twe have, by theorems (iii) and (iv) in Sec. IVC, k (t )-constXt '~ and so

f k (t')dt'-constXt i -constX[k (t)]

Substituting this into (89) and remembering also that
~
V(t)~ =constX [k (t)] we obtain

(810)

where k denotes the length of the vector k. It is to be expected that y'(r, t ) and y'(r', t ) will be uncorrelated if ~r r'~ i—s
much greater than the length scale k (t), so that the right-hand side of (87) will be close to its

~ V~ —+ ~ limit by the
time the diameter of V has reached a value Ck (t), where C is a constant depending on the definition of "close to"
but not on t. Denoting by V(t) the region Vreached at this stage, we have from (87)

k (Q'( kt)) =
~
V(t) ' f f (y'(r t)y'(r', t))e' 'i' ' 'd rd r'

V(t) V(t)

=~ V(t)~ ' f f (y'(r, t)y'(r', t))d rd r' for k «C 'k (t)
V(t) V(s)

k "(Q'(k, t)) =const X [k (t)] ' [k «C 'k (t)] (811)

where the constant is independent of both e and t in the limit e—+ ~.
We can now estimate F(x), starting from the formula (41). Using theorem (iii) in Sec. IV C we can rewrite this for-

mula as

x F(x)=constX lim [[k (t)] + [xk (t)] S(xk (t), t)] (812)
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F(x) =const Xx for x « C (813)

and consider separately the contributions of the three
terms of the expression (83) for S. The term S(k, O) de-
pends on the initial conditions but will certainly have an
upper bound independent of k and t. Since k (t)~0 as
t ~0, the contribution of this term to the right-hand side
of (812) vanishes. Because of (811), the contribution of
the Q term in (83) to the right-hand side of (812) is ap-
proximately constant for x «C '. The P term, by (84),
gives a contribution bounded above by the geometric
mean of the other two, which is zero. So only the Q term
survives and we obtain the desired result,

where the asterisk denotes the convolution and p
*"

means multiple convolution. Using this expression it is
easy to calculate the Laplace transform of g in the form

g(s) =P(1—P)
1 2p 1 —p(s)

s 1+p(s)
(C3)

where p denotes the Laplace transform ofp. The Fourier
transform g of g (r) may then be calculated as
g(k) =g(ik)+g( —ik), which, in case p(l) representing a
Poisson distribution, gives a Lorentzian with a maximum
at k =0. In fact, for any distribution p ( I ),
g(0) =p( f o" l p((t)dl —

p ) is different from 0 (unless p is

a 5 function).

APPENDIX C: CALCULATION OF THE SCALING
FUNCTION IN ONE DIMENSION FOR INDEPENDENT

INTERVALS ON A LINE AS SHOWN IN FIG. 6

2. The black phase occupies a fraction P of each interval

located at the left side of the interval

In this case one obtains

I.et us denote by p (i)dl the probability distribution for
the interval length l with p

'= f ~"1p(l)dl and define

P, (r)= f / p(l)dl for any s &0. We further denote by

q„(r) the conditional probability that both ends A and 8
of a randomly thrown stick of length r are inside the
black phase, given that 2 and 8 are located within the in-
tervals 0 and n, respectively (see Fig. 6). The one-
dimensional correlation function can then be written

qo(r) =p f ((t l r)p (l)d—l,
r/P

q„=p(P, P, &)e—p'" 'eP& for n&0 .

Consequently,

[1—P(es)][1—p« I 0)s })—
s'I:1—p(s))

(C4)

(C5)

g (r) = g q„(r)—(t' .
n=0

(C 1)
In the case of a Poisson distribution the scaling function
may be computed by normalizing the Fourier transform
of g in the proper way:

&. Alternately colored intervals (/ =0.5)

q()(r) =(pI2) f (l —r)p (l)dl,
r

q„—=0 for n odd,

q„=(p/2)P)op*(" ')eP, for n even,

(C2)

x2
F(x)=

[x (1—P)+P](x /+I —P)

which is proportional to x at small x.

3. The black phase occupies a fraction P
of each interval located in the center of the interval

We have

(C6)

q()(r)=p f ™
()tl r)p(l)dl, —

r/P

'q p(P(1+/)/2 P(1—p)/2 ) p (P(1+((t)/2 P(1 —p)/2 )
e(n —1)~

(C7)

and, consequently,

g(s) =P(1—P)——
p

[1—P(4s)][1—P(s)) —(P[l(1—4»)I2)s) —P[[(1+4)I2)s))'
5 s [1—p(s)]

(Cg)

In the case of a Poisson distribution the structure function becomes

(1+y)2 [7p +(1+2(t) )p k +—'(1 p) k ]-
g(k)=p '(1 — )' k'

[p +[(1+/)/2] k ) [p +[(1 P)I2] k ) (p +P —k )
(C9)

which has the correct k behavior at small k. Note that this result does not depend on the assumption of a Poisson dis-
tribution: one can show that g(k) ~k (when k~O) holds for any interval length distribution p(l)dl. For a fixed
volume fraction P =0.5, the scaling function has been calculated numerically for interval length distribution of the type
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p„(l)= (npl)" 'e "t' with n )1,I(n)
glvlng

(C10)

P„(s)= 1+
n, p

—n

(C11)

and the results are plotted in Fig. 7 for several values of n.
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