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Mechanisms for a linear temperature-dependent resistivity are discussed in Fermi-liquid-based ap-
proaches. For realistic models of the cuprates this behavior arises for temperatures 7 above the Van
Hove energy scale T* <50 K. This crossover temperature is substantially reduced in magnitude by

Coulomb correlations for a wide range of hole concentrations.

Calculations of the spectral function

a*F show important q structure and therefore differences with the “marginal” ansatz. Spin-spin in-
teractions adversely affect the linear resistivity when the system is close to an antiferromagnetic insta-
bility. Comparison with NMR calculations indicates that different energy scales are playing a role in
resistivity and NMR probes, as observed experimentally.

Whether or not the many transport and magnetic
anomalies observed in the metallic copper oxides above 7'
are compatible with Fermi-liquid theory is the subject of
considerable controversy. Among the most striking
features of these metals is the ubiquitous linear resistivi-
ty,! which is in contrast to a T2 Fermi-liquid behavior. In
support of a Fermi-liquid approach, photoemission experi-
ments have demonstrated? that there exists a Fermi sur-
face (above T,) which satisfies Luttinger’s theorem. In
this paper we discuss the origin of the linear resistivity and
build on our understanding in the context of other Fermi-
liquid systems. Our calculations also focus on the connec-
tion between NMR relaxation and the electronic contri-
bution to the resistivity, both of which depend on similar
response functions, and both of which experimentally ap-
pear to contain different energy scales.

The observation that a linear resistivity can occur
within the Fermi-liquid regime is well known in the con-
text of scattering from phonons® (ph) and localized spin
fluctuations (SF), as, for example, in actinide metals.* In
these cases the carriers scatter from fluctuations (bosons)
external to the charge-carrier system which leads to a
linear resistivity at temperatures greater than 7 of the
characteristic boson frequency wyn or wsr. In addition,
scattering between the current carriers is also found to
give rise to a linear temperature dependence, above the
lowest temperature T2 regime. Experimental realization
of this behavior is found in heavy-fermion metals,> but,
presumably, it occurs below the characteristic degeneracy
temperature 7 cop.

A strictly linear resistivity which derives from electron-
ic mechanisms requires (in a Fermi-liquid context) that
two criteria be simultaneously satisfied. (1) The T2 to T
““crossover” occurs at temperatures less than T.. (2) The
transport spectral function a’F must be, at most, weakly
dependent on T (as in the case of phonons). Low Fermi-
liquid energy scales naturally lead to (1). However, quite
frequently, these low electronic energies lead to a break-
down of (2), so that electron-electron scattering is not
generally expected to yield linear resistivities over a wide
range of 7. This is what is observed in the heavy-fermion
metals. Similarly in the actinides, where the scattering
derives from an electron-boson (spin fluctuation) interac-
tion, aF is also too strongly T dependent to yield an ex-
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tended linear resistivity. With these Fermi-liquid pre-
cedents for the cuprates in mind, it follows that obtaining
a linear resistivity over the entire normal-state regime
(which may include temperatures as low as 10 K) is a
fairly subtle matter.

In the following, it is argued that for the cuprates, an
important contribution to the observed linear resistivity p
arises from a two-dimensional band-structure feature, the
Van Hove singularity T*, whose energy scale is renormal-
ized by Coulomb correlations. Although previous theo-
ries® have emphasized the importance of this Van Hove
singularity (and/or nesting), one of the main contributions
of the present work is to establish that, because of strong
Coulomb corrections, T* is a small energy scale for a
wide range of hole concentrations away from half filling.
In addition, it is demonstrated that the Van Hove effect is
rather unique in that it leads to a relatively temperature-
independent transport spectral function a?F.

Any Fermi-liquid approach to the cuprates must ex-
plain why deviations occur, in a wide variety of experi-
ments, from canonical Fermi-liquid behavior at the tem-
peratures of the normal state. This suggests that there are
electronic energy scales Tcon, T*, and T'sg which are com-
parable to the superconducting transition temperatures.
In an “almost localized” Fermi-liquid picture, which we
have previously discussed,””® a comparison of heavy-
fermion and cuprate data suggests9 that Top is roughly
100-300 K in the oxides. As a result, the Cu d electrons
are only fully coherent, or itinerant, at low temperatures,
T < Ton, and they become progressively more localized as
the temperature is raised, just as do the f electrons of the
heavy-fermion metals. (In the latter, T is generally
2 orders of magnitude smaller.) Full localization is
achieved at temperatures T'joc, far too high (5000-10000
K) to be observed experimentally, although the counter-
part phenomenon is observed in the heavy fermions. For
much, if not all, of the temperature regime of the normal
state the cuprates are described by a “‘partially coherent”
Fermi liquid.

Alternate proposals for low-energy scales (T's¢) in a
Fermi-liquid picture assume a proximity to an antiferro-
magnetic transition.'® On the basis of considerable exper-
imental evidence for some degree of quasilocalization'' of
the Cu electrons, and because these “nearly magnetic”
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Fermi-liquid approaches are not particularly robust with
varying concentration, here it is assumed that the localiza-
tion instability dominates the physics of the cuprates.
Magnetic correlations are, however, generally present in
nearly localized models, and will also be considered here.

Our starting point is the three-band Anderson lattice or
extended Hubbard Hamiltonian which contains Cu d and
oxygen p electrons with strong Coulomb repulsion on the
d site. Since the case of large, but finite U is difficult to
implement, we take U to be infinite, as is often assumed to
be the case. We use the 1/N expansion which is one of
several equivalent schemes (where NV is the d and p elec-
tron spin degeneracy) to provide the mean-field equations
for deriving the quasiparticle dispersion. This leads to a
renormalized quasiparticle band structure (or “one com-
ponent”) description of the antibonding band and has
been previously applied with some success to study the
Hall coefficient,” NMR relaxation and neutron-scattering
cross section® and the electron-phonon contribution to the
resistivity.” It was found in Ref. 7 that the phononic con-
tribution can account for a substantial fraction of the
resistivity slope dp/dT for moderate and large hole con-
centrations, but that as the insulator is approached the ex-
perimentally observed increase in slope cannot be ex-
plained by electron-phonon scattering alone. This sug-
gests that some electronic or other bosonic mechanism
must be invoked. Here we consider the former by calcu-
lating the electron lifetime derived from the dynamical
susceptibility. This calculation of the temperature depen-
dence of the resistivity is in the same spirit as previous ap-
proaches,®!? except that here the effects of very strong
Coulomb correlations on the dynamical susceptibility are
included.

The quasiparticle lifetime due to electron-electron
scattering can be calculated from standard expressions

1
—_— 1)
sinh(w/T)
Here a’F(w,T) is the transport spectral function associ-
ated with the electron-electron interactions. This function
is defined as
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where ({ - - - ))r represents the Fermi-surface average over
different directions of the Fermi wave vector pr and y" is
the imaginary part of the dynamical susceptibility. This
susceptibility has been calculated elsewhere,® within a
random-phase approximation scheme and found it to be of
the form

x=x0/11—J(Q)x0] , 3)

where J(q) is the quasiparticle spin exchange [evaluated?®
to order (1/N)?]. Here the susceptibility is to be inter-
preted as a 2x2 matrix in the (Cu) 3d and (O) 2p wave-
function space. The q dependence of J(q) may be rough-
ly approximated by a nearest-neighbor form J(q)
=Jolcos(gxa)+cos(g,a)l. Finally, yo is the Lindhard
susceptibility associated with the renormalized band
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structure. We assume g is a structureless coupling con-
stant and define N(gr) as the density of states at the Fer-
mi energy. The whole procedure can be made more pre-
cise in the context of a 1/N expansion which was
developed for the heavy-fermion problem.'? There it was
shown that the 1/N formalism leads to an expression simi-
lar to that of Eq. (1) and yields, at sufficiently low temper-
atures, the usual T2 term in the resistivity. As a first ap-
proximation, extension to higher temperature may be
viewed as arising entirely from thermal smearing effects
which enter through the Fermi functions in " and lead to
the sinh(w/T) contribution in Eq. (1). At sufficiently
high temperatures, this Fermi-liquid-based scheme must
break down and a new formalism introduced to account
for the growing incoherence® of the Fermi-liquid state.
We estimate that the characteristic upper limit to T is of
the order of 4T cop.

The various energy scales which govern the behavior of
a’F are illustrated by studying the density of states of the
renormalized band structure. Plotted in Fig. 1 is the den-
sity of states for the antibonding band for a hole concen-
tration of x =0.28 (which might be viewed as correspond-
ing to fully oxygenated YBa,Cu307) with the parameters
& —£3=4.0 eV and with hybridization ¥, =1.6 eV and
oxygen-oxygen transfer matrix elements ,, =0.4 eV. The
results for a smaller concentration of x =0.16 are shown
in the inset. These parameter choices are derived from es-
timates based on the band structure of La,—,SryCuOj,.
The temperature T, corresponds to about a quarter of
the splitting between the Fermi energy and nearest band
edge and is roughly 150 and 300 K for the lower and
upper concentrations, respectively. The figures emphasize
the small energy separation between the Fermi (vertical
line) and the Van Hove energies. The temperature 7%,
which is about 7 of this energy splitting, corresponds to
10 K for the lower and 50 K for the higher concentration.
This “pinning” of the Van Hove singularity energy
around the Fermi level results from the strong Coulomb
repulsion at the copper sites. The importance of this Van
Hove energy scale has also been addressed in the context
of spectroscopic and magnetic properties. '?

A family of curves for a’F(w,T) is shown in Fig. 2(a)
as a function of w and for various exchange energies Jo/J.
and for x =0.28 with T~0. Here J. is the critical value
of Jo needed to produce an antiferromagnetic instability.
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FIG. 1. Density of states as a function of energy for x =28%
and (inset) x =16%. Here FE refers to the Fermi energy.
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FIG. 2. (a) Frequency dependence of a?F(w,To~0) for
x =0.28 and various Jo/J. equals a, 0; b, 0.7; ¢, 0.85; d, 0.98.
(b) Temperature dependence of a?F(wo~0,T)/wo for x =0.28
and the same Jo/J. as in Fig. 2(a).

The pronounced peak at 16 meV for Jo=0 is associated
with the Van Hove singularity. The effect of nonzero Jy is
to increase the peak height and lower the frequency to
Tsk. It is important to stress that in either case our re-
sults for aF do not coincide with the polarizability of the
“marginal ansatz.”'* A comparison of the & dependence
of Imyyo, by contrast, shows that for wave vectors q along
the zone diagonal, the marginal ansatz works rather well
for T > T¢n. However, when the appropriate “on-shell,”
g-weighted function is evaluated as a*F, a peak appears at
T* and this agreement is invalidated. Thus our calcula-
tions of this spectral function underline the importance of
q structure in Imy. The high-frequency, nearly constant,
contribution to a’F eventually cuts off at the full band
edge which corresponds to 3000 and 6000 K for the small-
er and larger x, respectively.

While the characteristic frequency structure in a’F
occurs at the Van Hove energy, its temperature depen-
dence appears to depend primarily on T, and only weak-
ly (logarithmically) on T*, for Jo=0. This is best illus-
trated by Fig. 2(b) in which is plotted aF(wo,T)/wo, for
wo— 0, as a function of temperature. When Jo=0 (curve
a) a’F is relatively constant in temperature (with only
fine structure associated with the Van Hove point) until
the temperature is large enough so that the effective d-
band edge becomes evident. The effects of nonzero Jo are
shown in curves b-d. Here it is clear that the temperature
variations become more dramatic, presumably varying as
T/TsF, rather than logarithmically, as Jo increases to-
wards J..

x=0.16 and x =0.28 and Jo=0. The inset gives an expanded
view of low-temperature behavior. (b) The temperature depen-
dence of resistivity for x =0.28 and the same Jo/J., as shown in
Fig. 2(a).

The resulting temperature dependent resistivities are
shown in Fig. 3(a) for x =0.16 and 0.28 with Jo=0 and
Fig. 3(b) for nonzero Jo. The inset plots the low-tem-
perature, mainly 72 regime which for both concentrations
is below the appropriate superconducting transition tem-
perature and so should not be observable experimentally.
The linear regime persists over a wider range of T and the
measured trend in the concentration dependence of the
slope is consistent with that deduced from our calculations
of the lifetimes. At high hole concentrations, as in “over-
doped” samples, it is predicted that the Fermi-liquid 72
regime will become increasingly apparent. The mecha-
nism which yields this linearity is formally similar to that
which leads to linear phonon resistivities above wph/4. It
reflects the saturation of scattering modes, in this case
those associated with the lowest energy, Van Hove, scale
T* which dominates a?F and therefore p. As in the pho-
non case, the T dependence of p above T* is controlled by
the effective number of electrons T/er which are involved
in the scattering. While the present theory is not valid at
temperatures above ~3-4T .y, if it is extended without
modification, it will lead to departures from linearity and
eventual saturation in the resistivity due to saturation of
the number of electrons involved in the scattering. This
high-temperature regime generally occurs in, for example,
actinide metals* in association with a Curie-Weiss 1/T
dependent dc susceptibility, which is not seen in the cu-
prates.

The effects of including antiferromagnetic spin fluctua-
tions in the resistivity are illustrated in Fig. 3(b) for
x=0.28 and various Jo/J.. In our previous analysis of
NMR data we were led to conclude that Jo/J. was of the
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order of 0.6 to 0.7. For larger Jo/J., the T dependence of
a’F is now more profound at low 7 so that the resistivity
is no longer strictly linear. This “over-shooting” behavior
has also been demonstrated elsewhere.® Here we find that
the q dependence of J(q) helps to partially counteract
these effects due to cancellations.

It might be expected that the NMR spin-induced relax-
ation rate (at the Cu site) and the resistivity behavior in
the cuprates are related, since both properties are based
on the same dynamical response function. Experimental-
ly, the two measurements are found to reflect different en-
ergy scales since the resistivity does not show structure
where the Cu NMR begins to saturate. In addition,
theoretically there are differences. As can be seen from
Egs. (1) and (2), the resistivity involves a summation over
all frequency modes weighted by an “on-shell” § function
as well as a statistical factor 1/sinh(w/7T"). On the other
hand, 1/T, probes only one frequency wo, the nuclear
Zeeman energy which is smaller than any electronic ener-
gy scale:

/T, =(A4(q)*¢"(q,00) o/ (@0/T) . (€))

If the q dependence of the Cu form factor 4(q) is rela-
tively unimportant (as is generally agreed), then the 7
dependence of 1/TT is reflected in the plot of Fig. 2(b). '3
Thus our NMR calculations® found that the dominant
NMR energy scale is Tcon, renormalized slightly by spin
fluctuations. This explains why the characteristic NMR
energy scale is'® roughly 100-200 K. However, due to the
integrability of the logarithmic divergence, T* is only
weakly manifested in the temperature dependence of 1/T;
and enters by gently “interrupting” the Korringa (linear
in T) behavior. The resulting T dependence can be
probed experimentally only in low or zero 7, systems,
where the low Van Hove temperature is unobscured by

QIMIAO SI AND K. LEVIN 44

the superconductivity. Indeed, weak structure is found in
nonsuperconducting, but metallic cuprates. '®

Further support for the difference of NMR and resis-
tivity energy scales comes from heavy-fermion systems.
Here the canonical T2 resistivity is found at temperatures
below T,, which is usually considerably smaller than Ty,
as measured in NMR experiments.® Furthermore, the
upper limit of the linear regime appears to scale with 7,
rather than T, as found here. Proximity to instabilities,
as well as electronic fine structure, may lead to low-energy
scales within the Fermi-liquid regime of heavy-fermion
metals. It is likely that these differ from the two-di-
mensional (2D) Van Hove singularity, in that the T
dependence in a’F associated with these low-energy scales
is more profound, just as was found for the “soft” spin
fluctuations in Fig. 3(b). This leads to a much narrower
regime of linearity in p than in the present 2D case, as
seems to be observed experimentally.

In conclusion, we have demonstrated that linear tem-
perature-dependent resistivities are not incompatible with
Fermi-liquid-based approaches. The 2D Van Hove singu-
larity leads to a low crossover temperature 7* which
separates the canonical 72 from linear regimes. Because
of the weak T dependence in a’F, this 2D effect is rather
unique in leading to a low T* without restricting the
range of the linear resistivity. For the cuprates we have
argued that T* is sufficiently low so that the supercon-
ducting state obscures the Landau T2 regime. The obser-
vation of a T2 resistivity in slightly overdoped samples
with suppressed 7, reinforces our conclusions.
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