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A theoretical study is given of supercurrent Bow in a one-dimensional semiconductor channel cou-

pled to superconductors at both ends. In addition, the channel is coupled to a semiconductor reservoir

by means of a junction with variable coupling strength e. The supercurrent I(p) is calculated from the
phase-coherent propagation of electronlike and holelike excitations emitted by the superconductor
reservoirs, together with electron and hole excitations from the semiconductor reservoir. The eAect of
temperature and e on I(p) is studied. It is shown that a voltage applied between the semiconductor
reservoir and the superconductors modifies the I(p) relation, even in the limit e 0.

In recent years our understanding of electron transport
in mesoscopic conductors has greatly improved. It has be-
come clear that at low temperatures electrons can main-
tain their phase coherence over considerable distances.
Recently it has also become possible to study devices
through which the electron can travel ballistically, with-
out being scattered by impurities.

A challenge is now presented by the possibility to com-
bine this ballistic, phase-coherent transport with super-
conductivity. A promising system is a high-mobility two-
dimensional electron gas (2DEG), in which a narrow
channel is defined (e.g., by means of a quantum point con-
tact'), and connected to one or more superconducting
electrodes. Very recently it was predicted that the super-
current in such a device, measured as a function of the
width of the channel, should exhibit steps each time an
additional one-dimensional channel is opened.

A large volume of literature exists on the theory of su-
percurrent fiow through superconductor-normal-metal-
superconductor (S N-S) or su-perconductor-semicon-
ductor-superconductor (S-SM-S) systems. A selection is
given in Refs. 2-8. In most of these papers the super-
current is calculated using Green's-function methods. In
this paper we will describe the supercurrent fiow through
a S-SM-S device with the use of a transmission formal-
ism. This formalism has already been applied for the
description of electron transport in normal metals and
semiconductors. ' " It has also been used for the descrip-
tion of transport through superconductor-normal-metal
interfaces. '

1/2 b a

with a =I/2[4(1 —2e) —1], and b = I/2[v (1 —2s)+ I].
The parameter s describes the strength of the coupling be-
tween the 10 channel and the semiconductor reservoir.
Maximum coupling is achieved for e= 2, the channel is
completely decoupled when e =0.

We use a well-known model where the pair potential
A(x) =0 in the semiconductor channel, and A(x) =ho
xexp(itii~ 2) in scl and sc2, with p~ q the superconductor
phases. The wave functions can be found from the time-
independent Bogoliubov-de Gennes equation '

u (x)E.() = 0—EF u(x)
—(H* EF) v(x)—(2)

The device geometry is illustrated in Fig. 1 ~ Leads 1

and 2 (with lengths Li and L2) form a one-dimensional
(1D) channel, ' which is connected at both ends to super-
conductors 1 and 2 (scl and sc2), with electrochemical
potentials p~ and p2. By means of lead 3, the 1D channel
can also be coupled to a wide 20 region, which can be de-
scribed as a semiconductor reservoir with electrochemical
potential p3. The transmission and reflection of the elec-
tron waves at the junction formed by leads 1, 2, and 3 can
be described by an $ matrix, ' ' which relates the ampli-
tudes of the outgoing waves to the amplitudes of the in-
coming waves at the junction

( +b) el/2 el/2'

a

3 '2

FIG. 1. Layout of the system, which consists of a 1D channel
formed by leads 1 and 2, coupled to superconductors 1 and 2.
Lead 3 couples the channel to a semiconductor reservoir 3.

In Eq. (2) u(x) describes the electron wave function, and
v(x) describes the hole wave function with an excitation
energy F relative to the Fermi energy EF. There are four
types of solutions. In the leads 1, 2, and 3,

u(x) 1

( )
=

0 exp(+iq )+,x

with Aq+ =42m QEF+E (3a)

with + ( —) corresponding to electron excitations which
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move in the positive(negative) x direction, '9 and

u(x) 0
exp(+ iq x),

with jj'tq =42m JEF E—(3b)

with + ( —) corresponding to hole excitations which move
in negative(positive) x direction. In the superconductors
the four solutions are

Similarly the transmission probabilities T„(p,E) are
defined as the ratio of the charge currents which flow into
the nth reservoir as a result of the particle currents emit-
ted by the mth reservoir at energy E. Because the reser-
voirs can emit two types of particles, we add a superscript
p, with p 1 for electron (or electronlike) excitations, and

p =2 for hole (or holelike) excitations. We now define a
charge current density (current per unit energy) J„'"(p,E)
in lead n by

u(x) uoexp(ijjj)

v(x) vp
exp(+ ik+x), J,'"(p,E) = g C~(E) —R~, (P,E) —g T, (P,E) .

p 1,2 mWn

(5)
with h, k+ =+2m [EF+(E —Z ) ~t ] t2 (4a)

with + ( —) corresponding to electronlike excitations
which travel in positive(negative) x direction, and

u (x) v o exp(tk)
v (x) exp(+ ik x),

Qp

with jj'tk =v2m[EF —(E —b, )' ]' (4b)

with + ( —) corresponding to holelike excitations which
travel in negative(positive) x direction. The coherence
factors are given by

u. = I/VX[I+ [I —(~ /E)'] '"] '"
vo= I/42[1 —[1 —(b. /E)'] ' '} 't'

The formalism we use is based on Biittiker's description
of phase-coherent electron transport in multiprobe normal
conductors. " The physical basis of this description is that
at su%ciently low temperatures inelastic processes are
negligible in leads 1, 2, and 3, and occur exclusively in the
reservoirs. In normal conductors these reservoirs can be
thought of as emitters (and absorbers) of electron waves.
We extend this description by treating the superconduc-
tors as reservoirs also. A semiconductor reservoir can
emit (and absorb) electron and hole excitations with ener-
gies E & 0. However, because no propagating solutions of
Eq. (2) exist in the superconductor for E & Ao, the super-
conductors can emit (and absorb) electronlike and hole-
like excitations for E & h,o only.

An important feature of 1D transport is that the prod-
uct of one-dimensional density of states N (E ) =2/
n(dE/dk) ' and the group velocity vz(E) = I/h(dE/dk)
is independent of E and equal to 4/h (including both spin
directions). This result holds for electron and hole states
in the semiconductor, but also for the electronlike and
holelike states in the superconductors. '3 It follows that
the particle current ' which is emitted by a reservoir per
unit energy is equal to 2/h.

Our description can also be used to describe normal
currents. Normal currents can be defined as currents
which flow as a result of a difference between p ~, p2, and
p3. In this paper we focus on the supercurrent which flows
between sc1 and sc2, and its dependence on the phase
difference p=&~ —p2. We define the reflection probabili-
ties R„„(p,E) as the charge currents (in units of e) which
flow back into the nth reservoir as a result of the particle
current which is emitted by the nth reservoir at energy E.

In Eq. (5) Ct'(E) indicates the ratio between the charge
current (in units of e) and the particle current carried by
the excitations which are emitted by the nth reservoir.
Cg(E) = —1 for electrons, 1 for holes, (vo —uo) ' for
electronlike, and (uo —vo ) ' for holelike excitations.
J„'"(p,E) can be considered as the contribution to the su-
percurrent in lead n from excitations with energy E, under
the condition that the occupation probability of the excit-
ed states in the reservoirs is unity.

We calculate the supercurrent I„(P,T) in lead n

(n=1,2), with p~ =p2=p3. At T=O no excitations are
present, and this seems to prevent the calculation of
I„(&,T=0). We can now perform a simple manipula-
tion, and write the supercurrent at a finite T as

l„(y,T) =I„(y,T =O)+I„'"(y,T),
with I„'"(p,T) the supercurrent generated by the excita-
tions at temperature T. Since the occupation of the excit-
ed states is given by f(E,T) =1/[1+exp(E/kT)], and
I, (P, T) should vanish for T~ ~, we can write:

I, (p, T) =„[f(E,T) —
2 ]J,'"(y,E)dE.

Equations (5) and (6) show that the supercurrent is ex-
pressed as an incoherent sum of the contributions of exci-
tations at different energies, and from diff'erent reservoirs.

We have calculated the energy and phase dependence
of Rg„(&,E) and T~ (P,E) with an algorithm which
matches the wave functions (3) and (4) at the super-
conductor-semiconductor interfaces, taking into account
the phase shifts in leads 1 and 2, and matches the wave
functions at the junction according to Q matrix given in
(2).

The fundamental mechanism which makes super-
current flow possible is that of coherent Andreev
reflection. An electron in the 1D channel with E & ho is
reflected at the interface with sc2 as a hole, and its wave
function can be shown to acquire a phase factor
exp[i( —

pq
—n'/2)]. The reflected hole is converted back

to an electron at the interface with sc1, and acquires an
additional phase factor exp[i(hajj~ —x/2)]. This implies
that when a=0, bound states are formed in the semicon-
ductor channel. The energies of these states (positive
states) depend on p =&~ —

pq, and can be written as E„+
=h, vF/2L [2n(n+ —, )+hajj], with L*=L~+Lq+ h, vF/ Ao,
the eff'ective length between the superconductors. Simi-
larly, the energy of the negative states, which correspond
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to electrons traveling in negative x direction (and holes
traveling in positive x direction), can be written as

E„=hvF/2L [2z(n+ —,
' ) —p] .

For the calculation we have taken E =10
=77.9 and

en F — 4, ~FL(
and kFL2 =94.9. For a typical 2DEG in a

m -0.067m an
GaAs „ai „As heterostructure with eA'wi e ective mass
m . rn„and EF =10 meV, this corresponds to
6=1 meV, and LI+L2=1.5 pm. Figure 2 shows the
calculated Ji"(p, E) in lead 1 for a=02 F

Jex series o positiverr, ~ p, E for E (ho consists of a serie f
and negative peaks, which correspond t tho e positive and

e positive andnegative states discussed above. For ~ =0 the
negative states are all at the same energy, and Ji"(p, E)
=0. When p is increased, the positive and negative states
shift away from each other, until at p =x, the states again
coincide, resulting in Ji'"(p,E) =0.

For E &6 onl y excitations from the semiconductor
reservoir contribute to Ji"(p E). D t h
this res

ue to t e coupling to
t is reservoir, the positive and negative stive s ates are

in energy. When the coupling strength e is re-

to not
duce, the peaks develop into 8 funct It '

should b
rie in an infinitesimally narro~ energ int 1 Th

e contrasted with normal current Aow between
reservoirs, where th
2e/h. The m

' ' ' '
e

ere he current per unit energy is limited t
ajor contribution in the regime E )6,

from the ex
'

citations from the superconductors. For
e p is

E &ho there is only partial (Andreev) reAection at the
S-SM interfaces. Consequently the positive and negative
states are broadened substantially for E & 6 (or p even when

can still ive a
owever, as can be seen in Fi . 2 thig. ese states

Jex(~ E)
s i give a positive or negative) contributio tion o
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This supercurrent-phase relation can also be derived in a
simple way: The jump in Ii(p, T) at =rr can be ex-
plained with Fi . 2 whi

'
s

s' ifts below E =0 an
g. , w ic shows that a negative st tsae

h —0, and stops contributing to I~(&, T),
whereas a positive state shifts above E =0 and
contributin to I
=2evF/L *.g

o i p, T . This results in a jum AIjump

An increase in e reduces I (p T) d h, an t e jump at P =rr
is smoothed, until an almost sinusoidal relation is obtained
at the maximum coupling e= 2. Fi ure 3
raising T has similar eA'ects. The typical T t h' h

) is suppressed substantially is of the order of the
energy spacing between the positive and t'an negative states.

i our parameters, this corresponds to about k T
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= 0.03' =0.1 K.
We now show that Ii(p, T=O) can be modified by ap-

plying a voltage V between the semiconductor reservoir
and the superconductors (eV=@3—pi, p~ =p2). As a re-
sult electron excitations (for V & 0) or hole excitations
(for V) 0) are emitted with energies 0 & E & ~eV!. The
supercurrent can now be written as

& ieVI

Ii(p, eV) =Ii(P, T=O)+ —, Jf"(Q,E)dE. (7)

The results are shown in Fig. 4. The supercurrent-phase
relation depends periodically on the applied voltage with
the period given by AE/e, with /ATE =hvF/2L*, the spacing
between consecutive positive (or negative) states. The ex-
planation for this eAect is that for energies E (hp, the

particles from the semiconductor channel are completely
re[]ected at the S-SM interfaces. Therefore the (non-
equilibrium) occupation of the states in the channel with
E (Ap is completely determined by p3, even in the limit
s 0. In real systems some inelastic scattering will al-
ways be present between the channel and the supercon-
ductors. This will tend to equilibrate the states to the
electrochemical potential of the superconductors. In real
systems the eA'ect will therefore disappear in the limit
e 0. The value of s at which the eA'ect disappears will
be a measure of the strength of the inelastic scattering.
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