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A theoretical mechanism for nuclear-spin relaxation in ionically conducting glasses (or disordered
crystals) is proposed. This is based on the diffusion-controlled relaxation model previously used to ac-
count for electrical relaxation in such materials. In this model, ionic relaxation is assumed to occur at
interstitial sites, triggered by the arrival of diffusing ions. The dependence of the spin-lattice relaxation
rate on the temperature, Larmor frequency, and ionic concentration can all be understood with use of

this model.

I. INTRODUCTION

Our understanding of ionic transport processes in
disordered materials is still rather rudimentary and the
atomic structure of amorphous materials, in general, is
not known, particularly in relation to the (local) structur-
al environment of the conducting ions. As a result, un-
like the situation for crystalline ionically conducting ma-
terials, the conduction paths for ions are not known for
amorphous solids and, hence, the microscopic ionic
transport mechanism is unclear. This problem is com-
pounded by the fact that experimental investigations of
ionic transport, such as dc conductivity measurements as
a function of temperature or (total) ion concentration N,
do not provide direct information on the conduction pro-
cess involved; this difficulty can only be tackled by mak-
ing measurements on, say, the ionic mobility p itself, for
example, using the Hall effect,! whereby the influences on
the ionic conductivity of possible changes in u or the
mobile ion concentration n with variations in tempera-
ture or N can be separately evaluated. In this way it
should be possible to decide between various models for
the ionic transport mechanism, such as those stressing
the role played by the ionic carrier concentration »n (for
example, in the “weak-electrolyte” theory),? or the ionic
mobility® or “defects” such as interstitialcies (for a re-
view, see Ref. 4).

Recently, it has been emphasized that studies of the dy-
namic behavior of ionic transport processes in amor-
phous solids can shed additional light on this prob-
lem.>~® Such measurements include frequency-
dependent (ac) conductivity, quasielastic neutron scatter-
ing (QENS), and nuclear magnetic resonance (NMR)
spin-lattice relaxation rate, the latter being the subject of
this paper. The goal is to formulate a microscopic model
for the dynamic behavior so that the proposed mecha-
nism accounts satisfactorily for the experimental results
obtained from these three techniques, which encompass a
very wide range of frequencies (=~ 10—10'! Hz).

Three models for ionic transport in disordered materi-
als, based to a greater or lesser extent on a microscopic
picture, have been proposed: these are the “diffusion-
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controlled relaxation” model proposed by the present au-
thors,””1° the “jump-relaxation” model of Funke and
co-workers ''715 and the “coupling” model due to Ngai
et al.'®"'® These will be reviewed briefly in the following
sections as likely mechanisms for nuclear spin relaxation
in ionically conducting glasses.

II. MODELS FOR DYNAMIC IONIC TRANSPORT
BEHAVIOR IN GLASSES

A. Diffusion-controlled relaxation model

The diffusion-controlled relaxation (DCR) model as-
sumes that ionic transport in (superionic) glasses occurs
through the motion of interstitial defects and that the re-
laxation processes giving rise to the dispersive dynamic
ion-transport behavior occur at the interstitial sites them-
selves;’ the arrival of an ion at a site already occupied by
an ion, thereby producing an interstitialcy, is presumed
to result in a local structural rearrangement of the origi-
nal ion, somewhat similar to, but distinct from, the pro-
cess envisaged by Charles!'? (see Fig. 1). This mechanism,
whereby relaxation is triggered by the arrival of an ion, is
a process of “target diffusion” as originally envisaged by
Glarum?® except that, in the DCR model, the diffusing
“defects” of the Glarum picture are the ions themselves.
(The notion that ions could act as entities triggering re-
laxation events was also suggested, but not analyzed, ear-
lier by Hodge and Angell.?!)

It should be noted that the DCR model has both series
and parallel relaxation aspects. The series aspect arises
from the fact that the relaxation is assumed to be dom-
inated by the diffusion-triggering mechanism. Thus, in-
terionic correlations, indisputably important in ionically
conducting materials, occur explicitly in this model at the
lowest level, i.e., pairwise at interstitial sites. (In addi-
tion, interionic correlations may also arise implicitly, for
example, in determining the ionic diffusion coefficient,
which is taken as a given parameter in the theory.) The
parallel aspect of the DCR model is that the total relaxa-
tion response is assumed simply to be the sum over all in-
dividual relaxation events occurring independently at
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FIG. 1. Schematic illustration of the microscopic ionic relax-
ation process underlying the DCR model. A diffusing ion on ar-
riving at an occupied site and thereby forming an interstitialcy
(a), causes a local rearrangement (relaxation) of the original ion
due to the mutual Coulombic repulsion between the two ions
(b).

each interstitial site.

For this model, the temporal decay function describing
the relaxation behavior after the abrupt removal of a
steady exciting field (e.g., for electrical polarization) can
be written as® 12

o(t)=c exp(-—t/'r’)exp[—(t/7'3)1/2] (1)

for the case when all species (viz., ions), assumed to be
randomly situated in space and diffusing in three dimen-
sions, can act as triggering entities. Note that Eq. (1) pre-
dicts a stretched-exponential (Kohlrausch-Williams-
Watts) behavior, albeit with a time-dependent exponent
B.1° At very long times, ¢t >>7'2/r,, pure exponential be-
havior ( B=1) is recovered.!® In Eq. (1), the two charac-
teristic times 7' and 7; are given by

1/7=1/7+4wDRn (2)
and
1/7,=64wDR*n? , 3)

where D is the diffusion coefficient of the ions, n is the
concentration of (mobile) ionic species, R is the radius of
the interstitial site (assumed to be constant) within which
the relaxation event is supposed to occur, and 7 (also as-
sumed to be constant) is the characteristic relaxation time
for the (exponential) relaxation decay occurring in the ab-
sence of diffusion-induced triggering arising, say, from
the local motion of a single ion at a site due to thermal
excitation from its stable position to another metastable
position over an energy barrier W in a double-well poten-
tial (W is also, for simplicity, assumed to be constant
from site to site). Finally, in Eq. (1) the parameter c is a
constant, in the range 0 <c¢ <1, given by the fraction of
centers relaxing instantaneously at ¢t =0 (due to trigger-

ing ions being already present inside the relaxation radius
R at this time).

The degree of nonexponential (i.e., stretched) behavior
predicted by the DCR model'%?? is determined by the ra-
tio 7'/73~16R*n (if the diffusion-independent term in-
volving 7 is neglected). Thus, exponential relaxation be-
havior is predicted to be recovered as the concentration
of diffusing triggering ions tends to zero.!° The reason
for this is that an exponential relaxation decay is ob-
tained when there is no influence on the probability of a
site being relaxed due to the occurrence of previous
diffusion-triggered relaxation events,?? i.e., there is no
correlation between relaxation events. This is believed to
be the origin of the previously nonunderstood, experi-
mentally observed?* compositional dependence of the ex-
ponent 3.

Three assumptions are made concerning the structure
of the material in which this target-diffusion process is as-
sumed to occur: the first is that interstitial sites with a
(constant) radius R exist in the host structure, the second
is that the diffusing ions are assumed to be distributed in
a random fashion,?? and the third is that the diffusion
occurs on a regular, i.e., nonfractal (albeit non-
crystalline) structural framework. In practice, there will
be a distribution of sizes of interstitial sites; however, we
have recently shown?’ that the size distribution of inter-
stitial holes in a model of vitreous SiO, is, in fact, not
very broad and so it may be surmised that the assumption
of a fixed interstitial-site radius for a glass of a given com-
position is probably not unreasonable. Furthermore, the
assumption that the diffusing ions are completely ran-
domly distributed with respect to a target interstitial site
is also reasonable, particularly for ion concentrations
which are not too large. At high-ion concentrations, this
assumption may begin to break down and a reasonably
well-defined (nonrandom) nearest-neighbor ion-ion dis-
tance may begin to emerge. Hunt and Powles® have ana-
lyzed the behavior of the target-diffusion model in the
case when the relaxation-triggering entities are distribut-
ed in such a nonrandom fashion and find, provided that a
diffusion-independent exponential term is included in the
relaxation function ¢(¢), that the behavior is predicted to
be qualitatively very similar to that when the diffusing
species are distributed randomly. The final assumption
namely, that the diffusion takes place on a regular, albeit
noncrystalline, structural framework, affects the value of
the exponent 3 in the stretched-exponential functional
form of the relaxation function ¢(¢). However, percola-
tion clusters near criticality (e.g., ion-conducting chan-
nels) can exhibit fractal characteristics, and target
diffusion on such structures leads to different values of
the exponent B3:!° for values of the fracton (spectral) di-
mension d <2, the exponent takes the value f=d /2,728
i.e., B can differ from the value of one-half.

A further assumption made in the DCR model'® is the
so-called ‘““first-passage” approximation, whereby it is as-
sumed that relaxation occurs instantaneously once a
triggering entity (ion) arrives inside the relaxation radius
R. This assumption leads to a finite jump in ¢(¢) at =0
[c.f., the constant ¢ in Eq. (1)] resulting from the instan-
taneous relaxation events caused by those triggering enti-
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ties within the relaxation volume at ¢t =0. This unphysi-
cal feature of the model has been dealt with recently by
Condat?® who showed that, if a finite rate of relaxation of
a target by a diffusing triggering entity is assumed in-
stead, the time-dependent decay at very short times be-
comes a simple, exponential form, smoothly changing to
a stretched-exponential behavior at longer times. (This
purely exponential relaxation-decay behavior at very
short times would also correspondingly be manifested at
very high frequencies, and there is indeed evidence from
Brillouin scattering experiments of mechanical relaxation
in superionic glasses®”?! that the nonexponential behav-
ior observed at lower frequencies disappears for frequen-
cies in the GHz range.)

Furthermore, the DCR model assumes that the
triggering entities (ions) make uncorrelated hops in their
diffusive motion which leads to triggering of relaxation.
In three dimensions, this type of motion serves to mini-
mize any nonexponential relaxation behavior.?? It is con-
ceivable, however, that correlated jump diffusion could
occur and this feature could easily be incorporated into
the DCR model, for example, by using a suitable
waiting-time ~ distribution'®3? in a continuous-time
random-walk*? picture of the problem.

Finally, it should be stressed that the nonexponential
relaxation behavior predicted by the DCR model does
not arise from the physical existence of a distribution of
relaxation times, as suggested, for example, by Dyre,3*
amongst others (although formally any type of nonex-
ponential behavior can always be expressed in terms of
such a distribution). Rather, the nonexponential behav-
ior arises from the ‘“fractal time”* characteristic of
target-diffusion processes.

B. Jump-diffusion model

Following an earlier suggestion by Schmalzried,’®
Funke and co-workers have recently proposed!!'™!® that
ionic conduction in solid materials can be understood in
terms of a Debye-Hiickel-Falkenhagen approach.’’73° A
given ion at a site 4 can move to a nearby vacancy at B
by thermal activation over an energy barrier, if the
motion is adiabatic. Once at B the ion will probably per-
form a return hop back to A (a correlated forward-
backward hop) since, in this case, the activation barrier
for the reverse motion B to A is substantially lower than
from the (stable) position A4 to B; the probability that the
ion is still at B at time ¢, not having performed a correlat-
ed backward hop, is W(t), which is used to calculate
various time-correlation functions. Interionic interac-
tions are introduced into the model by assuming that all
the ions surrounding the hopping ion relax (on a slower
time scale than that of the hopping event itself) so that
eventually the site B becomes the position of lowest po-
tential energy; thus, the shape of the double-well poten-
tial characterizing the sites 4 and B changes with time.
For simplicity, a simple exponential time dependence,
g(t)=exp(—t/7), with a fixed relaxation time 7, has
been chosen in the early development of the model to
represent the time-dependent relaxation behavior of the
surrounding ions.'>!3 (The effect of Coulomb interac-

tions on the conductivity due to the hopping motion of
ions has also been considered by Bunde er al. %04}

However, several deficiencies are apparent with this
model. First, it is not clear how valid such an approach,
based on the Debye-Hiickel-Falkenhagen theory for di-
lute (liquid) electrolyte solutions, is for the case of ionic
conductors containing large concentrations of ions.
Furthermore, it seems implausible that a many-body re-
laxation process, such as that involved in the relaxation
of all surrounding ions following an individual ion hop,
should have a simple exponential time-dependent behav-
ior for the relaxation decay. In fact, in more recent de-
velopments of the model, Funke*?~** has relaxed the as-
sumption of a simple exponential form for g(¢) and a
more realistic derivation of g (¢) leads to a marked nonex-
ponential character of this quantity, which can be
represented approximately by a stretched-exponential
function; although, at very short times, g (¢) always has a
simple exponential form.*> In addition, the jump-
diffusion model predicts that, at very high frequencies, a
frequency-independent behavior of the conductivity, viz.
o (o )=const, should occur,'>'? however, there is no ex-
perimental evidence for the occurrence of such plateaus
for ionically conducting glasses before the onset of pho-
non absorption bands at very high frequencies (~ 102
Hz)—see, e.g., Ref. 45. In conclusion, the jump-diffusion
model is likely to be applicable, if at all, to the case of
poorly ionically conducting materials—e.g., oxides—
where the mechanism of ionic transport is likely to in-
volve discrete hopping events. It is not clear, however,
that it should be applicable to the case of superionic
glasses.

C. The coupling model

Ngai and co-workers!®*® have long stressed the useful-
ness of representing the relaxation behavior in a wide
variety of systems by a stretched-exponential,
Kohlraush-Williams-Watts (KWW) type temporal func-
tion. The basis of these ideas is the assertion that, at very
short times, the rate of a particular (uncorrelated) relaxa-
tion process is constant, W (¢)=r; !, leading to an ex-
ponential time dependence, whereas, at times longer than
a critical time ?,, owing to successively constraining
correlations, the relaxation rate becomes time dependent
with an assumed power-law time dependence, W (¢) ot ™"
(where 0<n <1); this leads to a stretched-exponential
(KWW) form for the decay function, ¢(¢)
=exp[ —(z/7*)'7"], B=1—n, where n (or ) is indepen-
dent of time. In addition, a relation between relaxation
times has been suggested,'®4® viz,

7'*=[(1—n)]w£‘7‘0]1/“_") , (4)

where w,=1/¢,. If 7y and 7* are each thermally activat-
ed, with activation energies E, and E, respectively, Eq.
(4) implies that!®46

E,=(1—n)E} . (5)

According to this approach, it is asserted that it is E,,
and not EJ (which is ascribed to the dc conductivity ac-
tivation energy in the case of ionic transport), which is
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the true microscopic (primitive) activation energy for the
relaxation process.

A serious shortcoming of this approach is that the pa-
rameters involved in the model, namely, n (or B), and 7*
and z. ( the time marking the crossover from exponential
to stretched-exponential behavior) are not related micro-
scopically to physical quantities involved in the particu-
lar relaxation process but, instead, are empirical fitting
parameters. Furthermore, although the nonexponentiali-
ty is ascribed to interionic correlations in the case of ionic
transport, the model does not provide a relationship link-
ing the exponent # (or ) to the ionic composition, al-
though if correlations are the determining factor, it is
plausible*’ that n should tend to zero (or B—1—i.e., ex-
ponential behavior is recovered) in the limit of very low
ionic concentrations, as observed.?*

III. NUCLEAR-SPIN RELAXATION
IN IONICALLY CONDUCTING GLASSES

A. Introduction

There has been considerable interest in measuring
nuclear-spin-relaxation (NSR) rates, e.g., associated with
spin-lattice relaxation, T'; !, of isotopes of atoms which,
as ions, are mobile in glassy (or crystalline) hosts. The
NSR behavior of such ions, say as a function of tempera-
ture, can give information on ionic transport processes in
such materials. Martin*® has recently given a review of
the use of such techniques in the study of ionic transport
in glasses. Thus, for example, Gobel et al.*® and more
recently, Balzer-Jollenbeck et al.’® have studied the NSR
behavior of a variety of relatively poor ionically conduct-
ing oxide glasses (silicates, borates, germanates, and phos-
phates). Silver-containing oxide glasses, particularly in-
corporating so-called halide “doping salts” (e.g., Agl), ex-
hibit considerably higher ionic conductivities than the
corresponding alkali-metal oxide glasses. The NSR be-
havior of these materials has also been studied by a num-
ber of authors.’! 3 Sulphide glasses exhibit much larger
(typically a thousandfold) ionic conductivities than the
corresponding oxide materials having the same
conducting-ion concentration,’ and the NSR behavior of
both alkali-metal-containing> ~>° and Ag-containing>~°
thiosalts (e.g., thioborates, thiosilicates, and thioger-
manates) have been investigated.

At sufficiently high temperatures (the upper limit being
dictated by the glass-transition temperature), the temper-
ature dependence of the spin-lattice relaxation rate 7'; !
exhibits a peak which is, in general, asymmetric in shape;
in an Arrhenius plot, the effective activation energies for
the high-and low-temperature sides of the peak are usual-
ly very different, the high-temperature value E, being
comparable to that of the dc conductivity, E_,, whereas
the low-temperature value E, is considerably smaller,
E,=aE,, with a=0.3-0.5. Furthermore, the high-
temperature side of the peak of T'[! versus inverse tem-
perature is independent of frequency (or equivalently
magnetic field) in the motional-narrowing limit; the low-
temperature side, in contrast, is frequency dependent
with an approximate power-law frequency dependence,

T, <™, where m may be slightly sublinear®® or some-

what superlinear,’® but, in all cases, 0<m <2. A larger
range of the temperature-dependent behavior of the
spin-lattice relaxation rate is manifested in more highly
ionically conducting materials for which the correlation
times are correspondingly smaller. At the lowest temper-
atures, say below 200 K, the temperature dependence of
the spin-lattice relaxation rate T; ! becomes much weak-
er® and can be represented as a power law, Tl_1 o< T,
where n is slightly superlinear,”® 1 <n <1.3.

Obviously a major contributory cause of NSR in ioni-
cally conducting glasses is the motion of the ions them-
selves; such ionic motion gives rise to fluctuating magnet-
ic fields which can cause NSR via a variety of nuclear-
spin interactions, e.g., chemical shift, dipolar, or quadru-
polar. Thus, a proper understanding of the observed
temperature (and frequency) dependence of T, can only
be achieved via a knowledge of the underlying microscop-
ic mechanism for the dynamic ionic behavior.

B. Models for NSR in ionically conducting glasses

A model for ionic-motion-mediated NSR was proposed
by Bloembergen, Purcell, and Pounds® (BPP). In the
case of relaxation mediated by dipole-dipole interactions,
the spin-lattice relaxation (SLR) rate can be written as®?

1/T,=C[J(0)+4J(20)], (6)

where J () is the spectral density function corresponding
to the time-dependent correlation of motion between in-
teracting nuclei, given by the Fourier transform,

J@)=[7 gne™dr, )

and o is the Larmor frequency, and C consists of con-
stants such as the magnitude of the nuclear spin and the
gyromagnetic ratio. In the case where NSR occurs via a
quadrupolar mechanism, the SLR rate is still given by
Eq. (6), but with a different constant C.% In the BPP
model, the correlation function is simply assumed to be a
pure exponential function,

g(t)=cexp(—|t|/T), . (8)

where c is a constant and 7 is a characteristic correlation
time. Thus, from Eq. (6), the SLR rate is given by®?

1 T 47
— =’ -+ . 9)
T, 1+’ 1+40°7

where ¢’ is another constant. If the correlation time is
assumed to be thermally activated, with an activation en-
ergy E ,, the BPP model correspondingly predicts that
the peak of the SLR rate versus inverse temperature
should be symmetrical with effective activation energies
of +E, and —E, on the high- and low-temperature
sides of the peak, respectively, in contrast with the asym-
metric peaks commonly observed experimentally in
glasses. Further, the SLR rate is predicted to be frequen-
cy independent on the high-temperature side, as observed
experimentally, but proportional to @ % on the low-
temperature side, at variance with experimental observa-
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tion. Finally, it is not obvious why E , should equal E_,
the dc conductivity activation energy, as observed.

The discrepancy in activation energies between that of
the ionic dc conductivity, E,, and E,, that of the SLR
rate on the low-temperature side (often all that is measur-
able, particularly for poorly conducting materials*’) has
long been contentious, and a number of proposals have
been made to account for this difference. It has been sug-
gested,’! for instance, that the discrepancy arises because
the dc conductivity is a measure of long-range ionic mi-
gration, whereas NMR line narrowing or SLR could be
sensitive to more short-range ionic motions, for which the
energetics of ionic transport would be expected to be
different. More recently, it has been proposedg"“g'“’64
that the origin of the disparity in activation energies lies
in the frequency dependence of the relaxation behavior.
It is asserted that the low-temperature region of the SLR
peak, corresponding to the condition w72 1, is equivalent
in behavior to the high-frequency region of the ionic con-
ductivity which is itself frequency dependent and which
has an experimentally observed weaker temperature
dependence than the (dc) frequency-independent region
of the conductivity for which wr<1. Although it has
been demonstrated explicitly,” from ac conductivity and
SLR rate results measured at the same frequency (10
MHz) on the same material (Li,S-SiS, and Ag,S-GeS,-
Agl), that, indeed, E, and E_(w) are the same within ex-
perimental error, this approach does not, in our view,
resolve the problem of the difference in activation ener-
gies for SLR and dc conductivity as has been claimed,®*?
but merely shifts the emphasis to the real question: What
is the microscopic origin of the nonexponential relaxation
behavior observed in both NSR and electrical studies?

Attempts have been made to account for the asym-
metric peaks of InT; versus 1/T in terms of a distribu-
tion of correlation times, g(7), presumed to arise because
of the random nature of the glassy matrix. Thus, a distri-
bution function corresponding to the empirical Cole-
Davidson function® has been used to fit experimental
SLR data for a variety of glassy systems, both poorly
conducting oxides* and superionic sulphides.*®*>>7 Al-
though reasonable fits can be obtained for a given materi-
al at a particular Larmor frequency, this approach does
not seem to be able to fit well the SLR data taken at
different frequencies.”® Furthermore, there is no physical
basis for using this, or any other, distribution function for
the correlation times.

An empirical modification to the BPP function for the
SLR rate has also been suggested,’® ¢ viz,

1 T 47
—=C + , (10)
T, 1+ (r)'t®  14+Qer)!te

which is of a similar functional form to the empirical for-
mula suggested by Cole and Cole®’ in respect of dielectric
relaxation. However, this approach also suffers from the
fact that it is essentially an empirical fitting function, de-
void of physical meaning; moreover, it does not predict
the Larmor frequency dependence of T'; observed experi-
mentally.®

In a similar stretched-

fashion, the empirical

exponential (KWW) function, with constant exponent j,
viz.,

#(t)=exp[ —(t/7)P], (11)

has also been used to fit SLR data for a number of (su-
perionic) glasses.*®** Again, reasonable fits to the experi-
mental data can be achieved, but this approach suffers be-
cause no theoretical justification is given for the use of
the empirical KWW function and the parameters in-
volved (f3,7) have no microscopic meaning.

Recently, Balzer-Jollenbeck et al.*° have proposed an
interpretation of NSR for mobile ionic species in (poorly)
ionically conducting (oxide) glasses in terms of the cou-
pling model of Ngai et al. 16—18,46 1t is asserted that it is
the low-temperature activation energy E, of the SLR rate
which represents the true microscopic energy barrier to
ionic motion and not the (larger) activation energy,
E,=E,. The weak dependence of T, on the Larmor fre-
quency, Tl'l <@~ ™, where 0.5<m <0.8, observed in
ionically conducting oxide glasses on the low-
temperature side of the peak, is interpreted in terms of a
process in which NSR is mediated by interactions with
two-level systems (TLS) at all temperatures. At low tem-
peratures (T <200 K), the temperature dependence of the
SLR rate in these ionic glasses is weak (<777,
0<y <0.3), and this behavior is very similar to that ob-
served at similar temperatures in non-ion-containing
glasses, such as B,0;, where NSR relaxation by TLS
centers has been proposed.®® 7! At temperatures above
200 K, the temperature dependence of the SLR rate be-
comes thermally activated, and Balzer-Jollenbeck et al.>
ascribe this behavior to an ion hop associated with a TLS
transition (of the host matrix). In this way, it is claimed
that the frequency dependence of T'; can remain weak, as
observed, but the temperature dependence can be
enhanced; the energy barrier to ionic motion is then equal
to the low-temperature activation energy of the SLR rate
in this interpretation.

However, this qualitative picture has several shortcom-
ings. In the TLS model as originally applied to low-
temperature thermal anomalies in glasses,’*’® a broad
distribution of barrier heights in the double-well potential
of the TLS centers is needed to predict the observed
thermal behavior. Kanert et al.”>7> have, in fact, recent-
ly fitted the frequency and temperature dependence of the
SLR rate, at low temperatures, in a Li,O-LiF-B,0; glass
using such a distribution of barrier heights. However, at
higher temperatures, where ionic motion is supposed to
influence NSR and the temperature dependence of T, is
stronger, it is not clear how the inclusion of such a distri-
bution into the model would influence the predicted NSR
behavior: Is the (low-temperature) activation energy of
the SLR rate related to the width of the distribution, the
maximum barrier height involved, or an average weight-
ed to lower energies?’® Furthermore, it is not at all clear
how a mechanism for NSR involving excitation of TLS
centers can be consistent with the “coupling” approach
of Ngai et al., 16—-18,46 where many-body interactions are
supposed to be the cause of nonexponential relaxation.

However, a mechanism for TLS mediated NSR involv-
ing ionic motion® is more likely to be valid for NSR of
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network-forming (i.e., nonmobile) atoms in an ionically
conducting glass. Recently, Avogadro et al.”’ have in-
vestigated the SLR behavior of !'B in the superionic glass
Agl-Ag,0-B,0; and found qualitatively similar behavior
to that observed for ' Ag in the same system,>® namely, a
weak temperature dependence of T; at low temperatures
and a much stronger temperature dependence at more
elevated temperatures. However, in the case of the !'B
SLR data,”” the activation energy E, for the SLR rate on
the high-temperature side of the peak is not equal to that
of the ionic dc conductivity E_, but is about half the
value, whereas the corresponding high-temperature ac-
tivation energies E; for 1 Ag SLR are in agreement with
E, in the case of a KWW-type fit to the data.’> Note
that the values of E; for '®Ag quoted by Avogadro
et al.”7 and taken from Ref. 51, where they were ob-
tained from a BPP-like fit, are considerably smaller (by a
factor of 3) than those obtained by Chang et al.,* al-
though these authors also found anomalously low values
of E, if a BPP type of fit was employed. This discrepan-
cy throws into doubt, therefore, the validity of the claim
made by Avogadro et al.” that E,(Ag)+E,(B)=E,.

Very recently, the ‘“jump-diffusion” model of
Funke'?~!® has been used to fit NSR data for ionically
conducting glasses,*>>*% and Funke and Wilmer*? have
proposed a relationship between the NMR spectral densi-
ty function J(w) [Eq. (7)] and the ac conductivity o(w)
(both quantities being complex):

J(w)= <ol (12)
O e Toio+To(w)

where the parameter T, representing a characteristic
temperature of the ionic conductor, is given by

cq’x}
O 6esky

(13)

and where c is the concentration of the mobile ions with
charge g and x, is the hopping distance. Thus, the SLR
rate and ac conductivity are related, in this model, by Eq.
(6) together with Eq. (12).

Although Chung et al.®? find that the fits to their SLR
data for Ag,0-Agl-B,0; glasses using the jump-
relaxation model are as good as those obtained using the
empirical KWW formalism, nevertheless, the values of
the characteristic relaxation times 7 obtained from the
former fits are between 2 and 3 orders of magnitude
smaller than the period of the Ag*-ion “rattling” motion
in such glasses, implying that the correlated ionic jump
mechanism of Funke!! !> may not be applicable in such
superionic glassy materials.

Finally, Schirmacher and Schirmer’® have also pro-
posed a model for NSR in ionically conducting glasses
based on an activated, fixed-range ionic hopping mecha-
nism,” which is formally somewhat similar to that pro-
posed by Funke.!!” ! SLR data for a lithium borate glass
have been fitted using this model assuming a constant
(flat) distribution of hopping activation energies. Howev-
er, agreement with the data is poor.

b

C. The diffusion-controlled relaxation model for NSR

Here we aim to show how the DCR mechanism for
ionic relaxation”% !0 as outlined in Sec. II A, can provide
a satisfactory, self-consistent model for NSR in ionic
glasses, particularly those which are rather good ionic
conductors. In fact, target-diffusion processes?® have
been proposed previously to account for non-BPP-like
NSR behavior in a variety of materials, including molec-
ular liquids®® and polymers,’*®!' where the diffusing enti-
ties were taken to be “defects” of a rather ill-defined na-
ture. However, with the exception of the passing sugges-
tion of Hodge and Angell,”! we know of no other work
besides ours which identifies the triggering species as
diffusing atoms or, as in the present case, ions and which
has made a quantitative analysis of this situation. A pre-
liminary account of the application of the DCR model to
NSR in ionically conducting glasses has been given else-
where.??

In analyzing the NSR of nuclei of mobile ionic species
(e.g., Li*, Ag™) in a glassy matrix, we assume that the re-
laxation of a particular nucleus of an ion at a given site is
caused by the fluctuating fields due to the diffusive
motion of other ions, as in earlier work on diffusion-
mediated NSR,%? including the seminal work of Bloem-
bergen et al.®' In other words, NSR can only occur
when a diffusing ion approaches another ion sufficiently
close for the fluctuating fields to be large enough to in-
duce relaxation, i.e., the process is inherently one of tar-
get diffusion and previous diffusion-mediated theories®"%?
which failed to take account of this fact are therefore in-
complete.

In order to evaluate the SLR rate, it is necessary to cal-
culate the spectral density function J (w), related via Eq.
(7) to the time-dependent correlation function g (z) for the
atomic motion. In this paper, we will use for g(z) the
solution due to Bordewijk®? for target diffusion in three
dimensions, where all diffusing species can act as trigger-
ing entities, as previously employed in a discussion of
dielectric relaxation.!® [Previously, Hunt and Powles
used a three-dimensional (3D) generalization of the
Glarum solution?® where only nearest neighbors act as re-
laxation triggers, whereas Kimmich and Voigt?! have
considered a number of 3D diffusion situations similar to,
but not the same as, that discussed by Bordewijk.??]
Thus, except at very short times, where the correlation
function is expected to transform smoothly to pure ex-
ponential behavior,? g(¢) is expected to be given by Eq.
(1).

Note, however, that the microscopic identification of
the radius R appearing in the expressions for the charac-
teristic times 7' and 75 [Egs. (2) and (3), respectively] in
the case of NSR is not necessarily the same as that arising
in the case of dielectric relaxation, where it has been
identified with the radius of an interstitialcy site;!0 the
fluctuating fields arising from diffusive ionic motion
might be expected to cause nuclear relaxation at an ionic
site at appreciably larger distances than that of the
interstitial-site radius.

Use of Eq. (7), with Eq. (1) for g (?), yields for the spec-
tral density function for the DCR model:**
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where 7' and 75 are given by Egs. (2) and (3), respectively.
The real part of the complex expression for J(w) can be
separated by numerical means.'© From this, the SLR
rate, T; ! can be evaluated using Eq. (6).

It should be noted from Eq. (14) that the (complex)
spectral density function and, hence, the SLR rate, can be
regarded as the sum of two terms, the first of which, viz.,
7 /(1—iwT'), is simply the BPP expression;‘(’1 the non-
BPP-like behavior thus arises from the second correction
term in Eq. (14). This correction term tends to zero, i.e.,
BPP-like behavior is recovered for two conditions: (i) for
ot <<1, so that the high-temperature, Larmor-
frequency-independent region of the peak of T ! versus
1/T (where w7 <<1) is unaffected by nonexponential
NSR behavior and (ii) for (7' /73)!/2—0. If the diffusion-
independent term 1/7 is neglected in Eq. (2) for 7' then,
taken together with Eq. (3), the ratio 7' /75 is proportional
to the (mobile) ion concentration n:

7 /73=~16R*n . (15)

Thus, the non-BPP-like correction term to the SLR rate
is predicted to become negligible as the ion concentration
tends to zero. This behavior, viz., the recovery of BPP-
like SLR behavior at very small ion concentrations, has
recently been observed experimentally in lithium ger-
manate glasses.”” Similar behavior is also found for elec-
trical relaxation in ionically conducting glasses, where
Debye-like characteristics are recovered at very low ion
concentrations.?* The compositional dependence of the
SLR rate will be discussed in more detail later in this sec-
tion.

The DCR model also predicts an additive (non-Debye)
term in the case of dielectric relaxation,!® similar to that
for the SLR rate [Eq. (14)]. It is worth noting here that
Johari and Pathmanathan®® have also suggested, on
empirical grounds, that electrical relaxation data for ioni-
cally conducting glasses can be divided into two parts,
one Debye-like and the other non-Debye-like; the former
was presumed to arise from conductivity relaxation
characterized by a single relaxation time, whereas the
latter was presumed to result from dipolar reorientation
processes having a distribution of relaxation times (e.g.,
as given by the empirical Cole-Davidson function®).
This empirical procedure of Johari and Pathmanathan®?
has been shown to give better agreement with electrical
modulus data at high frequencies; it should be noted,
however, that the DCR model self-consistently predicts
such additive behavior, although the interpretation of the
Debye-like and non-Debye-like terms is completely
different from that of Johari and Pathmanathan.??

Theoretical curves of the SLR rate versus inverse tem-
perature calculated using the DCR model [Egs. (6) and
(14)] are shown in Fig. 2 for two choices of the ratio
7' /75. It can be seen that, for nonzero values of 7' /73,
non-BPP-like behavior is manifested on the Ilow-
temperature side of the peak of SLR rate, viz., the

3,2 SXP

erfc

» 12
4r(1—ieT') 4r(1—iwt) ] ] ] ’ 14

r
effective activation energy there, E,, is smaller than that,
E,, on the high-temperature side. In fact, the plot of
T ! versus inverse temperature is appreciably curved on
the low-temperature side near the peak (as generally ob-
served experimentally), and so it is difficult to deduce an
accurate value for the effective activation energy E, from
such a plot. Nevertheless, it is apparent that the extent
of the non-BPP-like behavior predicted by the DCR
model becomes greater the larger the value of the ratio
T /73

Moreover, it should be noticed that, as the value of the
ratio 7' /7 is increased, the peak in the plot of SLR rate
versus inverse temperature predicted by the DCR model
is no longer coincident with that characteristic of the
BPP solution [Fig. 2(b)]. This discrepancy is a manifesta-
tion of the fact that, when the non-BPP-like term in Eq.
(14) is significant, the position of the peak in the SLR rate
is no longer given by the condition w7=1, where o is the
Larmor frequency and 7 is an effective correlation time.
A similar result was found for the case of the loss peak in

log IO[ 1/, (sec™h)]

_ I | I I
12O 1 2 3 4 5 6 7

1000/T (K™

FIG. 2. Temperature dependence of the spin-lattice relaxa-
tion rate T; ! calculated for the DCR model for two choices of
the ratio 7' /73: (a) 0.02 and (b) 2.0. Note that non-BPP-like be-
havior is predicted for large values of this ratio. In both cases, a
Larmor frequency of @ =100 MHz and an (dc conductivity) ac-
tivation energy E, =0.3 eV have been used in the calculations.
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dielectric relaxation,'® and is, in fact, a general conse-

quence of markedly nonexponential relaxation behavior.

In the present interpretation, E, has no physical mean-
ing and the amount by which E, is less than E, is simply
a manifestation of the degree of nonexponential behavior
present in the NSR process due to the DCR mechanism.
We therefore disagree with the interpretation of Balzer-
J5llenbeck et al.,*® based on Ngai’s coupling model, 1613
that E, is the true microscopic activation energy. In our
picture, it is E; (equal to E,) which is the microscopic
activation energy.

Furthermore, the fact that the DCR model, as formu-
lated in this paper, predicts (for small values of the ratio
7' /713) a continuously decreasing temperature dependence
of the SLR rate with decreasing temperature on the low-
temperature side of the SLR peak, at least for, say, a
four-decade change in the magnitude of T'; from the peak
maximum [Fig. 2(a)], which is as much as is commonly
monitored experimentally, means that some (but not all)
of the change in temperature dependence at low tempera-
tures ascribed elsewhere to TLS-mediated relaxation*®>°
can thereby be accounted for. At the lowest tempera-
tures, where the experimentally observed temperature
dependence of the SLR rate is very weak,* the DCR
mechanism can no longer be the dominant relaxation
mechanism and some other mechanism (e.g., TLS-
related) must intercede. Over a wide enough temperature
range, i.e., for a sufficiently large range of values of Ty,
the temperature dependence of the SLR rate predicted by
the DCR model actually becomes accurately activated
even for small values of the ratio 7' /73 with an activation
energy E, considerably less than E (in Fig. 3, for exam-
ple, E, /E, =0.504). (However, in practice, as mentioned
above, this behavior would probably not be observed
since it is likely that a TLS-related mechanism would be
operative at the lowest temperatures.) It should be noted
that in the model of SLR due to 3D defect diffusion stud-
ied by Kimmich and Voigt,}! the ratio E, /E, always has
the value 0.5, independent of the parameters involved; it
is a particular feature of the Bordewijk solution®? of de-
fect diffusion that the degree of nonexponential behavior,
characterized by the ratio E,/E, in the case of SLR, is
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FIG. 3. Temperature dependence of the SLR rate for the
DCR model with 7' /73=0.02 for a more extended range of tem-
peratures than shown in Fig. 2(a). (Other parameters are the
same as those used in Fig. 2).

dependent on certain parameters in the model such as, in
our case, ion concentration.

In the DCR model for NSR, as formulated in this pa-
per, the SLR rate on the high-temperature side of the
peak (where w7’ <<1) is determined by the first BPP-like
term in Eq. (14); as a consequence, T; ' « 7 in this re-
gion. If the diffusion-independent term 1/7 is neglected
in Eq. (2), and if R and »n are, moreover, assumed to be
temperature independent,'® then the temperature depen-
dence of the SLR rate in the high-temperature region is
governed by that of the diffusion coefficient since
7' «1/D [Eq. (2)]. Furthermore, since D <o, the DCR
model for NSR predicts that the effective activation ener-
gy of the SLR rate on the high-temperature side of the
peak is equal to that of the ionic dc conductivity, viz.,
E,=E_. This equivalence has been widely observed ex-
perimentally*®335775% and, although it is often stated®*®
that it is physically plausible that E,; should equal E, for
those cases where ionic motion is responsible for NSR,
the DCR model demonstrates this equivalence unequivo-
cally in a theoretically self-consistent manner.

We now turn to a discussion of the dependence of the
ionic-motion-mediated SLR rate on the concentration of
(mobile) ions. Ngai et al.*’ and Kanert et al.”™3* have
investigated this behavior experimentally for a number of
alkali germanate and aluminogermanate glasses, and typ-
ical results’”® for a series of lithium germanate glasses
with differing lithium contents are illustrated in Fig. 4. It
can be seen that, whilst E, decreases gradually with in-
creasing mobile-ion content, as is well established from
numerous studies of ionically conducting glasses (due
presumably to changes in the structure and conducting
pathways of the host glass), the SLR effective activation
energy E, exhibits a much more rapid compositional
variation, particularly at very low ion concentrations x,
where E,—E; i.e., BPP-like behavior is recovered as
x —0.

Qualitatively similar behavior is observed for electrical
relaxation in ionically-conducting glasses: the stretched-
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FIG. 4. Experimental activation energies for ionic conduc-
tion, E, (¢) and 7 Li NSR, taken from the low-temperature side
of the peak of SLR rate, viz., E, ([1), for various concentrations
of lithia in the series of germanate glasses (Li,0),(GeO;);_,
(Refs. 75 and 84).
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exponential exponent [, obtained from modulus data,
tends to unity as the ion concentration tends to zero,2*%°
i.e., Debye-like relaxation behavior is recovered under
such circumstances. Ngai et al.*’ and Martin®* have
pointed out that at very low ion concentrations, the in-
terionic separation will be correspondingly very large and
ion-ion correlations will then be minimized: these au-
thors hypothesize that, under such circumstances, ex-
ponential relaxation behavior should be recovered, al-
though no further theoretical justification nor a quantita-
tive compositional dependence was given. It has been
pointed out, however, that the DCR model for electrical
relaxation'® predicts such a compositional dependence of
the non-Debye-like behavior.

The only quantitative expression for the composition
dependence of SLR behavior previously given is that pro-
posed by Kanert et al.”3 and Funke®® based on a
jump-relaxation model'?~!® incorporating Coulombic in-
teractions between the hopping particles,*>*! i.e., similar
to the Debye-Hiickel-Onsager treatment of dilute liquid
electrolytes. On the basis of these considerations, the fol-

lowing relationship has been proposed:’> 8486
E, 1 E,
=a|1+——% 16
E—E, “|'"KVx |’ (16

where, as before, E, =F  and E, are the activation ener-
gies for the SLR rate on the high- and low-temperature
sides of the peak, respectively, E, is the dc conductivity
activation energy, x is the mole fraction of modifier
(conducting-ion) oxide, a is a constant with a value of the
order of unity, and the parameter K is given by the ex-
pression

372

£ , (17)

K=3|——
4meyed

where d is the mean hopping distance and € is the dielec-
tric constant of the glass. Note that since the ratio of ac-
tivation energies for SLR and conductivity is found
empirically from experiment*’ to be E,/E - =B, where 3
is the exponent in the stretched-exponential function of
the relaxation function, as predicted theoretically from
Ngai’s coupling model*’ as well as from the DCR model
discussed in this paper, the left-hand side of Eq. (16) can
therefore be rewritten as

E

2 . B (18)

E,—E, 1-p
The SLR data for the (Li,0),(GeO,),_, glasses shown
in Fig. 4 are plotted according to Eq. (16) in Fig. 5 and,
although it has been claimed’> 3% that the data fall on a
straight line, in fact a rather pronounced curvature is evi-
dent in the plot. Furthermore, even less good agreement
is exhibited if the data for the (Na,0),(GeO,),_, glass
system reported in Ref. 47 are plotted in a similar way.
However, it should be remembered that it is often
difficult to deduce reliable estimates for E, from plots of
T, U versus 1/7 because, in many cases, the experimental
SLR data do not fall exactly on a straight line. In fact, it
is found that, if the SLR data for the Li,O-GeO, glasses
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FIG. 5. SLR activation energy data (Refs. 75 and 84) for
(Li,0),(Ge0,),—, glasses shown in Fig. 4 plotted according to
Eq. (16) (#) and also plotted simply vs the reciprocal of the
square root of the ion concentration x (0).

are plotted simply as E,/(E;—E,) versus 1/Vx, a
better fit to a straight line than that obtained using Eq.
(16) is achieved (see Fig. 5).

The DCR model, based on the Bordewijk solution?? for
3D diffusion also predicts a concentration dependence of
the non-BPP-like SLR behavior observed in ionically
conducting glasses, as for the non-Debye-like behavior of
the electrical relaxation.!® Examination of Eq. (14) for
the spectral density function J(w) predicted by the DCR
model shows that, as mentioned previously, the magni-
tude of the non-BPP-like correction term for J(w) and,
hence, T[ ', is determined by the quantity (7'/7;)'/%
From Eqgs. (2) and (3), if the diffusion-independent term
1/7 is neglected in Eq. (2), then the parameter
(7' /7)< n1/2 where n is the mobile-ion concentration
[Eg. (15)]. In other words, the DCR model also predicts
that BPP-like behavior is recovered (8—1) as the ion
concentration tends to zero, following a simple square-
root law. It is expected from this consideration, there-
fore, that the quantity

might empirically obey a relationship somewhat similar
to that of Eq. (16), namely

___I_sl_zb 14+ -5 (19)
E,—E, vix |’

where b and c are constants. Note, however, that E,
does not appear together with the concentration term on
the right-hand side of Eq. (19) as it does in Eq. (16). This
relationship exhibits the correct behavior at the two lim-
iting concentrations: as x —0, E,—E , and as x — o,
E,—bE,/(1+b),i.e., a value appreciably less than E .
Figure 6 shows a plot of values of E, /(E,—E,) calcu-
lated using the DCR expression for the SLR rate [Egs. (6)
and (14)] for varying values of the ratio 7'/7;, i.e.,
effectively the (mobile) ion concentration [Eq. (15)]. It
can be seen that these calculated values do indeed fall ap-
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FIG. 6. Plot of E,/(E,—E,) calculated from the DCR mod-
el as a function of the ratio (7' /7;)!/? (effectively the square root
of the ion concentration x), represented as a continuous curve.
The dc conductivity activation energy was chosen to be 0.92 eV
[the average of the experimental values for the
(Li,0),(GeO,),-, system (Refs. 75 and 84)] and the Larmor
frequency was taken to be =10 MHz. Also shown are the
(unscaled) experimental NSR data (Refs. 75 and 84) for glassy
(Li,0),(GeO,),_, plotted vs the reciprocal square root of the
lithia concentration x (OJ).

proximately on a straight line in accordance with the
empirical relationship expressed by Eq. (19), although it
is apparent that the gradient of the plot decreases at the
largest values of the ratio 7'/7;, i.e., at the largest ion
concentrations. The infinite-concentration intercept (i.e.,
where 1/V'x —0) predicted for the DCR model is at a
value

E,/(E\—E,)=p/(1-B)=1,

i.e., the limiting value for the factor B (the exponent in
the stretched-exponential factor) is S=0.5. This value is
characteristic of NSR due to the DCR mechanism, e.g.,
as treated by Kimmich et al.3%8!

Also shown in Fig. 6 are the experimental NSR data
for glassy (Li,0),(GeO,),_, as a function of the compo-
sition variable x. The DCR model is seen to exhibit qual-
itatively the same trend as the experimental data, but
there is a difference in slope. However, there is a prob-
lem in reconciling the concentration scale for the experi-
mental data and that of the ratio (7'/7;) for the DCR
model results on the abscissa. [No such difficulty exists
for the ordinate in Fig. 6 since the quantity plotted, viz.,
effectively B/(1—p), is independent of E;.] This
difficulty has two causes: one is due to the unknown
value of the constant ¢ in Eq. (19), and the other is associ-
ated with the uncertainty of the relation between the (ex-
perimental) total concentration of ions x and the (theoret-
ical) concentration of mobile ions n, i.e., are all ions
mobile? Considerably better agreement between the
theoretical DCR results and the experimental data for
(Li,O),(GeO,), _, is obtained if the concentrations of the
latter are multiplied by a constant factor of 14.8 to take
account of the combined effect of the two uncertain

features mentioned above (see Fig. 7). The (unscaled)
SLR data for another alkali germanate glass,*’ namely,
(Na,0),(GeO,),_,, are also shown in Fig. 7, whence it
can be seen that these experimental data are in consider-
ably better agreement with the theoretical predictions of
the DCR model than are the raw lithium germanate data.
Another discrepancy between the lithium germanate
data and the predictions of the DCR model, as developed
so far in this paper, concerns the intercept on the ordi-
nate as 1/V'x —0, as can be seen in Fig. 7. As men-
tioned above, a value of unity is expected from the DCR
model (and indeed the sodium germanate data seem to
behave in this way), but the experimental data for the
lithium glasses tend towards an extrapolated intercept
nearer a value of 0.25, implying the small limiting value
of B=0.16, rather than the value of 5=0.5 predicted by
the DCR model. This discrepancy cannot be due to un-
certainties in the scaling of the ordinate between experi-
ment and theory, as mentioned previously. One possible
explanation is that, for the case of the lithium germanate
glasses, the ionic conduction takes place not on a regular
“lattice” but, instead, on a fractal framework, for which
values of 3<0.5 can result for the DCR mechanism.'®
However, it is desirable that more experimental data be
obtained on the ion-concentration dependence of the ac-
tivation energies characteristic of NSR and dc conduc-
tivity in order to examine this point more carefully.
Finally, we discuss the dependence of T; ! on the Lar-
mor frequency w, particularly on the low-temperature
side of the peak of SLR rate. On the high-temperature
side of the peak of the SLR rate, i.e., where w7<<1, the
DCR model predicts that T is independent of the Lar-
mor frequency, as in the BPP case. At lower tempera-
tures, i.e., where w7>>1, the BPP model predicts that
T, < @?; this frequency-dependent behavior is observed,
but only in certain crystalline ionic conductors.®>’® In
glassy ionic conductors (and some disordered crystalline
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FIG. 7. A plot similar to Fig. 6 except that the experimental
SLR data for the (Li,O),(GeO,),_, glasses ([J) have been re-
scaled by multiplying all concentrations by the factor 14.8.
Also shown are the (unscaled) SLR data (Ref. 47) for
(Na,0),(Ge0,);_, glasses plotted in the same way (M). The
behavior predicted by the DCR model is again shown by the
solid curve.
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materials such as Na f$-alumina), the frequency depen-
dence of T, is considerably weaker than that predicted by
the BPP model.

Owing to the relative difficulty of making Larmor
frequency-dependent measurements using modern
Fourier-transform spectrometers equipped with fixed-
field superconducting magnets, a comprehensive investi-
gation of the frequency-dependent behavior of NSR in
ionically conducting glasses has not yet been performed.
Nevertheless, on the basis of the presently available ex-
perimental evidence, it appears that, in relatively poor
conducting (oxide) glasses (not containing doping salts),
the frequency dependence is sublinear, T| * w?, ¥ ~0.8,
for all temperatures,so i.e., where TLS mediated NSR is
believed to be dominant (at temperatures below 100 K)
and also at higher temperatures where ionic motion is the
dominant cause of NSR. Balzer-Jollenbeck et al.”* and
Kanert et al.” have accounted for this behavior, at least
at low temperatures where TLS involvement in NSR is
important, by assuming that there exists a distribution of
correlation times 7 for the TLS excitations, where 7 is
given by”’

T=1ysech(A/2kT)exp(V /kT) , (20)

A is the asymmetry energy of the asymmetric double-well
potential characterizing a TLS, and V is the barrier
height separating the two minima (see Fig. 8); a distribu-
tion of 7 results from an assumed distribution of barrier
heights g (V) presumably arising from the disordered na-
ture of the host material. In this case, the SLR rate can
be written as’>

i

p(A)g (V)
cosh?(A /2kT) (1+w2¢2)

dvda ,

21

where 8§ represents the strength of the TLS nucleus cou-
pling, p(A) is the density of states of TLS centers, and

FIG. 8. Schematic illustration of the potential-energy dia-
gram of an asymmetric double-well characterizing either a two-
level system (TLS) or a local configuration of an ion at a site.
The asymmetry energy A and the barrier height V are indicated.

A,, and V,, are the maximum values of A and V for the
TLS states. For temperatures T <V,, /k, and using dis-
tribution functions for A and V, p(A)=sech(A/A,), and
g(VM=sech(V/V,), Eq. (21) leads to a power-law fre-
quency dependence of the SLR rate, T; < w”, where the
frequency exponent ¥ can have a value considerably less
than the BPP value of 2, and even be sublinear, y < 1.73

In the case of the DCR mechanism for SLR in ionical-
ly conducting glasses as outlined in this paper, the fre-
quency dependence of the SLR rate has a power-law be-
havior, T| * w?, where y=2—J3, and J3 lies in the range
0<3<0.5 depending on the value of the ratio 7' /7;: the
exponent [3 is given by the ratio of activation energies on
the high- and low-temperature sides of the SLR peak,
viz., B=E_,/E,. (Note that, in the case of the target-
diffusion model for NSR developed by Kimmich and
Voigt,3! the exponent only takes the value y =1.5.)

It appears from the limited experimental data avail-
able,”® that superionic conducting glasses, e.g., Li*- or
Ag*-conducting thiosalts or corresponding oxides con-
taining doping salts, generally appear to have an appreci-
ably enhanced power-law frequency dependence, with
y=1.2-1.5, compared with that for poor conducting
ionic glasses.’® This apparently qualitatively different be-
havior does not seem to have been remarked upon previ-
ously. Thus, in the SLR data presented by Griine
et al.,”® the lithium thioborate glass (Li,S)y 46(B,S3)0 s4
exhibits a value y =1.5, whereas the corresponding oxide
(Liy0)g 46(By03)g 54 has y =1.25; likewise, for compara-
ble materials containing doping salts,’® the more highly
conducting thiosalt [(Li,S)g 34(B,S;3)g 54(Li,Br,)g 1,] has a
larger frequency exponent (y =1.5 again) than that of the
corresponding oxide for which y=1.1.

We assert that the NSR of these superionic glasses hav-
ing Larmor frequency exponents of the SLR rate with
values ¥ =~1.5 can be understood readily in terms of the
DCR mechanism described in this paper [cf. Egs. (6) and
(14)]. Values of the frequency exponent ¥ < 1.5 cannot be
explained by the simple DCR model which assumes in
Eq. (2), either a negligible diffusion-independent term
1/7, or one which is constant.

However, in the case of diffusion-independent local
ionic motion in an asymmetric double-well potential at a
site, leading to relaxation, the NSR correlation time 7
will be given by Eq. (20). In noncrystalline materials, a
distribution of barrier heights g (V) for such double-
potential-well configurations will exist, as mentioned
above, in the context of TLS centers. (It is important to
stress, however, that the local ionic motion presently un-
der discussion is not believed to be associated with the ex-
citation of TLS centers,’® operative at low temperatures,
which almost certainly involves many atoms of the host
glassy matrix and not just the conducting ions.) Since the
double-well potential (see Fig. 8) associated with ionic re-
laxation is for the motion of single ions, the maximum
barrier heights V,, are likely to be appreciably larger
(say, V,,~0.5 eV) than those corresponding to the
many-atom excitations giving rise to TLS states, where
¥V ~5-10 meV.”> If the diffusion-independent term 1/7
in the expression for the correlation time 7 [Eq. (2)] for
the DCR mechanism of NSR is non-negligible, having,
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moreover, a broad distribution, then the DCR result for
the SLR rate [cf. Eq. (14)] can be modified appropriately
to take this into account. Hence, for example, the first-
BPP-like correction term in Eq. (14) can be written in the
form of Eq. (21), with the non-BPP-like correction term
in Eq. (14) taking a more complicated modified form. In
this way, it is anticipated that values of the Larmor fre-
quency exponent ¥ of the SLR rate in the region of unity
(0.8 <y <1.2) could also be obtained from this extended
version of the DCR mechanism of NSR; the temperature
dependence of the SLR rate would still be thermally ac-
tivated. Confirmation of this hypothesis awaits further
work.

IV. CONCLUSIONS

In this paper, we have sought to show that the
diffusion-controlled relaxation mechanism for ionic-
motion-mediated relaxation in glasses can explain satis-
factorily and self-consistently the nuclear-spin relaxation
behavior experimentally observed in ionically conducting
glasses, in particular, relating to spin-lattice relaxation.
This model, a variant of a target-diffusion mechanism in
which the diffusing triggering entities are the ions them-
selves, naturally predicts SLR behavior different from
that predicted by the simple Bloembergen-Purcell-Pound
model, viz., asymmetric peaks in plots of the SLR rate
T ! versus reciprocal temperature.

The model predicts that the effective activation energy
obtained from the high-temperature region of such plots
of SLR data (measured for the diffusing species) should
equal that of the ionic diffusion coefficient or, equivalent-

ly, the dc ionic conductivity. The activation energy for
the low-temperature side of the peak of the SLR rate is
predicted to be generally appreciably smaller than that of
the dc conductivity (reaching a limiting value of about
one-half this value). The non-BPP-like behavior is pre-
dicted to be composition-dependent, varying as the
square root of the mobile-ion concentration. The SLR
rate is predicted to be independent of the Larmor fre-
quency on the high-temperature side of the peak of the
SLR rate, and to have a weaker power-law frequency
dependence on the low-temperature side than that pre-
dicted by the BPP model, with the frequency exponent ¥
having the limiting value of 1.5. This theoretical behav-
ior is in accord with that observed experimentally in su-
perionic glasses, and the NSR in this case is ascribed to
the DCR mechanism. For more poorly ionically con-
ducting glasses (i.e., oxides), the values of y are found ex-
perimentally to lie near unity, and this behavior can be
accounted for by assuming that an additional diffusion-
independent term is present in the expression for the
correlation time, resulting from local ionic motion (hop-
ping) at a site causing NSR; if the energetics of this hop-
ping motion are assumed to be characterized by an asym-
metric double potential well for which a distribution of
barrier heights exists, it is anticipated that the near-linear
Larmor frequency dependence of the SLR rate can be ex-
plained.
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