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Chiral, nematic, and dimer states in quantum spin chains
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A phase diagram of the one-dimensional S 2 frustrated ferromagnetic Heisenberg model in a

magnetic field is studied via a bosonization technique. Besides the ferromagnetic phase, two diA'erent

nematiclike phases with additional symmetry breaking of reAections about a bond or about a site are

mapped out. The prediction is made of possible fourfold degeneracy of a ground state at 0=0 for
sufticiently strong second-neighbor coupling.

The Lieb-Shultz-Mattis (LSM) theorem' claims that
the ground state of any S= 2 chain with translationally
and rotationally invariant interaction either has a zero gap
for excitations or is degenerate. While gapless behavior is
peculiar for a well studied S= 2 Heisenberg antifer-
romagnet, a degenerate ground state with a gap exists in
some frustrated models with antiferromagnetic second-
neighbor (i.e., next-nearest neighbor) interaction. Thus,
for the Heisenberg nearest-neighbor antiferromagnet, the
increase of second-neighbor coupling P produces a transi-
tion to a dimerized state constructed from singlet
configurations of nearest neighbors. 3 4 All the excitations
in this phase have a finite gap, but the ground state is two-
fold degenerate since the Z2 symmetry of translations by
one site is spontaneously broken. It is a purpose of this
paper to show that different states with broken discrete
symmetry appear for ferromagnetic nearest-neighbor cou-
pling.

The model I will consider reads

H =g —S„S„+)+pS„S„+2.

For classical spins, it describes ferromagnetic and helical
(with cos8 = 1/4P) structures depending on whether or not

P exceeds —,
' . The ferromagnetic ground state clearly sur-

vives the presence of quantum fiuctuations while the heli-
cal one ceases to be even a local minimum in one dimen-,
sion (1D) since the classically broken SO(3) symmetry is
expected to be restored by quantum fiuctuations. The
LSM theorem thus forces us to look for other phases with
presumably some discrete symmetry broken.

For the antiferromagnetic model, a search for a dimer-
ized ground state was initiated by the observation that
the simple mean-field configuration constructed from non-
correlated dimers with a total spin S=O is an exact
ground state for a particular choice of P= —,'. Unfor-
tunately, no exact solutions are known for a ferromagnetic
version of the problem. However, exact ground states can
be found for the anisotropic version of (1), when S; S~ is
substituted by S; St +AS;Sf Namely, for .d, =0 and

P = 2, the exact ground state is again constructed from
noninteracting dimers but now the wave function of a
separate dimer is fi,jj =(t J+ J t)/J2, i.e., each dimer
has S= 1 as opposed to S=0 in a conventional dimeriza-

tion. This exact ground-state wave function can be trivial-
ly obtained by making a rotation by tt about the Z axis on
the spins on even sites only from the corresponding anti-
ferromagnetic model, where the exact ground state con-
structed from noninteracting dimers with S=O survives
also for the XY model (and more generally, for all
d, & ——,

' ). Rewriting each of the pair wave functions as
fi,jl = )0) where

~
i) is a single-site wave function for S= 1

and S, =i (i 0, + 1), I conclude that besides a dimeriza-
tion this ground state corresponds to a well-known S= 1

XY spin-nematic phase. The exact nematiclike ground
state can also be found, for P = —,', in the opposite case of
easy-axis anisotropy: in the Ising limit it separates fer-
romagnetic and up-up-down-down spin configurations.

In view of the above arguments, one can expect that
close to P = —,

' the ground state of the isotropic model (1)
will also resemble a spin-nematic state, at least at relative-
ly short spatial scales. Of course, the isotropic limit is
highly nontrivial in one dimension because of the strong
zero-point fluctuations. However, the formation of a
nematiclike state can be checked by studying the instabili-
ties of a well-defined ferrotnagnetic configuration. Really,
the nematic state requires spontaneous time-reversal sym-
metry to be unbroken. This is not the case if the fer-
romagnetic instability is associated with single-particle
condensation but is exactly the case if it is induced by
even-particle bound-state condensation. For S= —,', the
excitations above the ferromagnetic state are created by
hard-core bosons. Since only pair interactions appear in
the Heisenberg model, it seems reasonable to suppose
that only two-particle collective excitations are important
in the problem.

For the isotropic model of (1), the instability of a fer-
romagnetic state occurs at P = —,

' and involves simultane-
ous softening of both one- and two-particle excitations.
An interest in the situation at larger P compels us to
search for a region of ferromagnetic phase also for P & 4 .
A way to get it, and also to separate single-particle and
collective instabilities, is to consider the anisotropic (easy
axis) version of (1) or to apply a nonzero magnetic field
H=H, . The results discussed below were proved to be
equivalent in both cases and for definiteness I will focus on
the situation in nonzero field. Classically, the field pro-
duces a canted uncollinear spin structure with helical or-
dering restricted to the XY plane. The XY spin com-
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H„=H, + —", (4P —1) (3)

against bound-state condensation with nonzero total mo-
mentum of a pair, )k ~

= 2kp.
When P increases,

~
k

~
and the gap between H„and H,

also grow, but at the same time the bound-state spectrum
acquires a rotonlike minimum at (k ~

x. ' The roton gap
diminishes with the increase of P and finally, at P
=P, =0.38, the momentum of the earliest instability

jumps from k = 2kp to k =n. At larger P, the earliest in-
stability at

Hn 4P +2P 1 (4)2(1+P)
is against bound-state condensation with a total momen-
tum ski =n.

Now I would like to discuss the spin configurations
below the instability. For a moment I will neglect the role

I

ponents disappear at

H=H = (4 —1)'
c

8

which is indeed also a condition for one-particle instability
to occur while approaching this second-order spin-flip
transition from the ferromagnetic phase. It is important,
however, that at nonzero 0 this instability occurs at finite
k =kp, where coskp I/4P. In this case, the attractive in-
teraction between bosons associated with the ferromagnet-
ic sign of nearest-neighbor coupling does not go to zero at
the momentum of a single-particle instability and in one
and two dimensions one should expect bound states to ex-
ist below the ground state of a system of noninteracting
particles. In agreement with this, the exact solution of a
two-particle problem for a ferromagnet shows that two-
particle bound-state excitations undergo softening at
higher fields than H„ thus favoring unconventional order-
ing to arise by lowering H.

The two-particle bound-state spectrum was calculated
by using a bosonization procedure based on the Dyson-
Maleev transformation and by solving an integral equa-
tion resulting from a summation of a ladder sequence of
diagrams. I will not present the details of calculations,
they are standard though cumbersome, and instead will
focus on the results.

For P close to the zero-field transition value, P = —,', the
earliest instability of a ferromagnetic state occurs at

of quantum fluctuations.
First of all, the absence of a single-particle condensa-

tion ensures that the time-reversal symmetry is unbroken
for the XV spin components, i.e., the expectation values
(S„) and (S~) are equal to zero below the instability (T
symmetry is explicitly broken for S, due to nonzero exter-
nal field). So, independently of the value of P (at P & —,

' ),
the XY spin ordering should be of a nematic type, i.e., one
should imagine that below the instability line the ground
state is filled by bound pairs of S =

2 spins which form
new local objects, "molecules. " Meanwhile, the character
of nematiclike ordering is different for P & P, and for
P & P, . In the first case, the condensation occurs at
k = 2kp and leads to a nonzero expectation value of

(S„S„+z)cx: expik n+ ——P(ate+i, t2a q+i, t2)co—sq)
1

2 N q

(5)

(a and at are bosonic operators introduced above a fer-
romagnetic state).

This term breaks down a rotational Ti symmetry and
produces massless excitations. The exp(ikn) factor in (5)
indicates that the "molecules" form a uniform twist re-
stricted by the field to the A'Y plane, i.e., the nematic is bi-
axial. Of course, a picture of locally bound pairs of S= —,

'

spins (i.e., of local "molecules") is highly tentative for
small k. Nevertheless, I will adopt this picture to get a
qualitative description of the low-k phase.

The order parameter describing a system of twisted
molecules is given by a mutually orthogonal nematic
director (i.e., vector with opposite points identified) and
pseudovector AI, (A i,

= —AI, ) measuring a twist. ' '

Nonzero field selects two possible orientations of A de-
pending on the sign of k (i.e., on chirality) thus producing
an additional twofold degeneracy of a greund state. '

Thus, for a system of nematics, the total order-parameter
space is isomorphic to Ti x Z2 which, as usual, differs in
Zz degree of freedom from the order parameter space,
S~ XZ2, for conventional canted uncollinear magnets. '

An important point, however, is that the "missing" Z2 de-
gree of freedom is actually present in the system. This
symmetry is associated with the fact that at nonzero k the
"molecules" formed by S=

& spins are chira/: for any
particular "molecule" formed by the spins at the sites n
and n+A, one can write down an n-independent quantity

Mi, =([S, X,S+l,i& =(S,"S~+q —S~S„"+i)~sin —g )(ate+i, t2a v+t, t2&~ cosqX-,
kX l
2 N

which changes the sign under the reflection about the
bond, k —k, i.e., under the permutation of spins. This
chiral symmetry does not exist if one describes the
ground-state configuration in terms of nematic directors
and in this respect can be viewed as an internal degree of
freedom for the local objects of the S=l spin nematic,
which keeps a memory of the underlying S= —,

' spins.
Hereafter I will refer to this state as a ehiral biaxial spin
nematic.

The condensation of bound-state excitations with ~k ~

=x leads to a diA'erent type of a nematiclike ordering.

I

Now

(S„S„~g)ix (—I)"P(a~+ t2a q+ tz)exp-i q+—

(7)
yielding a uniaxial nematic ordering in the XYplane with
a period of two lattice spacings. Since for k =x chiral
transformation k —k does not produce a new physical
state, the order-parameter space for a system of directors
is now isomorphic to T~ which again differs in the Zq de-
gree of freedom from the corresponding order-parameter
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space for conventional canted collinear magnets. More-
over, the parity-breaking order parameter of Eq. (6) turns
out to be zero for lk l

=n. This follows from a solution of
a two-particle problem which yields the following form of
the vertex function along a (k (

=x instability line

@(qt,q2, k, 0) ~ vq, vq, %'(Q, k), (8)

where vq =cosq in 1D and 4' has a pole at a total momen-
tum of a pair, (k( =n and at zero total frequency, Q.
Hence, (aq+ /2a —q+ /z) ~ vq/Sq, and since the energy of a
two-particle continuum

1+8
~q 2 (eq+k/2+e —q+k/2) Hcr Hc+

2

vk/2vq +/j vk v2q

is an even function of cosq for lk l
=n, the same also turns

out to be true for a density of particles (aq+~/2aq+~/2)
cc l(at~ /2at q+ /2)( . The absence of a chiral symmetry
breaking now follows from the observation that the in-
tegral in the right-hand side of Eq. (6) is zero for all odd k
(measured in lattice units), while for even A, one trivially
has sinkk/2 =O.

However, the "missing" Z2 degree of freedom is again
present in the system, but in the case of (k (

=x it is asso-
ciated with the possibility of two boson umklapp processes
with a momentum transfer 2x. A condensation with non-
zero (aq+«/2a —q+«/2) with rt =A( —1)" (2 = ~ 1) for a
given choice of nonzero (aq+, /2a —q~„ /2) with, say, y= 1,
produces a nonzero expectation value of
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FIG. 1. Phase diagram of a frustrated S 2 Heisenberg
magnet with ferromagnetic nearest-neighbor coupling ( 1)
and antiferromagnetic second-neighbor coupling. The solid line
corresponds to a two-particle instability which occurs at higher
fields than a single-particle one and leads to a dimerized uniaxi-
al nematic phase or to a chiral biaxial nematic phase depending
on whether or not second-neighbor coupling exceeds a critical
value of 0.38. The dashed line is a first-order transition line be-
tween different nematic phases. At low fields, the phase dia-
gram will be different due to strong zero-point fluctuations.

(S„'S„'+
~

—S„'S„'— ) CX: sgnA ( —1 ) "l (S„tS„t (10)

which changes the sign under the reflection about the site.
This is nothing but a well-known dimerization 'Corre-.
spondingly, a picture of Iocally paired S= 2 spins ac-
quires a literal meaning.

The fact that the instability is induced by a simultane-
ous flip of neighboring spins means that the dimers thus
obtained have a total spin S=1 as opposed to S=O in a
conventional dimerization. Consequently, besides dimeri-
zation the state obtained is exactly S= 1 uniaxial spin
nematic (with interatoinic distance of two lattice units)
placed into an external magnetic field. ' ' I will refer to
this structure as a dimerized uniaxial spin nematie. The
corresponding ground-state wave function can be written
in a mean-field approximation as

'ps = II In n+ ~I, 4 JI = (1 t +4 l l )/(1+ I g I
') '"

n 2l

-((I)+g( —1))/(1+ (g(') '",
where g grows from zero as the field decreases from H;„,
and 6'= ~ 1 ensuring twofold degeneracy of the nematic
ground state due to dimerization.

In a preceding discussion I neglected the role of quan-
tum fluctuations. In 1D they are known to restore any
continuous symmetry. However, for high enough fields
fluctuations do not destroy chiral and dimerized nematic
phases since massless behavior is known to survive the res-
toration of a T& symmetry. The proposed phase diagram
for moderate fields is presented in Fig. 1. The transition
between chiral and dimerized nematic phases is predicted

to be of the first order since they have different discrete
symmetries broken.

At zero field, fluctuations are believed to restore the
symmetry completely and to produce a gap for all would-
be massless excitations. The situation with a discrete
symmetry is less clear, but the arguments presented above
point out that both chiral and dimerized spin nematics
have discrete symmetries (of reflection about a bond or
about a site) which are internal symmetries for the
description in terms of nematic directors. Though at this
moment I enter into a speculative region, it seems reason-
able to suppose that the decoupling between internal de-
grees of freedom and the nematic ones will preserve at
H=0 as well, and the breakdown of internal Z2 symmetry
will survive the presence of quantum fluctuations in agree-
ment with the LSM theorem. Note that the proposed
liquid state of a chiral nematic at H 0 differs from a
chiral spin liquid state currently topical in two dimen-
sions'7 in that the spontaneously broken P symmetry is
not combined with the T symmetry which seems to be un-
broken at zero field.

Another possibility for a breakdown of a discrete sym-
metry at H=O exists already within the description of the
uniaxial phase in terms of a nematic director. The point is
that in a S=1 bilinear-biquadratic model, the S 1

nematic state at H 0 is known to be substituted, in the
presence of 1D fluctuations, not by a paramagnetic state
but by a dimerized state constructed from singlet
configurations of S= 1 neighboring spins. ' ' One can
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expect that the same effect will happen here, i.e., besides
"internal" dimerization there will be an additional break-
ing of the Z2 sytnmetry of translations by one site of a
doubled lattice. At present, I do not know whether the
whole region of a "quasiclassical" uniaxial nematic phase
will be doubly dimerized, or there will be two regions with
twofold (internal) and fourfold degeneracy. o

As an argument in favor of fourfold degeneracy at large
P, the bosonic approach similar to that in Ref. 19 shows
that at least in the "spin-wave" approximation the unique
ground state of second-neighbor S=

& Heisenberg anti-
ferromagnet becomes unstable against period-four dimeri-
zation for arbitrarily small ferromagnetic nearest-neigh-
bor coupling.

In conclusion, I considered the phase diagram of the
S= —,

' frustrated 1D Heisenberg ferromagnet. Besides
the ferromagnetic phase, two different phases of biaxial
and uniaxial spin nematic are mapped out. In both
nematiclike phases there is an additional symmetry break-
ing of refiections about a bond or about a site, respective-
ly.

The prediction is made about possible fourfold degen-
eracy of a ground state at H=O for sufficiently strong
second-neighbor coupling.

The nematiclike states were intensively searched for in
two dimensions with most of the efforts focused on the an-
tiferromagnetic J~,Jz,J3 model ' in a region of parame-
ters where quantum Auctuations restore a continuous sym-
metry. The present analysis points out that nontrivial
ground states in the 2D case can also exist near the fer-
romagnetic instability line, since in two dimensions an
earliest instability in a magnetic fiel also comes from a
condensation of collective excitations. The difference,
however, is that in the 2D case a classical ground state is
not destroyed by quantum fiuctuations at T=O (or, to be
more exact, quantum corrections do not diverge) and one
thus has to compare the energies of a conventional ground
state and those induced by a condensation of collective ex-
citations.
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