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Localization in two-dimensional quantum percolation
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The quantum site and bond percolation problem, which is defined by a disordered tight-binding
Hamiltonian with a binary probability distribution, is studied using finite-size-scaling methods. For
the simple square lattice, we find that all states are exponentially localized for any amount of disorder,
in agreement with the scaling theory of localization and in disagreement with recent claims of a locali-
zation transition in two dimensions. The localization length X is given by AexplB[p/(1 —p)lrj with y
very close to 0.5 and p the probability that a site or a bond is present.

Considerable progress has been made in our under-
standing of the effects of disorder' on the nature of the
electronic wave function. It is now well established that
for dimensions d ~ 3, there is a localization transition be-
tween extended and localized states, as the strength of the
disorder increases. Complete localization is predicted for
d ~ 2 by the one-parameter scaling theory. This scal-
ing theory is supported by a large number of numerical
studies in 1=2 and 3. According to the scaling the-
ory, there are no extended states in d=2 for any amount
of disorder, no matter how weak. Instead, all states
should be exponentially localized with a localization
length A, that has the form X-exp(IV ), where 6" is
strength of the disorder. Since it is possible to have ex-
tremely large localization lengths for small 8' the estab-
lishment of exponential localization in d=2 for weak dis-
order by numerical techniques is difficult. A few re-
cent studies have questioned the one-parameter scaling
theory and even suggested that there exists a transition to
extended states at finite disorder in d 2. Most of these
studies have been for the case of bond' or site" quantum
percolation. If this result was true, then the single scaling
theory of localization would have to be modified as has
been suggested in some recent theoretical studies. '

The purpose of the present paper is to present a detailed
numerical study of the quantum site and bond percolation
problem in d=2 using the very reliable transfer-matrix
technique and finite-size scaling. The present results
which are for very large lattice sizes give very strong and
we believe convincing evidence that no localization transi-
tion occurs for any amount of disorder in d=2. Traces of
a transition at finite disorder in d= 2, seen in these two
studies, ' "are due to the rich structure of the density of
states (DOS) in the site as well as the bond quantum per-
colation models.

Quantum percolation is usually formulated in terms of
a tight-binding one-electron Hamiltonian on a regular lat-
tice

H=gln&e. «l+ Z ln&V. (ml,
n, m

(n&m)

where the transfer energy V„vanishes, unless n and m

are nearest neighbors and ln) represents a wave function
localized near site n As . in the classical case, we can
define site and bond quantum percolation. In the site per-
colation problem, the site energy e„ is assumed to obey the
distribution

P(c„) pb(e„—ez)+(I —p)b(e, —
hatt), ~tt = —ez

where b = le~
—

att l/z V =2e~/z V determines the degree of
disorder, z is the number of nearest neighbors, and V„
= V is a constant. In the bond percolation, the site ener-

gies e„are constant, and may be arbitrarily taken to be
zero, s„=0, while the nearest-neighbor transfer energies
V„distributed according to

P(V„)=pb(V„—V) + (1 —p) b(V„—Vtt) (3)

with Vtt =0. These probability distributions are essential-
ly characterized by two parameters: p, the concentration
of A atoms (bonds), i.e., the probability that a given site
(bond) is occupied, and e~(V). One important limiting
case is that of the binary-alloy distribution when e~
(Vtt 0). In this case, the only way an electron being ini-
tially at an A (B) site or a V bond may propagate across
the sample is to find a path consisting entirely of A (B)
sites or V bonds which percolates. Percolation theory ex-
amines exactly this problem, i.e., the probability of finding
such an exclusive A path or V bond. Therefore, sites with
infinite site energy and bonds with zero transfer energy
represent blocks for the motion of a quantum particle
governed by the Schrodinger equation with the Hamil-
tonian in Eq. (1).

The main concern in quantum percolation problems is
to locate the quantum percolation threshold pq for the site
and the bond case, below which all eigenstates of the
Hamiltonian are localized. It is clear that the quantum
threshold must be greater than its classical counterpart p„
since the existence of an infinite cluster is a necessary but
not sufficient condition for the existence of an extended
state.

There have been a number of estimations"' ' of the
quantum percolation threshold for the site and the bond
cases, both for the square and simple cubic lattices. While
all the diA'erent numerical methods clearly show that pq is
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greater than p„ there is no agreement on its precise
numerical value for the site as well as the bond case
both in the square and cubic lattices. Numerical esti-
mates"' ' of quantum site percolation thresholds
range from 0.59 to above 0.94 for the square and from
0.38 to 0.48 for the simple cubic lattice. The most recent
calculations"' ' with large size systems using the scal-
ing hypothesis or related approaches, narrow the range of
pq to 0.42 ~ pq ~ 0.48, with pq =0.44 as the best estimate
for the quantum site percolation threshold of the simple
cubic lattice. For quantum bond percolation, the thresh-
olds range from 0.50 to above 0.94 for the square lattice
and from 0.30 to 0.55 for the simple cubic lattice. More
recent ' ' ' calculations narrow this range to 0.30
~ pq ~ 0.39, with pq =0.32 being the best estimate for
the quantum bond percolation threshold on the simple cu-
bic lattice. The classical site (bond) percolations thresh-
olds' are 0.59 (0.50) for the square lattice and 0.31
(0.25) for the simple cubic lattice, respectively.

In this present paper we concentrate on d=2, since
there are two recent numerical calculations' "that sug-
gest a localization transition for pq & 1 in contradiction to
the scaling theory of localization. Meir, Aharony, and
Harris' carried out a series analysis of the average
transmission coefficient for the quantum bond percolation
model which reproduces quite well all known results for
d~ 3. They argue, however, that their series expansion
strongly suggests the existence of a localization transition
with pq in the range 0.6-0.8 in d=2. This result is in
disagreement with their own earlier series' analysis of
the inverse participation ratio which gave pq =1.0 and
with the one-parameter scaling theory. It is, therefore,
very important to resolve the issue of the existence or
nonexistence of a localization transition in d =2, for both
the site and bond quantum percolation problems. We be-
lieve this can be done only by using a very accurate nu-
merical approach. To date, finite-size-scaling analysis us-
ing the transfer-matrix technique has proven to be the
most reliable technique for problems of this type and
we apply it here to these two cases.

In the transfer-matrix method, one considers coupled
d= 1 systems. Each d=1 system is described by a tight-
binding Hamiltonian of the form given by Eq. (1). In our
explicit results for this study, we assume that the probabil-
ity distribution p(s„) of the random sites and p(V„) of
the random bonds are described by Eqs. (2) and (3), re-
spectively. [In previous numerical calculations, we have
systematically studied the behavior of the tight-binding
disordered systems when p(c„) is given by either a rec-
tangular or a Gaussian probability distribution. ] The cor-
responding sites or bonds of the nearest-neighbor d=1
system are coupled together by an interchain matrix ele-
ment. In two dimensions, we study systems of width M
and length N, while in d=3 the systems have a square
cross sectional area of M . We use periodic boundary
conditions in the direction(s) perpendicular to the axis of
the d=1 chains. Using the transfer-matrix technique,
we determine numerically the largest localization length
kM for each value of the width M. From a plot of XM vs
M, one can determine the localization properties of the
system. One finds two distinct behaviors of the function
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FIG. l. Localization length X~/M vs )/M for various values
of the concentration p and several values of the energy E for the
(a) site and (b) bond quantum percolation model on the square
lattice. There is only one branch in the universal curve, so that
all the states are exponentially localized.

A, M vs M. In the first case, which corresponds to a local-
ized state, the second derivative d A,M/dM is negative
and A, M approaches a finite value A, as M ~, where X is
the localization length of the resulting d =2 (d=3) disor-
dered system. In the second case, which corresponds to an
extended state, d X~/dM is positive and A,~ ~ as
M~ ~. At exactly the mobility edge, we have found for
a number of disordered tight-binding models ' in d=3
with a rectangular, Gaussian, or binary probability for the
site energies that X~/M =0.6.

We calculated kM on the square lattice for 0.5 ~p~ 0.85, and M =8, 16, 32, 64, and 128. The length N of
the M coupled chains was at least 20000. For the site
problem, we choose s~ =50.00, i.e., 8=2m~/zV=25 and
the energy E is measured from the center of the 2 sub-
band, i.e., E =0, corresponds to E =a~ in Eq. (2). We
calculated A, M for E =0.05, 0.25, 1.05, and —0.05. For
the bond problem, we used the probability distribution
given by Eq. (3) with V=1, Vz was taken to be a very
small number. Our results were independent of the value
of Vg, provided V~ ~10 . We used a nonzero value of
V~, since for finite M there is always a finite probability
that the system would break into several disconnected
pieces. We also calculated A, M for E=0.OS, 0.25, and
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1.05. In agreement with previous numerical results
for the ordinary Anderson localization problem, we find
that all of our results for XM for diff'erent energies E and
probabilities p both for the site and bond quantum per-
colation model tend to follow the one-parameter scaling
curve. In Fig. 1, we plot A,M/M vs X/M for all the diff'erent
cases considered, corresponding to the various energies,
probabilities p, and widths M. Notice that all the points
are clustered around a universal curve. There is consider-
able dispersion due to numerical errors, which are appre-
ciable since we are dealing with rather large X, or A, M in
most of the cases. As a result of these uncertainties, we
estimate that our numerical results for X, plotted in Fig. 2,
are accurate to no more than 10%-20% for large localiza-
tion lengths. When k is small, the relative error is much
lower, i.e., about 2%. This uncertainty could be reduced
somehow at the expense of increasing substantially the
computer time. (An error of about 2% in k~ requires the
length N to be about 10 times the localization length
k~.) We have plotted the results for ~ in Fig. 2 this par-
ticular way to point out the fact that the localization
length appears to have the form

'=A exp[B[p/(1 —p)]'/'], (4)

where the constants A and B depend on the energy E. For
the site case, we find that the pair (A, B)=(0.004, 6.00),
(0.0035,6.20), and (0.005,6.00) for E =0.25, 1.25, and—0.05. For the bond case, we have that (A, B)
=(0.0045, 5.35), (0.015,5.45), and (0.015,5.70) for
E =0.05, 0.25, and1. 05. Notice that the dependence of ~,

on p is very strong and that A, becomes extremely large as
p 1. It is only with the finite-size-scaling method that
one can make some statements about the localization
properties of the site or the bond quantum percolation
problemintheweakdisorderlimit, p l. Ournumerical
results clearly show that the scaling theory of localization
is well obeyed in d =2 for the site and the bond quantum
percolation problem. All the states are exponentially lo-
calized and the localization length ~ has the exponential
dependence given by Eq. (4), which shows that A. is ex-
tremely large as p~ 1. This is reminiscent of the d=2
case of the Anderson localization problem with a rec-
tangular probability distribution of the site energies c„.
Loring and Mukamel have also calculated the localiza-
tion length ~ for d=2 in the site quantum percolation
problem with a self-consistent mode-coupling theory.
They find that ~, has the form Aexp[Bp/(1 —p)]. Our
numerical results suggest that the form given by Eq. (4)
fits the data better than that of Loring and Mukamel.
We do not understand this diff erence. However, the
diff'erence is probably not of great significance, since both
forms give exponentially large localization lengths as
p 1. In Fig. 2(a), we also show ~ for E =0.05 for the
site case. In this case, we know that the DOS has a very
fine structure' ' in both the site ' and bond case. ' For
site quantum percolation on the square lattice, there is a
gap in the DOS around E = —0.05 for small values of p.
As p increases, the gap decreases and finally closes for
p &0.70. The structure in the DOS is also reffected in the
localization length calculated by the transfer-matrix
method. k is very small when there is a gap in the DOS
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[(1 —p)/p]'~'1n' vs [(1 —p)/p]'~' for the (a) site
and (b) bond quantum percolation model on a square lattice for
diA'erent values of the energy E. The localization length A, is
given by Aexp[B(p/1 —p)'~] in agreement with the scaling
theory of localization.

and starts to increase only when p ~ 0.7. We believe this
is why Meir, Aharony, and Harris' found a localization
transition for p=0.6-0.8 for E =0.05, from their series
expansion for the transmission coefficient in d =2 for the
bond case. This problem did not arise in the series expan-
sion' of the inverse participation ratio, since there they
averaged over a width of energies, not just one. This
averaging smears out the structure in the DOS and there-
fore gives a more accurate estimate for the localization
length. These gaps in the density of states also occur in
higher dimension, although at diff'erent energies than in
two dimensions, and the widths of the gaps are narrower.

In conclusion, we have calculated, using the very accu-
rate method of the finite-size scaling, the quantum per-
colation threshold for site and bond in the square lattice.
We find that all the states are exponential localized in
agreement with the scaling theory of localization. The lo-
calization length ~ is found to behave approximately as
Aexp[A[p/(I —p)]'/ j. The previous discrepancies con-
cerning the quantum percolation thresholds in d=2 are
partially due to the rich structure of the DOS and partial-
ly to the extremely large values of k as p 1.
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