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Phase diagrams of alloys mixing the chalcopyrite crystal structure with the zinc-blende structure

have been computed using a generalized antiferromagnetic Blume-Emery-Gri5ths model in the tetra-
hedron approximation of the cluster-variational method. These phase diagrams are rich in transitions,

including typically an order-disorder transition from chalcopyrite to zinc blende as a function of tem-

perature for the undiluted chalcopyrite compound, a narrow miscibility gap between chalcopyrite and

zinc-blende alloys at high temperatures, and a large miscibility gap at low temperatures. Additionally,

for a range of energy parameters, novel x =
2 stannite and other ordered phases are found. The cal-

culated phase diagrams compare favorably with those obtained experimentally for the diluted magnetic
semiconductors (CuIn Te2) i — (Mn Te) 2„and (AgIn Teq) ~

—„(MnTe) 2„.

Much excitement has been generated recently by the
growth of ordered ternary III-V compounds, e.g. , the
(001)-superlattice and chalcopyrite phases of GaAsSbq. '

Given the growth of these compounds on substrates, a
basic question has been whether these compounds are
equilibrium or metastable phases of the alloy. Yet many
natural chalcopyrite compounds exist in nature, with
many of them undergoing an equilibrium order-disorder
transition as a function of temperature between the chal-
copyrite to zinc-blende crystal types. The study of mixed
equilibrium alloys of the chalcopyrite structure with the
zinc-blende structure may well aid in the understanding of
ordering in the more usual ternary III-V alloys.

Chalcopyrite compounds such as ZnSnAsz or CuInTe2
can all be viewed as derivative compounds of zinc blende;
see Fig. 1. In a zinc-blende compound such as GaAs, the
Ga and As atoms each independently occupy one set of
face-centered-cubic (fcc) positions; see Fig. 1(a). In a
chalcopyrite compound such as ZnSnAs2 [see Fig. 1(b)],
As atoms occupy one set of fcc positions and Zn and Sn
the other. For this example, the cations originate from
columns II and IV of the Periodic Table and the average
valence of the pair (ZnSn) is III. Chalcopyrite (C) is an
example of an average-valence compound and has a space
group 142d that is a subgroup of the zinc-blende (Z)
space group F43m. Simi1arly, there exist chalcopyrite
compounds derived from II-VI compounds, e.g. , CuIn Te2.

Many chalcopyrite compounds undergo an order-dis-
order transition as a function of temperature to the zinc-
blende form. For example, in the disordered form of
ZnSnAs2, Zn and Sn atoms are randomly found on the
cation fcc sublattice [large circles, Fig. 1(a)]. The ex-
istence of this order-disorder C-Z transition and the fact
that both chalcopyrite and zinc blende have a single-anion
fcc sublattice makes the transitions of the "mixed"

(chalcopyrite)-(zinc blende) system a natural to study.
We model the transitions of the (chalcopyrite)-(zinc

blende) (C-Z) system by using a simple lattice-gas model
of the alloy. We assume first that the chalcopyrite (C)
and zinc-blende (Z) compounds share a common anion D.
We write schematically the chemical formulas for the
chalcopyrite and zinc-blende parents as ABD2 and CD, re-
spectively, and the alloy system as either (ABDAL)& —-
(CD)2„or [(AB) ~ „C2„]D2. The lattice-gas assumption
means that each site in an ideal fcc lattice is assumed to
be singly occupied either by atom A, B, or C. A possible
ordered phase derived from this alloy is stannite (x =

2 ),
e.g. , Cu2FeSnS4, having space group 142m and shown in

Fig. 1(c). Stannite is characterized by the same special-k

(a) Zinc Blende (b) Chalcopyrite (c) Stannite
CD ABQ ABQD4

FIG. 1. Ordered compounds in the (ABD2)~ — (CD)2x sys-
tem: (a) A zinc-blende parent CD; (b) a chalcopyrite parent
ABD2, and (c) an ordered x =

& compound, ABC2D4, stannite.
Cations A, 8, and C are shown as large solid, hatched, and open
circles, respectively, and the anions D are shown as the smaller
solid circles.
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Since the intention of this paper is to demonstrate new
types of ordering for (C-Z) systems, we limit our discus-
sion here to the evolution of the phase diagram within just
a portion of the generalized energy space. Clearly, each
physical system (ABD2) ~

— (CD)2„has its own unique set
of nearest-neighbor interaction energies fe,pl. Yet we
know only the combinations of energies of Eqs. (3) should
be important in the determination of the phase diagram.
We retain the Ising parameter Jwhich controls transitions
of the x =0 compound ABD2. J is positive, meaning that
a chalcopyrite phase ABD2 exists at low temperatures,
and not the phases AD or BD. The parameter L controls
the occupancies of C atoms on the diA'erent sublattices of
the fcc lattice; we simplify the model and set L to zero.
The parameter EC controls the extent to which the parent
chalcopyrite and zinc-blende compounds phase separate.
For E positive, large miscibility bulges are found. For E
negative, phase separation dominates less; additionally,
arguments based on ground-state energies show that new
phases should become stabilized with K(0.7 Thus the
following is our choice for this paper: We vary two unique
dimensionless energy scales, a renormalized temperature,
(kBT)/J, and a ratio, R K/J, and study R ~ 0.

Negative values of R should be obtainable in physical
systems, as is easily shown. For example, one of an
infinite number of combinations of energy parameters
which will yield R —1 is ezz =szz =J&0 and uzi=&gg =egg =~gp = —J. This particular choice of the ra-
tio R represents an interesting percolation limit of the
problem: ~J~ =~K~, so all energies are equal in magni
tude, and for T=O, the only variable of interest is the

point as chalcopyrite.
Note, in the absence of strain, this problem is related in

symmetry to the alloy system (AB)& „C2„,where atoms
2, 8, or C are on fcc sites. We substitute this fcc alloy
problem for our problem and assume also that atoms D
never are on the "wrong" fcc sublattice. Including only
the nearest-neighbor interactions between the sites on one
fcc sublattice, we have

E =zN g B,pP'~,
fa, p)

where z =12 is the coordination number, N is the number
of sites in the fcc sublattice, P'P is the pair probability,
and the energies e ~=op are the interaction energies of
nearest-neighbor pairs. We reduce the number of interac-
tion energies by using the well-known equivalence of this
three-atom nearest-neighbor problem to a three-compo-
nent spin model, finding an energy E given by

E =J S;Si —K S; Sj+L (S; Si+S;Sj), (2)
&,J &,J &,J

where the spins S; =(+1,—1,0) on sites fi,jJ map onto
the atoms A, 8, or C. The problem is thus characterized
by three energy combinations:

composition x which weights the relative amounts of
atoms A, 8, and C available from the compounds ABD2
and CD. While it is unlikely that a physical system can be
found that has exactly the percolation value R = —1, the
existence of this special value of R is of physical interest
because it controls the behavior of phase diagrams for
neighboring values of R, R = —1.

For the determination of the phase diagrams of this sys-
tem, we employ the cluster-variation method (CVM) in
the tetrahedron approximation. We start with the gen-
eral expression for the grand potential, 6 =E —TS—pNX, which is then minimized using Kikuchi s natural
iteration scheme. With this choice of thermodynamic
potential, the chemical potential p and temperature T are
the natural variables of the problem. Phase boundaries as
usual are found by searching for those special values of
the chemical potential for which two or more phases coex-
ist.

The symmetry of each region within the phase diagram
is determined by careful examination of the site probabili-
ties P,', with a =A, 8, and C and i =1, 2, 3, and 4. Order
parameters which discriminate between two possible
phases can be defined, e.g. , the quantity

m =- j(P" —P'f+IP" P"[+fr" P—'f+ fP"——P'f$

(4)
is nonzero within the C phase, but zero for a Z phase.

Turning now to results, we show in Fig. 2 computed
phase diagrams obtained for four values of the energy pa-
rameter R. We start with the phase diagram found for
R =0, shown in Fig. 2(a), which is characteristic of both
R & 0 and R & 0. First note on the axis x =0 the location
of the order-disorder transition of the parent chalcopyrite
(C) system ABDz (x =0) to the disordered zinc-blende
(Z) form. This transition is first order; the order parame-
ter m~ has a jump discontinuity to zero. With the dilution
of the C compound ABD2 by the Z compound CD, the
temperature of the transition decreases. The two phases
are separated by both a first-order transition and by a mis-
cibility gap (shaded area). The opening of this miscibility
gap found for even just a small nonzero value of the com-
position x is a characteristic feature of all studied (C-Z)
systems.

For small values of temperature, a large miscibility gap
separates the chalcopyrite ABD2-rich phase from the
zinc-blende CD-rich form. How this wide low-temper-
ature miscibility gap evolves to become the narrow misci-
bility gap found for large temperatures depends dramati-
cally on the value chosen for R. Unlike the case of a
binary alloy, where the miscibility gap typically ter-
minates at a critical point centered about x= 2, for
R=0, the critical point is found to be centered about
x = —,

' . Additionally, the narrow high-temperature
miscibility-gap region shrinks to zero at x = 2, becoming
a critical-transition line (shown bold), which terminates
at x = —,

' when it intersects the low-temperature
miscibility-gap region.

Values of R & 0 characterize those (C-Z) systems for
which new symmetry stannite (S) phases are found, e.g.,
see Figs. 2(b)-2(d). This phase stabilizes and increases in

size as R is decreased. Thus in the phase diagrams of
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FIG. 2. Phase diagrams of the renormalized temperature ksT/J vs composition x for the (chalcopyrite)-(zinc blende) system for
the energy ratios (a) R =0; (b) R = —0.25; (c) R = —0.9; and (d) R= —1. Shown are chalcopyrite (C), stannite (S), and zinc-
blende (Z) phases. Also indicated is a special "mixed-symmetry" transitional phase C', found for small values of the temperature.

temperature versus the composition x [see Figs. 2(b)-
2(d)], three discrete phases are found at T =0, C (x =0),
S (x =

& ), and Z (x =1). Additionally, as R decreases,
the area enclosed inside the 1ow-temperature miscibility
bulge decreases and the high-temperature miscibility gap
between the C and Z phases shrinks in width.

To understand R = —1, we examine first the percola-
tion limit R = —1, Fig. 2(d). Again, for percolation, since
all energies are equal in magnitude, it is permissible, at
T=O, to have alloy states, such as (ABDz)& —„(CD)z»,
with the composition x taking on any value between 0 and
1. The phase C' shown in Fig. 2(d) represents such a
compromise: It is a special mixed transitional phase in
which a C phase changes smoothly to a S phase without
the need for a miscibility gap. The transitions (C-C') and
(C'-S) occur continuously, as shown by the bold lines in
Fig. 2(c) for R —0.9 and in Fig. 2(d) for R = —1. In
contrast, direct transitions (C-S) are first order and occur
with a miscibility gap, e.g. , the shaded region in Fig. 2(d).
Interestingly, present also for R = —1 at T =0 is the more

standard percolation limit: Pairs of atoms A and B with
concentration p =(1 —x) being diluted by a fraction
(1 —p) of pairs Cq with atoms A, B, and C sitting on a fcc
sublat tice. The percolation limit for this problem is
p, =0.2, or x~=0.8. We find excellent agreement with
this value, x~ =0.787.

The phase diagram obtained for R = —0.9 is interesting
because of the way in which the T=0 limit is obtained.
Like R = —0.25 [Fig. 2(b)], at T=O, the only phases
found are the ones expected by energetics: C, S, and Z.
The mixed phase C' exists only for T & 0, and is a clear
precursor of the R = —1 phase diagram, Fig. 2(d).

Many (C-Z) alloy systems have been studied experi-
mentally; we compare here only to two unusual diluted
magnetic semiconductor (DMS) systems, (CulnTez)& —,-
(MnTe)q» (Refs. 10 and 11) and (AginTez)~ —„-
(MnTe)z„, " and report more fully elsewhere. DMS al-
loys are unusual because MnTe is only an "honorary"
zinc-blende parent in that tetrahedral bonding occurs only
up to a certain maximum value of the composition x,„
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(generally —,
' &x,„&1), with MnTe itself having the

rocksalt structure. ' Equilibrium phase diagrams of
many of these systems have been studied using a combina-
tion of differential thermal analysis and x-ray-diffraction
techniques. Common features of these diagrams include a
temperature-driven C-Z order-disorder transition at x =0
and an extended region at high temperatures of solubility
of one phase within the other with the C-Z transition as a
function of composition x being characterized by a small
miscibility gap. There is also evidence for the existence of
ordered phases at low temperatures and the midcomposi-
tion ranges, e.g. , Aresti et al. ' suggest that the existence
of an x = —,

' stannite phase CuMnqinTe4 and the possibili-
ty of mixed-symmetry alloys. Quintero et al. '' present
more complete phase diagrams, including regions which
they label disordered a and ordered a' chalcopyrite and
disordered P and ordered P' zinc blende. From the loca-

tions of these phases in their phase diagram and from
their statement that the phases a' and P' differ from a and
P by the ordering of Mn on the cation sublattice, we make
the following assignation: a=C, chalcopyrite; a'=C',
mixed-symmetry phase; P'=5, stannite; and P=Z, zinc
blende. We suspect their experiments to be described by
values of R in the range R ~ —1.

In conclusion, the (chalcopyrite)-(zinc blende) system
has been studied theoretically and has been shown to be
an experimentally accessible semiconductor system that is
unusually rich in ordering transitions. Further study is
clearly warranted.
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