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Dilute gas of electron pairs in the t-J model
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The bound state of electron pairs in the t-J model is investigated. It is shown that for 2t &J & 3.828t
the hole-rich phase is a low-density superfluid of electron pairs.

Since the discovery of high-temperature superconduc-
tors, ' many of the theoretical studies have focused on the
motion of holes in antiferromagnets. Of the various mod-
els proposed, the simplest and most widely studied one is
the t-J model. It starts from the assumption that the
parent compounds are well represented by the antiferro-
magnetic Heisenberg model with localized electrons of
spin- —,

' occupying a square lattice and coupled by an ex-

change integral J. Doping is assumed to remove elec-
trons, thereby producing "holes" which are mobile be-
cause neighboring electrons can hop to the hole site with
amplitude t. Recently, Emery, Kivelson, and Lin have
shown that, for the t-J model, dilute holes in an antifer-
romagnet are unstable against phase separation into a
hole-rich and a no-hole phase. They obtained a critical
value J, such that when the spin-exchange interaction J
exceeds J„ the hole-rich phase has no electrons. It was
proposed that for J slightly less than J, the hole-rich
phase is a low density superAuid of electron pairs. The
purpose of this paper is to present a more detailed study
of this problem.

Let us start by showing the condition for a two-particle
bound state explicitly. To simplify the mathematics, we
add a Hubbard interaction Un;&n, .

&
to the t-J model and

relax the constraint that there be no doubly occupied
sites. Hence the model Hamiltonian is given by

t g ctc +J—g (S, S, ——,'nn )
(i,j», a- (i,j)

+ Up n;tn;t,

where c; creates an electron of spin o. on site i and n, , 8,.
are the electron-number and spin operators, respectively.
(i,j ) denotes the nearest-neighbor pairs. By setting
U= ~ we recover the t-J model, which is the first two
terms in Eq. (I), subject to the constraint that there be no
doubly occupied sites. It is clear that there is an attrac-
tive potential ( —J) between electrons in singlet states on
neighboring sites, so for sufficiently large values of J a
bound state of electrons should exist. Our first step is
thus to determine the critical value of J2, such that for
J ~ J2„ two otherwise "free electrons" can form a two-
particle bound state.

For a system consisting of two electrons the wave func-
tion can be written in the form

4'= g 4&(i„iz)c; &c; z ~0),
t )sl2

where 0) denotes the vacuum state. It is well known
that for a two-body problem the ground state is a singlet,
4(i&, iz ) =C&(iz, i

& ), and the equation of motion is

E4(i„iz)= g [t; 4(j., iz)+t; 4(i„j)]
J

+[U5, ,
—J, , ]@(i„i )z, (3)

——g J(k)@(k)—k, kz+k),1
(4)

where

14(k„kz)= —g 4(i„iz)e
l l, l2

1 —k-(r,. —r. )t(k)= —g t,,e
N . J

2t ( cosk +c—osk~ ),
J(k)=2J(cosk +cosk ) .

Since the system is translationally invariant, the total
momentum can be used to specify its eigenstates. Define
Q=k)+kz, q= —,'(k) —kz), and N(k), kz) =4'o(q). We
then obtain

—g@ (k) ——g J(q —k)@ (k)U 1

@q(q)=

The interaction is separable and the integral equation,
Eq. (4), may be transferred into a set of 3X3 algebraic
equations:

= UIpD + UI 2JC + UIy 2JCy

where t; (J; )= —t(J) if (i,j) are nearest-neighbor pairs,
and zero otherwise. For a system with periodic boundary
conditions, we can use Fourier transforms to rewrite Eq.
(3) as

E@(k„kz)= [t (k, )+ t (kz) ]4(k„kz)

+—g 4(k, +k, kz —k)U

k
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1
C =——g cosq 4&(q)

Ix D +Ixx 2JCx +Ixy 2JCy (10)

It is easy to show that this critical value J2, is indepen-
dent of the lattice size and dimensionality. Using Eqs.
(13) and (14), the total energy E of the two-particle sys-
tem, for the t-J model, can be obtained via equation

C —=—g cosq~4&(q)
1

IyD +Ixy 2JCx +Iyy 2JCy

16t
J 2

E/t
8t

IEI

(17)

where

s&(q)=t —+q +t ——q

1 1

E —s&(q)

1

q

1
XX

q

cosq

E —s&(q)

cos q
2

E —s&(q)

(12)

1 cosgx cosgy

N E —c, (q)E,q g

and I =I, I =I . For the s-wave solution (for
which Q=O) we have I =I„I„=I,and C„=C and
the condition for having a solution is

1 —UIO—2J=
2UI„+(I„+I„)(1—UIO)

(13)

I +I = ——Ixx xy 4t x

1 EI =——— Io,8t 8t

(14a)

(14b)

1 2 8tIo= ——KE~ (14c)

where K(x) is the complete elliptic integral of the first
kind. It is convenient to introduce quantities
S =I —Io, since the S are generally finite. After some
manipulations we obtain

4S 2S„
2J 1 —1/UIO Io —1/U

+
U —1/Io

(15)

where —4Bt =E+8t is the binding energy. The critical
value of J for forming a two-electron bound state may be
found by setting the binding energy to zero, i.e., B =0;
then Io~ ~, BIO —+0, and we get

J2, 2
1+St/U (16)

Therefore for the t Jmodel ( U~ ao ) we obtain-J2, =2t

The integrals I (a=x,xx, xy) are all related to the in-

tegral Io, which diverges logarithmically for ~E~ ~8t.
From Eq. (12) for Q =0, one can easily show that

Emery, Kivelson, and Lin, have shown that the fully-
phase-separated state is unstable to the transfer of single
electron when J ~ 3.42t. Since this value of J is greater
than J2„we expected, as J is decreased, there would be
an instability to form pairs before single particles. To in-
vestigate this problem we should compare the total ener-
gy, E(J), of the two-particle system with 2E, (J), where
E, (J) is the total energy of single electron in the hole-
rich phase. As shown in Ref. 3, E, (J)= 4t —2—8J,
where 8 =0.584. By solving Eq. (17) for E(J), it can be
shown that the instability to pairs occurs at J~ 3.828t.
This raises the question whether the hole-rich phase may
be regarded as a dilute gas of pairs of electrons when J is
slightly less than 3.828t but above J2, ( =2t), since a large
cluster consisting of 3, 4„or more electrons may be
formed. Indeed, for the t-J model, the interaction be-
tween electrons is attractive and it is well known that
systems with attractive interactions will collapse to arbi-
trarily high density when the dimension d &2. In three
dimensions, it is necessary to have some kind of short-
range repulsion to stabilize the system. However, in two
dimensions, an arbitrarily weak, purely attractive poten-
tial will bind a pair, but the system may not collapse to
higher density; i.e., a two-dimensional system may be able
to form a low-density liquid of pairs. To investigate this
possibility in the t-J model it is necessary to determine
the critical values of J for the formation of three- or
four-particle bound states and for condensation into a
liquid. Since electrons attract each other only when they
are on neighboring sites in the t-J model, for a square lat-
tice it is easier to form a four-particle bound state than to
form a three-particle state for purely geometrical reasons.
The potential energy is —J for 2 electrons bound togeth-
er (1 bond) to form a dimer, —

—,
' J for 3 electrons bound

together (2 bonds), and —3J for 4 electrons bound to-
gether (4 bonds) to form a square, respectively. Thus the
average potential energy per electron is —0.5J for two-
and three-particle bound states, and —0.75J for four-
particle bound state. So it is easy to see that the instabili-
ty to four-particle bound state occurs before that to
three-particle bound state. We have studied the possibili-
ty of forming four-particle bound states by diagonalizing
exactly the t-J model on various lattices up to 8X8 and
then extrapolating to the infinite lattice. We determine
the critical value of J&, for a four-particle bound state by
using the criterion that E~(N) =2E2(N), where E~(N)
and E2(N) are the ground-state energies for four- and
two-particle on a lattice of size N, respectively. In gen-
eral, J4, depends on the size of lattice. The following re-
sults were obtained: Jz, (4 X4)= ( 5.755+0.005 )t,
J~,(6X6)=(5.455+0.005)t, and J~, (8 X 8)=(5.30
+0.05)t These values w.ere plotted as functions of L
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where X =I.XL„ in Fig. 1. The extrapolated value of J4,
for an infinite system is (4.85+0.05)t. Errors in the
finite-lattice data arise from the fact that we do not have
enough computer power to scan J in smaller steps AJ,
especially for the 8 X 8 lattice. Our data fitted to
3 +8/L, extremely well, as can be seen from Fig. 1. We
also tried to plot the data as functions of 1/X and they
do not fit it well. The reason for the 1/I. dependence is
that while the potential energy does not depend on the
size of lattice too much when the lattice is large enough
such as 8X8, because of the short-range nature of in-
teraction (nearest-neighbor attraction), the kinetic energy
has 1/L dependence because of the cosine spectrum.

We may try to use perturbation theory to estimate the
critical values of J2, and J4, . Starting with the two-
electron system, we see that when J))t, two electrons
will bind together to form a dimer with zeroth-order en-
ergy —J. By standard second-order-perturbation-theory
arguments, we see that the leading kinetic energy contri-
bution comes from the motion in which one of the elec-
trons hops out of the dimer and later either this electron
hops back or the other electron hops to join the first elec-
tron and then forms the dimer again. Higher-order terms
can be obtained from Eq. (17), and we find that the total
energy is

20tE = —J—
2 J

48t4
J3 (18)

St 16t 2

E4 = —3J- = —3J-
3J/2 3J (19)

Equating E4 =2E2 we obtain J4, ='I/104/3t =5.89t,
which is comparable to, but larger than, our numerical
estimation of J4, = (4.85+0.05)t, as expected.

In summary, our results indicate that there indeed ex-

For the four-electron system, in the limit J))t, the
four electrons will bind together to form a square with
potential energy —3J. To second order in t/J, there are
only eight possible ways for one electron to hop out of
the square and hop back. The energy difference is 3J/2
so the total energy is, to second order in t/J,

I I I I

(
I I I I

j
I I I I

5.5

4.5
—0

I I I I I I I I I I I I I I

0.2
1/L

FIG. 1. Critical value J4, (see the text for definition) as func-
tion of L, where 1V =L XL is the size of square lattice. Estima-
tion errors are smaller than symbols presented.

ists a regime, 3.828)J!t)2, in which the hole-rich
phase contains a dilute gas of pairs of electrons. As J de-
creases from ~, there is an instability to a four-particle
bound state at j /t =4.85. As J decreases further there is
an instability to pairs at J/t =3.828. Since the pairs are
bosons, they probably form a superAuid at low tempera-
tures. As J/t is decreased further from 3.828, the density
of pairs may build up sufFiciently for the system to be-
come a BCS superconductor, but there must be a cross-
over to a difFerent state at least by J =2t (where the pairs
unbind) since a necessary and sufficient condition for BCS
pairing in a dilute gas is that there is a two-body bound
state. '
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