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Spectral weight function for the two-dimensional Hubbard model
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We present results for the single-particle spectral weight function for the two-dimensional Hubbard
model. Results were obtained using analytic expressions for the first two moments of the spectral weight
function, along with numerical calculations using a combination of quantum Monte Carlo and the
maximum-entropy method of analytic continuation. The expressions for the first two moments are
surprisingly simple, involving only the parameters of the model, the chemical potential, and the filling.
At half-filling, the squared width (variance) of the spectral weight is exactly U /4. Numerical results are
shown for 8 X 8 lattices at a variety of fillings and momenta. The insulating antiferromagnetic gap in the
spectral weights, readily apparent in the results at half-filling, is absent at a filling of 0.95.

Because of its relevance to high temperature supercon-
ductivity, the two-dimensional (2D) Hubbard model has
received a substantial amount of attention from theorists
in recent years. Despite this, relatively little is known
about some of its properties, including the single-particle
spectral weight function. In this paper we present analyt-
ic and numerical results for the spectral weight function.
The analytic results are in the form of moments of the
spectral weight function, and are valid for the model in
any dimension and also in the presence of additional hop-

ping terms. The numerical results were produced for
8 X 8 lattices using a combination of quantum Monte Car-
lo, the maximum entropy method, and the analytic mo-
ments. A complementary approach to the methods used
here is the exact diagonalization technique, ' which has
been used to calculate the spectral weight on lattices with
as many as 10 sites, but which has unlimited resolution.

In the Lehmann representation, the spectral weight
function is given by

W(p, ~)=—ge (I+e-t'"))(s~c, „is ) )'n(~ —(Z, , —Z, )),
S, S

where Z is the partition function and s and s' are com-
plete sets of many-particle eigenstates. The moments p
of A (p, co) are defined through

and

p, =E —p+ (n ) U/2

p~ —f dco to c4 (p, co) .

Note that po= 1. From (1) one can show that

p, =( I[c t H],ct t J ),

(2)

where I, I denotes an anticommutator, H is the Hamil-
tonian, and [, ] is a multiple (nested) commutator, with

[a,b], = [a,b], [a,b]2 ——[[a,b), b], etc. The Hamiltonian
in momentum space is

H=X(Ep p)ct ~cp~ X cp+q tck —
q tcI tcp t i+

p, o k,p, q

(4)

where (in 2D) s~= —2t(cosp +cosp~), the lattice spac-
ing is taken to be 1, and X is the number of sites.

Evaluation of the commutators for the first two mo-
ments gives

p2=(c~ —p) + U(E —p)(n )+—,
' U2(n ),

where (n ) is the filling. In evaluating these expressions,
no use was made of the specified form of c, so the rela-
tions hold in the presence of additional next-nearest-
neighbor hopping, dimensions other than two, etc. The
results are also valid at any temperature. The results are
surprisingly simple for the second moment: no two-
particle correlation functions need to be evaluated. For
general fillings, one must evaluate (n ) as a function of p
numerically (which can usually be done quite accurately),
but p= U/2 corresponds exactly to half-filling, (n ) =1.
In that case, p&=c and p2=U /4+v. . The squared
width (variance) of the spectral weight is given by p2

—p|,
and in the case of half-filling is exactly U /4. These ex-
pressions have been checked with results from an exact
diagonalization of a 2X2 lattice; perfect agreement was
found.

We have also obtained the expression for the third mo-
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G(p, r) 0)= —I dco
oo 1+e

It has become fairly straightforward now to calculate
G(p, r) using quantum Monte Carlo methods. ' Recent
work in numerical analytic continuation has addressed
the problem of inverting (8) to find A (p, co) for G(p, r).
This problem is equivalent to doing a numerical inverse
Laplace transform, which is known to be highly unstable.
The problem is made even more difficult here by the pres-
ence of statistical errors in the Monte Carlo data for
G(p, r) Never. theless, several reasonable ways now exist
to analytically continue G(p, r) to obtain the spectral
weight. For this work we have chosen the maximum
entropy method.

The quantum Monte Carlo calculations we use are for-
mulated using a Hubbard-Stratonovich transformation to
cast the problem in single particle form, and use matrix
factorization techniques to reach low temperatures. '
The calculations yield G (p, r) at a discrete set of r points
r& =I b.r, I =0, 1, . . . , L, with L hr=P. One can also as-
sociate a statistical error 0.

&
with each point; however, the

statistical errors for different values of ~I will in general
be quite correlated. We therefore describe the statistical
errors in terms of the full covariance matrix CI &. Note
that CI )

—o.).
If one has a proposed spectral weight function, then

one can compare this spectrum to the data by transform-
ing it via (8), obtaining a proposed Green's function
G(p, rI ). One can then calculate the y fit of the function
to the data G (p, r& ) using the inverse of the covariance
matrix via

2 ~l j. C 1I,1'~l' (9)

where

5, =G (p, )rG(p, rI ) . — (10)

A overly simple way to calculate the spectral weight is
to vary A (p, co) to get a minimum of y, subject to the
constraint A (p, co) )0. This approach ignores the insta-
bility inherent in the problem, and gives very poor re-
sults, characterized by excessive amounts of structure in
the results where none is warranted by the data. Other
recently developed, more successful approaches minimize
the sum of g and an additional term which penalizes
spectra which have excessive structure. In the

ment. It involves two-particle correlation functions,
which could be evaluated with Monte Carlo methods,
and in principle higher moments could be obtained as
well. However, the difficulty in calculating the commuta-
tors as well as the difficulty in calculating the required
correlation functions make the reconstruction of the
spectral weight using only the moments impractical. We
use only the first and second moments here.

Information about A (p, co) is also contained in the
finite-temperature, imaginary-time Green s function

G(p, r)=——(7;[c &(r)c &(0)]) (7)

through the relation

maximum-entropy method, one seeks to maximize

—
—,'y +a f dco A (p, co) —m (co)

—A (p, co)ln
A (p, co)

m (co)

The second term is proportional to the entropy of the
spectrum relative to a default model m(co). This term
penalizes deviations of A (p, co) from m (co), thus reducing
excessive structure. The parameter u is set using proba-
bility arguments to provide a proper balance between
fitting the data and not fitting the statistical errors in the
data. s

A natural way to choose the default model m (co) is by
variationally maximizing the entropy functional—fdcom(co)lnm(co) subject to the constraint that the
moments po, p&, and p2 be given correctly. " This yields a
Gaussian of the form

However, we have found the actual spectral weights to
have much more weight in the tails than is given by (12).
It is much better to have a default model which is too
broad, rather than too narrow: a broad model simply
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FIG. 1. Spectral weight function at half-filling. The parts of
the curves with co&0 for the momenta p =(0,0), (m/4, 0),
(m/2, 0), and (m/4, m/4) have been multiplied by 5 to show de-
tail.

m(~)=l2~(V2 —Vi)l '"expl: —
—,'(~ —Vi)'/(V2 —

C i)1.
(12)
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2 2
X g +

& g p~ Junco co 2 (p, co)
m=1

(13)

with u =0. 1 for the results shown here. This ensures that
the moments in the resulting spectra are accurate to
within two or three o..

In interpreting the spectra it is useful to think of the
analytic continuation procedure as being similar to a
finite resolution spectrometer which broadens the spectra
by some width hen. The cause of the finite resolution is
the statistical errors in the Monte Carlo data. In this
case, however, Ace varies with co. It is smallest near
co=0. Use of the moments helps reduce h~ for larger co,
but only to a limited extent. Unfortunately, it is dificult
to make these somewhat general statements about Aco

more specific, since at this point we lack even a rigorous
definition of Ac@. A procedure giving a rough estimate'
of Ace indicates that the width of the main peak in each
of the spectra shown here should be taken as an estimate
of Ace, and an upper bound to the true width, rather than

fails to provide much information to the fitting pro-
cedure, whereas an overly narrow model artificially cuts
off the tails. Therefore, in the results shown here we have
used a default model with width 2(pz —pi)' instead of
(pz —p, , )' . [The results were insensitive to the precise
width of m(co). ] Instead of imposing the correct mo-
ments through the default model, we incorporated them
in the form of a modified y . We use

as an estimate of the true width. The data for the most
part is not accurate enough to resolve the true widths.

Figure 1 shows results for half-filling at a fairly low
temperature, 13=10, for a variety of wave vectors, on an
8 X 8 lattice. ' (All energies are in units of the hopping t.)
The noninteracting Fermi surface is a tilted square, with
p =(rr/2, rr/2) at the center of a side, and p =(m., O) at a
corner. The antiferromagnetic gap shows itself as a split-
ting of the central peak for the wave vector
p =(rr/2, rr/2). Our results for the other wave vectors on
the noninteracting Fermi surface are identical (within sta-
tistical errors) to those for p = (ir/2, m. /2).

Figure 2 shows results for a filling 0.95. At this filling
the quantum Monte Carlo method cannot reach low tem-
peratures because of fermion sign problems. ' Here we
show results for P=5. At this filling we do not see any
sign of an antiferromagnetic gap for wave vectors near
the Fermi surface. In fact, for both p =(rr, O) and
p =(r~/2, m/2), the main peak occurs at co=0, although
the first moment is not zero (pi=0. 35 for each). The
moment is satisfied by asymmetrical tails. The slight
difference between the spectra for p =(m, O) and
p = (rr/2, n. /2) is statistically significant.

Figure 3 shows results for a filling of 0.87 and P=5.
The results are similar to the ( n ) =0.95 case. However,
the spectra have less weight in the tails for wave vectors
near the Fermi surface. The peaks also appear sharper
near m=0, although the statistical significance of this is
difficult to judge. Now the peak for p =(rr/2, rr/2) is
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FIG. 2. Spectral weight function at a filling 0.95. The parts
of the curves with co) 0 in (a) have been multiplied by 5 to show
detail.

FICx. 3. Spectral weight function at a filling of 0.87. The
parts of the curves with cu )0 in (a) have been multiplied by 5 to
show detail.
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definitely shifted to the right of the peak for p =(m, O).
This is consistent with the Monte Carlo results for the
momentum occupation, (n~ ) =0.28 at p =(m. l2, rr/2)
and ( n ) =0.33 at p =(m, O).

Our work has revealed many of the main features of
the spectral weight function for several fillings. These re-
sults should be useful as constraints on theoretical ap-
proaches to the model. The analytic results in particular
will be very useful as checks on numerical or approxi-
mate calculations. For some specific details, however,

such as the behavior of A (p, co) at very low temperatures
away from half-filling, we will have to wait for more
powerful techniques.
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