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Pair interactions in alloys evaluated from difFuse-scattering data
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The theory of short-range order in alloys developed previously by the present authors is used to
resolve the ambiguities existing in the problem of determination of pair potentials from diffuse-scattering
measurements. It is shown that in the framework of the Krivoglaz-Clapp-Moss approximation the best
results correspond to the Krivoglaz normalization. They turn out to be identical to those of the spheri-
cal model, a zero-order approximation of the theory under consideration. The origin of the self-
interaction potential appearing in this case is clarified. All attempts at normalizing Krivoglaz's formula
in order to preserve a sum rule or prevent the occurrence of self-interaction result in a distortion of the
potentials. A higher-order approximation is used to explain the remaining disagreement between the re-
sults obtained by means of the Krivoglaz formula and the inverse Monte Carlo method.

a(k) = D
1+2c (1—c)PV(k)

(2)

is usually used. Here a(k) is the diffuse-scattering inten-
sity in Laue units, a(k) and V(k) are Fourier transforms
of the e; and V;, respectively, a;. being the Warren-
Cowley SRO parameter, ' c is the concentration,
P= 1/k~ T the inverse temperature, and D the normaliza-
tion factor. In the case D= 1 Eq. (2) corresponds to the
standard RPA result in the theory of magnetism" and has
been derived by Krivoglaz. However, this choice
violates a well-known sum rule a;; = 1 in the case of the
"direct" problem of determining a(k) from the given
V(k), while it leads to the appearance of a nonzero self-
interaction potential V;; when solving the corresponding
"inverse" problem. To eliminate these difhculties,
special values of the factor D have to be used. In the
former case the sum rule is satisfied by the Clapp-Moss
normalization, while in the latter the condition V,, =0 is
provided by the Lefebvre value

Experimental investigation of short-range order (SRO)
in disordered alloys provides information about intera-
tomic potentials. These potentials are necessary for solv-
ing various problems, such as the determination of
ground-state structures and calculation of phase dia-
grams. The common approach in this field is the use of
the Ising model, in which a pair ordering potential
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( V~" corresponds to the interaction between A atoms at
sites i and j, etc. ) plays the role of the exchange integral. '

For analyzing experimental data, in particular, for ex-
tracting pair potentials, the Krivoglaz-Clapp-Moss
(KCM) approximation

normalization (3), for instance, leads to the serious un-
derestimation of the absolute values of potential. ' On
the other hand, several authors have noted a good
overall agreement between potentials obtained by using
the Krivoglaz formula with V;;%0 and the recently
developed inverse Monte Carlo (IMC) method. " Never-
theless, even in this case near-neighbor IMC potentials
turn out to be somewhat greater than the corresponding
KCM ones.

Recently, the present authors have developed a theory
of SRO in disordered alloys' based on the y-expansion
method (CrEM), ' which leads to accurate results for
both direct and inverse problems and gives an explicit
solution for the latter. Here this theory is applied to the
problem of interpreting diffuse-scattering data. Our ap-
proach allows us to understand the failure of the choice
D&1 and the relative success of the Krivoglaz normali-
zation. In the latter case it is also able to clarify the ori-
gin of the self-interaction potential V,, and to explain the
above-mentioned differences between IMC and KCM po-
tentials.

As far as the inverse problem is considered, we have'

(4)

a, ,
= —c(1—c)X;;,

where a;.=(a '); . Equations (4) and (5) reflect simply a
link between the correlation function, potential, and self-
energy. The main result in Ref. 12 is that the off-
diagonal part of the self-energy X is at least of order y,
where y is the small parameter of the theory. The corre-
sponding low-order expression for this quantity in the
case of cubic lattices is

D = 0 'f dka '(k)

integration is over the Brillouin zone of volume Q.
It is generally believed that the KCM theory is only a

qualitative one because of its mean-field nature. Indeed,

X& = A a&+Be&', X2 3= A o.& 3, 23=0, s & 3;
1 (1—2c)
2 [c(1—c)]
1 [1—6c(1—c)] —3(1—2c)
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(6)
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TABLE I. Pair potentials V;, as determined by the Krivoglaz-Clapp-Moss (KCM) approximation
with normalization factor equal to unity using Fourier transformation (FT) and least-squares fitting
(LSF}procedures, those corrected according to the y-expansion method (GEM), and results of the in-
verse Monte Carlo (IMC) method. All quantities are in meV, Imn are Miller indices of the vector con-
necting sites i and j. Data have been used for samples: (1) Cu-Zn, cz„=0.311, T=473 K (Ref. 7);
(2)—(4) Ni-Cr, cc,=0.213, 0.201, and 0.206; T=741, 828, and 973 K, respectively (Ref. 8); (5) Ni-Cr,
ccrc:0 1 1

&
T 833 K (Ref 9)

GEM
No. lmn

110
200
211
110
200
211
110
200
211
110
200
211
110
200
211

FT
18.1

—7.4
—1.4
23.4

—17.3
—4.3
25.6

—19.8
—4.0
25.8

—12.6
0.1

LSF
15.5

—7.8
—1.6
23.1

—16.9
—4.8
27.4

—18.2
—3.2
25. 1

—13.7
—1.3
22.7

—10.9
—1.6

FT
18.7

—6.7
—1.4
25.9

—15.8
—4.0
28.6

—18.0
—3.7
27.9

—11.5
0.2

LSF
16.1

—7.1
—1.6
25.6

—15.4
—4.5
30.4

—16.4
—2.9
27.2

—12.6
—1.2
27. 1

—9.2
—1.5

IMC
18.6

—6.6
—1.3
26.1

—16.0
—4.0
29.3

—17.9
—3.3
28.0

—11.7
0.1

26. 1
—10.5
—1.6
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Therefore several important conclusions can immediately
be drawn:

(i) When using the KCM approximation (2) to calculate
pair interactions from diffuse-scattering data, the best
values of the corresponding potentials are to be expected
in the case D=1. They turn out to be identical to those
of the SM. The quantity V;; in this case is actually not
a self-interaction potential; it is related directly to the SM
self-energy.

(ii) The term Au; being the first correction to the SM
value of the near-neighbor potential V; is always posi-
tive. This fact may lead to the elimination of discrepancy
between the SM (KCM theory with D= 1) and IMC re-
sults.

(iii) In the case DAI the potentials obtained are dis-
torted depending on the particular value of D. Actually,
their absolute values are underestimated since both
Clapp-Moss and Lefebvre normalizations lead to D being
less than unity.

(iv) Correct potentials can be calculated according to
Eqs. (6) and (7) using only data existing in literature,
namely, KCM results, normalization factor D, and the

where s is the coordination shell number. The diagonal
part X,, is determined from the sum rule a;; =1, one of
the GEM equations. The zero-order approximation
(X;~ =0 for i'�)is equivalent to the spherical model
(SM) for alloys. '

From Eqs. (2), (4), and (5) it is easily seen that exact po-
tentials are connected with KCM ones by simple rela-
tions:

set of SRO parameters.
To verify the statements above, we will analyze avail-

able diffuse-scattering data. In the experimental studies
of neutron diffuse scattering from Cup 689Znp 3»,
Nip SpCrp pp and Nip 89Crp», alloy Pair Potentials have
been determined using the KCM approximation and the
IMC method. In all three cases Krivoglaz normalization
has been used. In Refs. 7 and 8 two procedures were ex-
ploited; (i) direct Fourier transformation (FT) of the set
Ia;~ j, and (ii) least-squares fitting (LSF) to the measured
diffuse intensity, while the authors of the Ref. 9 used only
LSF. The agreement between FT, LSF, and IMC results
was stated to be good. However, all near-neighbor IMC
potentials have turned out to be greater than the corre-
sponding KCM ones. All these potentials are listed in
Table I, along with our results obtained by means of Eqs.
(6) and (7). It is seen that GEM corrections lead to an ex-
cellent agreement with IMC results when added to FT
potentials; this agreement slightly worsens in the LSF
case.

Normalization (3) was used for Nip spCrp 2p (Ref. 8) and
Nip 765Fep 235 (Ref. 6) alloys. In the first case it has been
noted that absolute values of potentials are approximate-
ly 20% smaller compared to those for D=1, and do not
agree with IMC results. In the second case the underes-
tirnation is about from 20 to 30%. Corrected potentials
for this case are presented in Ref. 12, together with those
of the cluster field method (CFM), ' a simplified version
of the cluster variation method (CVM). ' The results turn
out to be very close.

In summary, our theory of SRO appears to be able to
clarify such controversial points in diffuse-scattering data
treatment as the correct choice of normalization factor D
in the KCM approximation (2), the nature of the self-
interaction potential V;, , and underestimation of the po-
tentials when using the Krivoglaz value D= 1.
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