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Entropy of a three-dimensional random-tiling quasicrystal
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A numerical calculation of the entropy of a three-dimensional randomly rearranged Penrose tiling is

described. The entropy per tile is obtained to be 0.24+0.02.

Recent experimental and theoretical work has focused
attention on the random-tiling model for quasicrystal
structure. " In this model it is suggested that quasicrys-
tals may be analogous to a random rearrangement of the
well-known Penrose tiling. The Penrose tiling is the pro-
totype for the quasiperiodic-crystal model. ' Two- and
three-dimensional versions of the random-tiling model
have been explored numerically in recent publications
and have been shown to possess the Bragg peaks charac-
teristic of long-range translational order. '

Here we report a calculation using Monte Carlo simula-
tion of the entropy of three-dimensional random tilings of
space by the Penrose rhombohedra. This calculation is in
the spirit of the calculation for two-dimensional random
tilings by Orrick. '

The calculation exploits the standard relationship be-
tween the entropy and specific heat:

dS dE &E') —(E)'
dT dT k~ T2

(where kz is Boltzmann's constant) and the fact that the
ensemble of random tilings will be the high-temperature
limit for essentially any choice of interaction between the
tiles as long as the space-filling constraint is maintained.
The entropy of the random tiling is obtained by integrat-
ing the specific heat divided by temperature from T=O to
~, or, equivalently, by integrating the specific heat as a
function of the logarithm of temperature over all temper-
atures:

The perpendicular-space coordinate is the three-
dimensional vector given by

x'= y n.e'. ,

where e =(cos(4vra/5), sin(4~a/5), 1/&5)
0) ~ ~ ~ ) 4)

es=(0, 0, —1/+5) .

for

(5)

Because we are interested only in the entropy difference
between zero and infinite temperature, the specific choice
of the Hamiltonian is of no physical significance and may
be chosen for computational convenience. Because there
is no phase transition in the system described by the
Hamiltonian (3) there is little size dependence in the tem-
perature region where C(T)/T is substantial. The entro-

py may be determined reasonably accurately using simu-
lations of relatively small systems.

The systems actually used in the simulations were finite
periodic approximants to the quasiperiodic tiling of sizes
188 and 796 tiles. The simulation moves consisted of
"Aips" of rhombic dodecahedra composed of four tiles

S( ~ )
—S(0)=I dT= j C(T) d lnT . (2)

0 T oo

In these simulations we impose the Hamiltonian
Na=J y /x, '/', (3)

ell = (cos(2ma/5), sin(2ma/5), li/5) for a =0, . . . , 4,
e,"=(0,0, 1/&S) . (4)

where x is the perpendicular-space coordinate of the ith
vertex and the sum runs over all the vertices of the til-
ing. ' The perpendicular-space coordinates are defined by
the following procedure (illustrated in Fig. 1 for a two-
dimensional tiling). Choose a site as the origin. Define
the six integers In I for each other site by counting the
signed number of steps from the origin to the site in ques-
tion along each of the six directions defined by FIG. 1. Illustration of the method of defining higher-

dimensional coordinates for a two-dimensional random tiling.
An exactly analogous method was used in the three-dimensional
calculations.
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difference in entropy for binary and fully random tilings
in two dimensions. However, we expect the order of
magnitude to be correct.

(ii) The entropy we have computed is the entropy per
tile. In order to compare with experimental entropy
values an estimate of the number of atoms per tile is re-
quired. Thus a particular atomic decoration must be in-
voked.

(iii) If the crystal to be compared to the icosahedral
phase is a complicated approximant structure, then some
phason-type rearrangements are likely to be of impor-
tance in the crystal also, so that the entropy difference
might be significantly lower than the value computed
here. Indeed, it is known that there is little heat released
in the transition from icosahedral Al-Cu-Fe to the lower-
temperature crystalline phase (which is a structure with a
complicated unit cell), while there is a substantial heat
release in the transformation of Al-Cu-Ru to its low-
temperature phase (which has a relatively simple crystal

structure).
(iv) Other contributions to the entropy difference, such

as differences in vibrational entropy, must also be taken
into account.

In the future, as more experimental information be-
comes available, and as other theoretical calculations are
made, one may hope to use the information obtained here
in understanding the stabilization of the quasicrystal
phase.
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