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Quasiparticle inelastic lifetimes in disordered superconducting films
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We present a comprehensive theory of quasiparticle inelastic lifetimes close to equilibrium in disor-
dered superconducting films. The lifetime due to Coulomb interactions in two-dimensional (2D) films is
calculated in analogy to a recent 3D calculation. For the phonon contribution, we extend the results of
Reizer and Sergeyev for clean 3D systems to 2D, and determine the leading disorder renormalization.
We then construct an interpolation formula for films of finite thickness that correctly reproduces the 2D
and 3D limits. We give a general discussion of our results, and compare them with experiments. Agree-
ment with measurements on thick films is good, while in the 2D limit nonequilibrium effects are likely to
play an important role.

I. INTRODUCTION

The inelastic lifetime ~;„of electronic excitations in
disordered metallic systems has received much attention
in recent years. Schmid' was the first to realize that in a
three-dimensional (3D) disordered normal metal, diffusive
electron dynamics leads to an anomalous enhancement of
the Coulomb contribution to the one-particle scattering
rate I;„=1/2r~„. This enhancement of I;„(i.e., the imag-
inary part of the one-particle self-energy X) has the same
mathematical and physical origin as the "correlation
gap" in the density of states (i.e., the real part of X)
discovered later. In 2D metals the corresponding effects
are so strong that they lead to divergences in a perturba-
tive treatment. For I;„ this divergency has been
remedied by means of a self-consistent treatment. If
considered together with the phonon contribution to I;„,
the result is in good agreement with experiment.

In a superconductor the situation is more complex be-
cause of the appearance of the gap. The self-energy X is
customarily separated into the normal self-energy or re-
normalization function Z and the anomalous self-energy
8'. A second normal self-energy piece is constant in a
clean superconductor and can be neglected. This second
piece is actually the one which, in a disordered normal
metal, produces the correlation gap and enhancement of
I;„. En a disordered superconductor, it has been shown '

that it is crucial to retain this piece, which was denoted
by Y in Ref. 7. We will call Y the correlation-gap piece of
the self-energy. Its real part leads to a strong disorder
dependence of the transition temperature, and an analysis
of this effect showed that it accounts well for the experi-
mentally observed degradation of T, .

The imaginary parts of the self-energy pieces in a su-
perconductor determine the quasiparticle inelastic life-
time ~;„, which is analogous to the single-particle lifetime
in a normal metal. The physical meaning of w;„ is that of
the lifetime of a single quasiparticle injected into an ener-
gy eigenstate above the gap. It is the one-quasiparticle
limit of the energy relaxation time in a nonequilibrium
situation. ' The presence of a finite ~;„smooths out the

various singularities one encounters in BCS theory, e.g. ,
the square-root singularity in the density of states (DOS).
This allows for a direct observation of ~;„ in a tunneling
experiment. In a clean superconductor, the dominant
contribution to I;„is due to thermal phonons. This has
been calculated" and is well confirmed by experiment. '

In contrast, contributions due to the Coulomb interac-
tion' (i.e., virtual photons) as well as real photons are14

negligible. This is no longer the case in disordered super-
conductors. Experiments' ' show a I;„which is
strongly enhanced by disorder, and it has been suggest-
ed' that Schmid's mechanism of diffusion enhancement
of the Coulomb contribution to I;„ is effective here as
well. A recent calculation' for 3D systems showed that
this is indeed the case and that, for typical parameter
values, one should expect Coulomb and phonon contribu-
tions to I;„to be equally important in a disordered super-
conductor.

It is the purpose of the present paper to present a
comprehensive theory for I;„in disordered superconduc-
tors which treats all contributions which are known to be
important on equal footing. In Refs. 7 and 9 it was
shown that in addition to the disorder-generated self-
energy contribution Y, there are many different disorder
renormalizations of the conventional contributions Z and
8'. This previous work was restricted to calculating the
real parts of the self-energies due to the absence of a
theory for the dynamically screened Coulomb interaction
in disordered superconductors. This situation has now
changed, as Ref. 19 provided a gauge-invariant expres-
sion for the Coulomb propagator in the presence of disor-
der. We can thus calculate the respective imaginary
parts as well. In this sense the present paper completes
the program which was started in Ref. 7. Since many ex-
periments are performed on films whose dimensionality is
in between 2D and 3D, we treat both the 2D and 3D
cases and construct an interpolation formula between
these two limits.

Our paper is organized as follows. In Sec. II we
present the general formalism and introduce our nota-
tion. In Sec. III we calculate the Coulomb contribution
to I;„for the 2D case. (For 3D this was done in Ref. 18.)
In Sec. IV we study the phonon contributions. For clean
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superconductors we consider the 2D analogon to the 3D
calculation by Reizer and Sergeyev. ' We then proceed
to calculate the disorder renormalization for both the 2D
and 3D cases, including the contribution from the
correlation-gap self-energy piece K In Sec. V we study
the crossover between 2D and 3D behavior and give the
final result for the leading contribution to I;„in a Alm of
finite thickness. Finally, in Sec. VI we discuss our results
and compare with experiments. A short report of this
work has been published elsewhere.

II. GENERAL FORMALISM

A. Self-energy
Our starting point is the strong-coupling theory for

disordered superconductors deveIoped in Ref. 7. The

model and general methods we use are the same as in
Ref. 7, and so we will be very brief. The only difference is
that here we use the dynamically screened Coulomb in-
teraction which was calculated in Ref. 19, while Ref. 7
used a static interaction. Apart from this generalization,
we consider the various self-energy parts as derived there.
Reference 7 then proceeded to calculate the real part of
the self-energy in order to determine the transition tem-
perature. Here we calculate the respective imaginary
parts which determine I;„.

As usual, we split the self-energy into a normal and an
anomalous piece, which we denote by S and 8' respec-
tively. Both the Coulomb interaction and the phonon-
exchange contribute to S and O'. For the Coulomb con-
tributions, we obtain

Wc(e&i co) = —Tg g f de' Rc(q& e —e') V(e', i co') Vc(q, i co —i co'),
I CO q

Sc(e,ico)= —TX Xfde'Rc(q e &e')Q(—e'&ico')Vc(q&ico ico')—,
I CO

(2.1)

(2.2a)

Sc (e, ico) =Sc (e)=2' g fde'Rc (q, e —e')Q(e', i co') Vc(q, iO) .
I CO

(2.2b)

Here Vc denotes the dynamically screened Coulomb interaction, which will be given explicitly in Sec. III. 9 and V are
the normal and anomalous Green s functions, respectively, and ice and ice are fermionic Matsubara frequencies. The
superscripts H and I' denote direct and exchange contributions, respectively, in the self-consistent Hartree-Fock scheme
of Ref. 7. Note that there is no direct contribution to 8 due to particle-number conservation. Note also that the
(ensemble-averaged) self-energies are energy rather than wave-vector dependent, since we are dealing with disordered
systems. The functions R& and R& can be written as integrals over the phase-space density-correlation function for
noninteracting electrons. The disorder information for our problem is contained in these functions as well as in the in-
teractions. The corresponding phonon contributions read

W~h(e, i co) = —Tg g f de' Rb (q, e —e')V(e', i co')Db(q, ico i co'), —
icO' q, b

Szh(e, ico)= —Tg g f de'Rb(q, e —e')Q(e', i c)oD (qb, ico —ico'),
ICO q, b

(2.3)

(2.4a)

S h(e, ico)=S „(e)=2'g f de'Rb (q, e e')Q(e', ico')DL—, (q, io) .
icO' q, b

(2.4b)

Here Db (q, i0, ) is the phonon propagator for phonons with wave vector q, (bosonic) Matsubara frequency i 0, and po-
larization b (b =L, T for longitudinal and transverse phonons, respectively). The functions Rb and Rb are again certain
correlation functions for noninteracting electrons. A representation of Rb,' in terms of the phase-space Kubo function
can be found in Ref. 7, and we will quote explicit results below where we need them.

We further follow Ref. 7 in decomposing the normal self-energy into parts which are odd and even, respectively, with
respect to the frequency,

S(e,i co) =i co[ 1 —Z(e, i co) ]+Y(e, i co),

where both Z and Fare even functions of i ~. The Green's functions then can be written as

icoZ(e, ico)+@+Y(e,i )co
[ l coZ(E lc&o ) ] [E+Y(E&Lco)]'W'( E'& l co )

(2.5)

(2.6a)

—W(e, ico)

[lcoZ(E'&Leo)] [e+ Y(E&Lco)] (WE &L)co

Equation (2. 1)—(2.6) form a closed set of equations which can be solved for the self-energy.

(2.6b)
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B. Quasiparticle decay rate

We now express the width I:—I;„ofthe resonance in the Green s functions in terms of the real and imaginary parts
of the self-energy. " From here on we denote real parts by ReZ —=Z', etc. , and imaginary parts by ImZ —=Z", etc. We
find, from Eq. (2.6),

I (co) =HZ�"(co)/Z' —8"'(co)b, /coZ' —Y"(co)(co+ Y')/coZ' (2.7)

Here we have analytically continued to real frequencies and taken the on-shell values. We have also used
8 '(co)/Z'(co) =5, with b, the energy gap, and Z'(co) =Z'(0)—:Z'.

In Ref. 7, Y(E,ice) was expanded in a Taylor series with respect to e. This was necessary in order to perform the en-

ergy integrations in the expressions for the self-energy. This expansion eliminated the delicate frequency dependence of
Y, which in Sec. IV we will find to be crucial for the evaluation of I . We therefore keep both the energy and frequency
dependence of the self-energy, but confine ourselves to lowest-order perturbation theory around the BCS state with
respect to Coulomb and electron-phonon interactions. That is, we replace the Green s functions in Eqs. (2.1)—(2.4) by
BCS Green's functions. Consistently, we also neglect Y in the Coulomb propagator. Then the integrals can be done.
In Sec. III C and in the Appendix, we will show that going beyond lowest order by including I self-consistently in the
Green's functions has negligible effects for realistic values of the parameters.

We now proceed to calculate the Coulomb contributions to the imaginary parts of the self-energy in Sec. III and then
the phonon contributions in Sec. IV.

III. COULOMB CONTRIBUTIONS

A. General expression

We start with the normal self-energy. Sc [Eq. (2.2b)] is frequency independent and therefore real and does not con-
tribute to I . In Eq. (2.2a) we perform the frequency summation by using the spectral representation of 0 and Vc, re-

spectively. We obtain

Sc(e,ice)=g f de' f V,"(q,x)f 6"(e',y )Rc(q, e e')[ (n)xf(—y)+1] '
z—

(iso) —(x+y )
(3.1)

where n (x) and f (x) are the Bose and Fermi distributions, and G" and Vc' denote the spectral functions for 0 and Vc,
respectively. We now split S (e, i co) into Y and Z according to Eq. (2.5). We obtain, for the imaginary parts,

coZc'(e, ro) =—g f f Vc'(q, x )f dy G "(e',y )5(co —x —y )[n(x) —f(y)+1][N"(q,e —e')+@"(q, e+e')],
2

(3.2a)
I

Yc(e,co)= ——g f f Vc'(q, x)f dy 6"(e',y)5(co —x —y)[n(x) f(y)+1][4&"(q,e——e') —N"(q, e+e')] .
2

(3.2b)

N"=m.NzR& is the spectrum of Kubo's density-density correlation function for a fictitious system of noninteracting
electrons with the same disorder as the superconductor. For a clean system with small momentum transfer q, the spec-
trum is white. For D =2, 3 one has

N" (q, e) =(NF/EF )(kz/2q )(n/2) (clean) .

For diffusive quasiparticle dynamics, @"is given by a diffusion pole,

1V~Dq
0&"(q, e) = (diffusive),

(Dq ) +e

(3.3a)

(3.3b)

with diffusion constant D. We shall choose units such that 4=k~ =1. Here X~ is the density of states per spin at the
Fermi level. For D=2, 3 we have XF=(m/2')(kF/~) . D is related to the (extrapolated) normal-state residual
resisitivity p by an Einstein relation p= 1/2&FDe, where e is the electron charge. p or D characterizes the amount of
disorder in the system and will serve as our disorder parameter.

In the same manner, we evaluate the imaginary part of Eq. (2.1). We then use the result together with Eq. (3.2) in Eq.
(2.7) to obtain the Coulomb contribution to the scattering rate, I C. We find
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I c(~)=,g f f Vc(q, x)f dy[n(x) f—(y)+1]5(co—x —y)
1 de' dx

Z' ~XF

X G "(e',y) —[4 "(q, co —e')+4"(q, co+e')] ——4"(q, co —e')E"(e',y)

+ g f f Vc(q, x)f dy[n(x) f(y)—+1]5(co—x —y)~Z'2 ~NF

X —G "(e',y ) [0&"(q, co —e') —N" (q, co+ a') ] (3.4)

In order to evaluate Eq. (3.4) further, we need an explicit expression for the Coulomb propagator.

B. Coulomb propagator

C(q, co) =B(q,co)+8,(q, co) . (3.5b)

Here B is the density response function in pair approxi-
mation, ' while 8, contains the collective excitation (the
Anderson-Bogoliubov mode) which restores gauge invari-
ance. As has been discussed before, ' ' B, is important
only for wave numbers q & 1/g, with g the superconduct-
ing coherence length. For a calculation of I c, which is
given by an integral over all wave numbers [Eq. (3.4)], we
therefore can neglect 8, as long as kFg)) 1. For a con-
ventional superconductor with a realistic amount of dis-
order, this is always the case. With the same accuracy,
we can replace 8'(q, co) by NF. The imaginary part
8 "(q,co) =8„"(q,co)+8,"(q,co) is conveniently split into a
"recombination" (r) and a "scattering" (s) piece, which
correspond to the screening of the Coulomb interaction
by the virtual breaking of Cooper pairs and by the
scattering of thermally excited quasiparticles, respective-
ly. They have been calculated in Ref. 18, with the result

8„"(q,co) =4&"(q,O)B(co—2b, ) (co+2k, )E(a)

46co K(a), (3.6a)
co+ 25

e ~ T(1 —e ~
) for co&&5, ,

b, (1+T/co)K, (b, /T) for co) 2b, .

(3.6b)

The Coulomb interaction can be written as
Vc(q, co) =u(q)/e(q, co), where e(q, co) is the longitudinal
dielectric function and v(q) is the bare Coulomb interac-
tion. We write e(q, co) = 1+ V(q)2C(q, co), where 2C is the
screened density response function (this defines C). Then
the imaginary part of Vc is

fr

Vc(q, ~)= (3.5a)
[1/U (q)+2C'(q, co)] + [2C "(q,co)]

The function C(q, co) has been calculated in Ref. 19 for
arbitrarily disordered superconductors. This calculation,
which followed the conserving approximation scheme of
Prange, produces a manifestly gauge-invariant result.
It has the structure

1 8 "(q,co) 8 "(q,oo)
Vc q, co =—

'2 —1

(3.7)

with 8"=8„"+8," given by Eqs. (3.6). We note that be-
cause of the perfect screening approximation, the result
for V,

" [Eq. (3.7)] does not depend on the dimensionality
(except through D and NF). However, the term
(8 "/NF) in the denominator, which can be dropped in
D =3, ' has to be kept in the 2D calculation in order to
avoid a spurious logarithmic singularity.

C. Lifetimes in thin 6lms

We now return to the evaluation of Eq. (3.4) for thin
films. The second term in Eq. (3.4) contains a difference
of two density spectra. In the clean limit, it therefore
vanishes according to Eq. (3.3a). For diffusive quasiparti-
cle dynamics [Eq. (3.3b)], this term contributes only for
wave numbers q &v'b, /D =1/g. Neglecting the second
term therefore has the same range of validity as the pair
approximation for the Coulomb propagator.

We note that, diagrammatically, the use of Eq. (3.3b) in
Eq. (3.4) corresponds to a renormalization of the
Coulomb vertex by means of diffusion ladder diagrams
[diffusion-propagator renormalization (DPR)]. Within
DPR the contribution of F" to the scattering rate is thus
negligible compared to that of coZ" for the reasons ex-
plained above. The same is true if the vertex is renormal-
ized by means of the maximally crossed ladder diagrams
or cooperons [Cooper-propagator renormalization
(CPR)]. The CPR can be realized within the present
correlation function technique by using the symmetry
properties of the Kubo function and the projection tech-
niques which were explained in detail in Ref. 7. This way
we obtain all diffusion enhanced contributions to I c. We

Here a=(co —2A)/(co+26, ), E and K are complete ellip-
tical integrals, and K& is a Bessel function. Equation
(3.6a) is valid for Dq ))[co(co—2b, )]'~ . Since the
relevant frequency scale in Eq. (3.4) is co =6„ this is again
consistent with the requirement q g ))1. Finally, we
make the perfect screening approximation; i.e., we
neglect 1/U(q) in Eq. (3.5a). Then we have
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conclude that in order to calculate the leading (i.e.,
diffusion-enhanced) contributions to I c, we can neglect
F". Furthermore, an inspection of the integrals in the
first term in Eq. (3.4) shows that CPR leads to a result

which is smaller than the one resulting from DPR by a
factor of I /kFg. Equation (3.3b) is therefore sufficient in
order to obtain the leading-order contribution. Equation
(3.4) then can be written as

1 dE' „, ~ dX
, g f N"(q, e' co—)f [f(x+co)+n(x)]VC(q, x) 6"(e',x+co)+ F"(—&',x+~) +(co~ —~),Z' miVF

'
0 CO

(3.8)

where (co~ —co) denotes a term difFerent from the first one by the sign of co. For (6/co)~0, Eq. (3.8) yields the well-
known normal-metal results. '

For 3D systems, Eq. (3.8) reproduces the known clean-limit results. ' ' For 3D disordered superconductors at
nonzero temperature, it reproduces the results of Ref. 18. We now first consider the case of zero temperature. At
T =0 the only possible scattering process is by a quasiparticle breaking a Cooper pair. For such processes to occur, the
quasiparticle must have at least an energy of 3b, . We find, for (co —3b, )/(co+ 36, ) ((1,

1/2 3/2 /g 3/2rc'(co)=, e(co —3h) (3 )4Z' EF rr —(co/3, )
T

(( 2~)2 ~2]i/2 b.
1

[(co—2b, ) —6 ]'/ +co —2b,
CO

(3.9)

Here p=p/pM, with p= 1/2e XDF the resisitivity and pM =1&3m /e kF the Mott number. The corresponding rate in
2D is given by

(clean),

(3.10a)

,
( ) ~ ) )( ~ 2 2 ]i/2 b,

1
[(co—2h ) —b, )]' + co —2b.

c Zi 4 +4 6 o (diffusive) .

(3.10b)

—1

c, r Z' e ln
—2A /Ti (3.11a)

—1
c, s z'

1/2

e 'ln 4EF

(3.11b)

and for di6'usive quasiparticle dynamics,

—1
c, r

—2S/r
2(1+vr) Z' (3.12a)

Here R~ =R /RM, where R~ is the sheet resistance per
square, R~=fi/e =41080,/ is the Mott number, and
EF is the Fermi energy. We see that the rates rise as
&~—3b, in the above limit.

At nonzero temperature, we follow the standard pro-
cedure" (cf. also Ref. 18) to separate r ' into recombina-
tion and scattering contributions, respectively. For a
quasiparticle at the gap edge, we have a lifetime
v= 1/2I (b, ). For 2D clean systems, we find, to leading
order in T/6,

1 6 zT
2(1+ir) Z' 2b,

1/2

e
—b, /T (3.12b)

Comparison with the corresponding 3D results shows
that the 2D rate is roughly of the same order and has the
same temperature dependence as the 3D result, but has a
diferent disorder dependence. The disorder dependences
in 2D and 3D are the same as in normal metals.

One might find surprising the fact that the leading tem-
perature dependence of the rate is the same in 2D and
3D, since it is in sharp contrast to the case of normal met-
als. ' Further, comparing the above results for clean and
dirty superconductors, one sees that the temperature
dependence of the rate is also independent of disorder.
The reason for both of these results is that superconduc-
tivity introduces 4 as a new energy scale. The leading
temperature dependence is determined by the frequency
dependence of Vc in the vicinity of the gap, which, to
leading order, is constant, independent of disorder and
dimensionality.

The temperature dependence is dominated by the ex-
ponential factor, which inevitably arises within perturba-
tion theory due to the singularity in the BCS DOS. In
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view of the treatment of the 2D normal-metal case, one
might wonder whether a similar procedure would not
qualitatively change the perturbative result in a super-
conductor. The basic physical idea is that the inelastic
scattering will smooth out the singularity in the BCS
DOS and should therefore be included self-consistently
on the right-hand side of Eq. (3.4). We have performed
such a calculation and describe it in the Appendix. We
find that (i) self-consistency cannot lead to I (T =0)%0,
and (ii) at T)0 the eff'ects are too small to be of any prac-
tical importance. The latter statement holds for amounts
of disorder which can be described by the diffusion pole
approximation and are thus within the region of validity
of the present theory. We conclude that our perturbative

results are sufficient to describe the Coulomb scattering
rate.

IV. PHONON CONTRIBUTIONS

A. General expressions

We now turn our attention to the electron-phonon con-
tributions to the scattering rate. The general features of
the calculation are analogous to the previous section, and
so we can be brief. The direct self-energy S~z [Eq. (2.4b)]
does not contribute, and S h [Eq. (2.4a)] is separated into
Yand icoZ again. We obtain

coZ"h(e, co)= f de' fdv[n(v)+f(v+co)]G "(e',co+v)[a F (e e', v)+—a F (e+e', v)],
Y"h(e, co)= —f de' fdv[n(v)+ f(v+co)]G "(e',co+v)[a F (e e', v) —aF (e—+e', v)],

where

a2F (e e', v)=Q—R&' (q, e e') Bi(q—, v)

q, b

(4.1a)

(4.1b)

(4.2)

is the generalized Eliashberg function for exchange and direct processes, respectively. Bb(q, v) is the phonon spec-
trum, in terms of which the phonon propagator reads

Di, (q, iA)=2f dv
2 2Bi, (q, v) .

(i Q) v—
Performing the e' integral in Eqs. (4.1), we obtain

coZ"„(e,co)=m dv, [f(v+co)+n(v)]v+ 67

[( + )2 g2]1/2

X [a F (e—[(v+co) —b, ]',v)+a F (e+[(v+co) —b, ]',v)]e((co+v) —6 ),
F"h(e, co) = ~f dv[f—(v+co)+n(v)]

X Ia F (e—[(v+co) b, ]'i,v) aF (e—+[(v+co) ——b, ]'i,v)Ie((co+v) —b, ) .

(4.3)

(4.4a)

(4.4b)

For b, =0 the first terms in the curly brackets in Eqs. (4.4a) and (4.4b) cancel each other and the normal-metal result is
recovered. '

B. Conventional contribution in D =2

In order to facilitate comparison of our theory with previous work, we neglect Y" for the time being and combine the
imaginary part of the anomalous self-energy, 8'„"h [Eq. (2.3)] with Eq. (4.4a) according to Eq. (2.7). This way we obtain
a phonori contribution to the quasiparticle decay rate which we call I 'h'.

+ —6 /I 'h'(co)=, f dve((v+co) —6),[f(v+co)+n(v)]Z 0 [(v+co) —b. ]'

X[a F (co [(v+co) b, ]'—, v)+a F (co+[(v+co—) —b, ]',v)]+(co~ —co) . (4.5)

Note that this expression is analogous to Eq. (3.8) for the Coulomb scattering rate. a F (e, co) is an electronic stress-
correlation function for which DPR does not yield a diffusion enhancement. ' This is due to the electron's ability to
maintain local charge neutrality and shows, e.g. , in Pippard's results for the sound attenuation. a E can be calculat-
ed diagrammatically or by solving a Boltzmann equation in collision time approximation, and the explicit result for
D =3 can be found in Ref. 28 or 7. If we use it to calculate I h, we recover the result of Reizer and Sergeyev. ' Before
we turn to CPR for the electron-phonon vertex, we derive the corresponding result for D =2. We write the 2D expres-
sion for n F with diffusion ladder renormalization as

v l ~b vla F (E e', v)=a F (v—)= g 3 f&
7Tm b cb cb

(4.6)
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where

8 xfT(x)= 1+ —(1+x )'
X4

(4.7a)

1

(1+x )'~ —1
I (x)=2 (4.7b)

Here I =2D /UF is the elastic mean free path and cb the sound velocity. We define the generalized electron-phonon cou-
pling constant to be db =kF +'/16mp;c& for D =2, 3 with p; the D-dimensional ion density. Using Eq. (4.5), we find the
2D results analogous to Refs. 21 and 11 for the scattering and recombination rate at the gap edge, viz. ,

2

d~, I ( —,')g( —,') for»R~,
5/2 C2 2 2 EF Cb

('). '=2e2 b T b
EF ~ Z' ~F g m, , T ~T UF

dT [I+(cT/ci ) ] I'( —,')g( —,') for
CT F EF Cb

«RG

1/2

ph, T I 2A
e

—5/T

(4.8a)

(4.8b)

dL VF
2 for

EF ~c Cb
»R

a2+F(2+) = '

2VF Q dT
[1+(cr/cI ) ] for

RG EF c Cb

2m' «RG
(4.9)

For T=O we find

2

dL 2 ( [(co/6) —1]' [(co/2b, )+b /co] ——31n [ [(co/b, )
—1]' +co/6] )

CL

r h (co)= 4 e(co —b) . forZ' E,
7TVF

Cb

3

dT, [1+(cT/cL ) ] g(co/b, ) for
cT 2R EF

GATV F

cb

S «R (4.10a)

where

g(x) = (x —1) +—(x —1)' + [1+(2x ) ]ln[x+(x —I )'i2] .
2x

(4.10b)

I denotes the gamma function and g the Riemann zeta function. We also have considered CpR of the electron-phonon
vertex in I ph'. For the same technical reasons as in the Coulomb case, the resulting contribution to ~ h' is much smaller
than Eq. (4.8) and can thus be ignored.

C. Effects of the self-energy contribution Y

We now return our attention to the contribution of the correlation-gap piece Y(e, co) to the scattering rate, Eq. (4.4b).
First, we note that if we use DPR for the stress-correlation functions, we have a F (e, v) =a F (v) for er «1, where r
is the elastic collision time, and therefore Y"h is negligible compared to cuz "h. The evaluation of the maximally crossed
ladder renormalization shows that backscattering events do lead to diffusion enhancement and result in a nonanalytic
behavior of the stress-correlation function. The physical reason is that as the quasiparticles become less mobile, they
become more rigid to shear deformations. This is well known, and it has interesting consequences for the sound at-
tenuation in disordered normal metals. The relevant transverse stress-correlation function with CPR in 3D is given
by

RT(q, 0)=RT(q, Q) —RT(0,0)
Fr

(4.11a)
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where

2
RT(0, 0)= 2 cT

CT

3
1

(EF7.)
7T F

(4.11b)

and

0( II)R(00)X+X(+X an X
Tq~ 2 T x

(4.12)

Via Eq. (4.2), this gives the dominant contribution to Y~h T.he longitudinal phonon contribution is related to the trans-
verse one at zero wave number by RL =RT ', (cr—/cL ) .

We rewrite Eq. (4.4b) in the quasiparticle representation. " We obtain three terms for Y:
T

Y"(e,co)= g I dvBb(q, v)n(v)[1 f(v+—co)][RI,(q, e [(v+—co) —b, ]'~ ) —Rb(q, e+[(v+co) b, ]'~ )]—
1 f(co)—

+J dvBb(q, v)[n(v)+1]f(v co)[R—I, (q, E [(v —co) —b, ]' —) Rl, (q—, e+[(v—ro) —b, ]'~ )]

+ f dvBb(q, v)[n(v)+1][1 f(co v—)][Rb—(q, e [(v —co) —6]'—~ ) RI, (q—, e

+ [(v—co)' —&']' ')] (4.13)

Substituting Eq. (4.11) for Rz into the above equation, we calculate the on-shell contribution of Y" for a quasiparticle at
the gap edge. Using a Debye spectrum Bb(q, v) = ,'qeb5(v —cbq)e—(coD —v), Eq. (4.13) yields, f«T/& « 1,

7/2

Y"(b.)= —b,+ d
5v'7r cT EF

' 3/2
4 I ( —92)g( —', )

1+—(cT /cL ) exp( b, /T ) + —— ( T/b, )
3 4 7r

(4.14)

while, for T=O,
4 7/2

Y"(co)=—b v' pdT
3 F 6 coe(co —b, )

20m cT

9/2

f(~/&) 1+—(cT/cL, )' (4.15a)

where

(4.15b)

T

f(x)= 1+ ln(x —v x —1)+—1+— (1—1/x )' — (1 —1/x )
i (27+8/x ) .

2x ' 4x 4x 60

In deriving Eqs. (4.14) and (4.15), we have assumed Ar=l /g «1. The results therefore hold only in the dirty limit.
In the opposite limit, l g, an additional factor of p appears. We also note that we have kept both the scattering and
recombination contribution in Eq. (4.14), even though the latter is exponentially small at low temperatures. This is to
demonstrate that in the disordered case the scattering contribution, which has a power-law temperature dependence, is
dominant to much higher temperatures than in a clean superconductor. We wi11 further discuss this important point in
Sec. VI.

The corresponding real part of F was found in Ref. 7 to vary linearly in resisitivity and is given by
Y'=65[(4A, —3p)/7r]p, where A, is the electron-phonon coupling constant and p is the effective Coulomb potential ' for
the corresponding clean metal. We denote the contribution of F to the quasiparticle decay rate by ~'h' ' and find, for a
quasiparticle at the gap edge in D =3,

4 - - 7/2 3/2
(2),

(
)~y2+64A, 3P,

( )3y2 d
2 6 F+Ih, 2 P 5v'7r cT4 EF b,

I ( —', )g( —', )
X exp( —b, /T )+ ( 7/b, )3 1+—(cT/cI ) (D =3) . (4.16)

We now repeat the above calculation for two-dimensional thin films. We will need the corresponding transverse
stress-correlation function with CPR in 2D, which is given by
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Rz.(q, 0)=Rz-(q, Q)+Rr(0, 0) ln(1/Qr),1

2aEF w

where

4ld
RT(0 0)=

ICT

(4.17a)

(4.17b)

and

8 x
Rz.(q, A)=Rz-(0, 0) 1+ —(1+x )'i (4.17c)

r( —,')g( —,') z-
[1+(cz/cL ) ] e ~ +

2 7T

UFY"(b, ) = drv'2~ cr

where x =qi. The calculation for Y"(b, ) is straightforward, and we obtain
3 - -2 ' '3/2

T
E„

'2

(4.18)

and for T =0,

Y"(co)= UF
dT4~ cT

3 4

6(co—h)h(A/co)[1+(c /c ) ],E (4.19a)

where

(1 x2)1/2
h(x)=

2
1+

4
5 2 3/2

2 2

(1—x )~ — 1 — ln —+X 1

12 2 4 x
1 —1

X

1/2

(4.19b)

(4.20)

r(-,')g(-,')
[1+( / )4]

—6IT+
2

4
&2~Z' EF

r,"„'-'=a(i+Y /S)d,
CT

(D =2), (4.21)

We next have to calculate the real part of Y in D =2. In Ref. 7 the corresponding 3D result was obtained by expand-
ing Y(e, co) in a Taylor series in e. In 2D this procedure produces a spurious infrared singularity in the direct Eliash-
berg function e F and the direct Coulomb kernel denoted by U, in Ref. 7. The technical reason is that, as mentioned
before, the Taylor expansion suppresses the co dependence of Y. Inspection shows that as a result of the co dependence,
the divergence is cut off by the gap, as was the case in the 2D calculation of I &. We therefore can still follow Ref. 7 in
calculating Y' if we use the inverse coherence length g

' as a lower limit in the wave-number integral. Adding the
Coulomb contribution to Y', we finally find

Cl kF 1 ~D 1Y' =bR &in(2kF g) 1 —(2/m )sin ' 1 ——
81TCOD 2 kFCL,

We then obtain
mph

' in 2D in the form
3

with Y' from Eq. (4.20).

V. LIFETIMES IN FILMS OF FINITE THICKNESS

As the sample width decreases, the interactions governing the transport properties change from 3D to 2D behavior.
The effect of this crossover on the DOS and conductivity has been studied in dirty normal metals. As Altshuler, Aro-
nov, and Zyiuzin have pointed out, ' the Coulomb interaction in a normal metal is effectively 2D for sample widths
l., « tD/m x(tao, 4,

'r)]' where co is the characteristic energy transfer and r&
' is the rate at which quasiparticles lose

their phase coherence. Note that the phase coherence rate is temperature dependent. Since most tunneling experi-
ments on superconducting films are performed somewhere in the transition region between 2D and 3D behavior, we will
now give an interpolation formula for the leading contribution to the scattering rates for films of arbitrary thickness
which recovers the previous expressions in the appropriate limits. We first examine the leading Coulomb contribution
to r . Breaking up the sum over wave numbers in Eq. (3.8) into an integral over q in the x-y plane and a sum over
quantized wave numbers in the z direction, we find that to leading order in T/6 « 1 we can express the inverse lifetime
in the following form:

3' 4 —(4/m )er, g'= p(&IEF)(go/L, )(&/Z')(~&/2&)' 'e
4 1+m. m —1

where
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tan[(L, /2g)i/3/2m ]tan0=
tanh[(L, /2j)&3/2m ]

(5.2a)

tan [(L,/2g') &3/2]
tang =

tanh[(L, /2g)&3/2]
(5.2b)

(5.3)

where x =(L, /g)&3/2'. For Y" the criterion for 3D disorder behavior is the same as the Coulomb case, namely,
L, ))g, while the 3D temperature dependence will be seen when L, T/cz ))1. In the 3D limit, Eq. (5.3) recovers the
leading term in Eq. (4.14), while the 2D limit recovers the leading term in Eq. (4.18) if we identify mk~L, /2' as the
quasi-2D density of states.

Since the real part of the self-energy piece Y and the stress-correlation function Rb are not strongly frequency depen-
dent, the relevant criterion for three-dimensional behavior for Y and Rb is that 2~/kI;L, &&1, which is usually the
case. Therefore, for practical purposes we can use Y' in the 3D limit and Rz (0,0) given by Eq. (4.11b), which then
leads to the following expression for ~PH

r 4
ko

3/2

E
1+6 4A, 3/l 977 g6PH p 5 p

7T CT L,

FIere g=+gol is the dirty-limit coherence length and go=u~/orb, is the Pippard coherence length. For L &&f the
term in square brackets approaches unity and the 2D result [Eq. (3.12b)] is recovered. For L, ))g we obtain Eq. (11) of
Refs. 18. Thus we find that the criterion for two-dimensional behavior is given by L, ((g, which is temperature in-
dependent. A crossover from 3D to 2D behavior thus can be driven by either a decrease in sample width or an increase
in disorder for all temperatures below T, . This is consistent with the normal-metal criterion mentioned above since in a
superconductor the characteristic energy transfer is given by the gap. Rewriting Eqs. (5.2) in terms of Rz, we recover
the second term of Eq. (la) and Eq. (lc) of Ref. 22.

An inspection of Eqs. (4.16) and (4.21) shows that the dominant contribution to the quasiparticle relaxation rate is
given by scattering rather than by recombination for all temperatures both in 3D and 2D. This is in contrast to the case
of clean superconductors, where a crossover from scattering-dominated relaxation to recombination-dominated relaxa-
tion occurs at T=0.15 in 3D and T=0.36 in 2D. Therefore, we focus on the leading-order contribution to Spy'

from scattering relaxation processes only.
Following the same procedure for the leading phonon contribution to Y", we find that

L,&"(&)= &' 'I ( —')g( —')+ &' 'I ( —', )g( —', )
16~2crD +~L, cosh(x )

—cos(x ) &CT

sinh(x)+sin(x), , T
cosh(x) —cos(x) ' ' b.

7/2
Z- L, u~ 7 g( —', )1+—

ko cr 2~' P —', )
(5.4)

where x =(L, /g)+3/2w, and we have rewritten dz in
terms of X, the clean-limit 3D electron-phonon coupling
parameter. If we set p= —,

' in a perfect screening ap-
proximation, we recover the first term of Eq. (la) and Eq.
(lb) of Ref. 22.

The leading-order contribution to the scattering rate in
a disordered superconducting film of thickness L, is
given by the sum of Eqs. (5.4) and (5.1).

VI. DISCUSSIQN

In summary, we have found that the Coulomb contri-
bution to the scattering rate is enhanced in the same
manner as in the normal-metal case, namely, a factor of
(b, /E&)" ' in the clean case becomes p

~ QA/Ez in 3D
and R~ in 2D, which leads to a net enhancement of up to

10 . Further, we find that the divergence encountered in
the two-dimensional dirty normal metal is cut off by the
gap in the superconducting case. Technically, this is due
to the diffusion pole of the density-correlation function
being cut off in frequency since the gap is a lower bound
of the energy transfer for a quasiparticle at the gap edge.

For the phonon contribution to the rate, we find that
the conventional contribution decreases with increasing
disorder in 2D as it does in 3D. Moreover, we find that,
with increasing disorder, interference effects enhance an
additional contribution from the correlation gap piece Y
of the self-energy. This is the leading phonon contribu-
tion to the rate in both 3D and 2D. Contrary to clean
systems, the contribution to the rate from phonons due to
scattering processes is always dominant over the contri-
bution from recombination processes. Thus, unlike many
physical transport quantities in the superconductors, the
main contribution to the rate from phonons has a power-
law temperature dependence rather than an exponential
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one. For large disorder the leading contribution to the
full rate then results from a competition between the
correlation-gap contribution Y" and the Coulomb contri-
bution.

For large disorder we find that in both 2D and 3D
the Coulomb and correlation-gap contributions to the
scattering rate have the same resisitivity exponent. An
estimate of the prefactor shows that the correlation-gap
contribution is dominant over the Coulomb contribution
for strongly coupled superconductors for all tempera-
tures. Further, even for materials which are not
strongly coupled, the power-law temperature-dependent
correlation-gap contribution is dominant over the ex-
ponentially temperature-dependent Coulomb contribu-
tion at sufFiciently low temperatures.

The Coulomb contribution can be isolated in thin films
by the application of a magnetic field to suppress localiza-
tion effects. One must keep in mind that the magnetic
field will act as an ergodic pair breaker and fits to the
broadened DOS must include the effects of both the mag-
netic field and inelastic lifetime. One can distinguish the
two pair breakers by noting that any nonzero inelastic-
scattering rate will render a superconductor gapless,
while the strength of an ergodic pair breaker must exceed
a certain threshold in order to cause gaplessness.

Unfortunately, there does not exist a large body of ex-
perimental data concerning the inelastic-scattering rate in
either weakly or strongly coupled disordered supercon-
ductors. The most extensive experimental investigation
to date has been carried out by Pyun and Lemberger. '

They measured I through the broadening of the DOS in
disordered InO thin films whose dimensionality lies be-
tween 2D and 3D. By varying the thickness and disorder
of their films, they were able to obtain a disorder- and
temperature-dependent scattering rate.

Using Eqs. (5.1) and (5.4), we have compared our
theory with the experimental values. Thereby we are
faced with the problem that many of the parameters that
enter into these expressions are not known for indium ox-
ide. The degree of disorder in these films is controlled by
the amount of oxygen present, and it is expected that the
parameters are affected as the oxygen content; thus the
electron concentration is varied from film to film. We use
parameters as given by the experimentalists if possible,
and for the unknown parameters we choose values corre-
sponding to clean indium. Thus we set kF =2.3 nm, as
given in Ref. 17, and set A, =0.8, t."I =2460 m/s, cT=710
m/s, and mD = 108 K. In order to have only one disorder
parameter p, we choose the ratio of E~/b, to be fixed and
equal to 329, which is reasonable for a material with such
a low electron concentration. This assumption is not
based on any theoretical considerations, but is motivated
to simplify a disorder analysis of the experimental values.
While this should not affect the results obtained about
the temperature dependence of ~;„,it is not possible with
the information at hand to reliably test the disorder
dependence of Eqs. (5.1) and (5.4) against these data. Fi-
nally, we need the dimensionless residual resistivity p.
Reference 17 gives p4 2, the resistivity at 4.2 K. We write
the T-dependent conductivity as cr(T)=ao+6o(T),
where o.o= 1/po is the residual conductivity and

F 1+ SA.—3
(6.2)

If the films were all of the same dimensionality, the
theory lines in Fig. 1 would be indistinguishable from
each other regardless of disorder. The family of lines in-
dicates that these films are indeed between asymptotically
2D behavior (which is given by the upper dashed line)
and asymptotically 3D behavior (the lower dashed line).
The agreement with the data is quite favorable. Figure 1

shows that the power-law temperature dependence pre-
dicted by the theory compares well with experiment.
Further, the magnitude and disorder dependence of the
rates also compare quite favorable with theory, within
the assumption made to fix the ratio of the Fermi energy
to the gap, h. This is shown in Fig. 2, which plots experi-
mental data and our theoretical result for the six data
samples of Ref. 17 separately.

'I
. 0

—4.0

—6.0
0.070 0, IOO

:SB L:S4
0:ss a:se
D:S7 0:SB

0.200

FIG. 1. Comparison of experimental data and the sum of
Eqs. (5.1) and (5.4), normalized by the disorder dependence I' as
defined in text. The upper dashed line corresponds to the
theoretical ~;„' for an asymptotically 2D sample, while the
lower dashed line corresponds to a bulk sample. Data points
are taken from Ref. 17.

5o(T)~0 for T~O. The metal-insulator transition for
this material occurs at p4 2=9 mQ cm. ' This gives the
following relation between p and p4 2.

p=(p4 2/pM )[I—p~ 2/9 (mQ cm)]

For pM we choose 1.85 mQ cm, which is again a reason-
able value.

With these values the theory yields the solid lines in
Figs. 1 and 2. Since InO is strongly coupled
(b, /T, =2.2), the correlation-gap contribution to I is
greater than the Coulomb contribution and thus the
power-law temperature dependence should be dominant.
Therefore, we first analyze the temperature dependence
of 1/r in Fig. 1 by normalizing 1/r by the disorder
dependence I' of the contribution due to interference
effects [Eq. (5.4)]. Setting p =

—,', the disorder parameter F
is given by
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FIG. 2. Separate comparison of our theory with experimental data points taken from Ref. 17.

The disorder dependence of ~;„' can be better checked
against the purely 2D data on Sn films by White, Dynes,
and Garno' and the purely 3D data on aluminum by
Dynes et al. ' These experiments were performed on
granular materials, and the amount of disorder was con-
trolled by varying the thickness of their films. Therefore,
one might expect that the parameters entering Eqs. (5.1)
and (5.4) remain relatively unchanged. The theoretical
rate has a disorder dependence that is consistent with
both sets of data, namely, R~ in 2D and p in 3D.
However, the theory cannot account for the large magni-
tude of the measured rates, which are larger than the sum
of Eqs. (5.1) and (5.4) by a factor of 10 in Sn and larger
still in Al. We note, however, that a deviation of, e.g.,
cl /cT from its clean value by a factor less than 2 would
account for this discrepancy in Sn. The temperature
dependence of ~;„' in these materials has not been mea-
sured.

The experiments of Ref. 15 were performed on alumi-
num samples that were very close to a metal-insulator
transition. The mechanism for the breakdown of super-
conductivity in this region is currently not well under-
stood, and our theory is expected not to apply there.
From a theory for I;„in normal metals, we expect the
theory to be valid for p ~ 10 and I;„to saturate for larger
p. The latter behavior was indeed observed in Ref. 15.
We believe that nonequilibrium effects might be impor-
tant in this case. This is beyond the scope of the present
paper. Our treatment only considers the case when the
number of injected quasiparticles is small compared to
the number of thermal-equilibrium quasiparticles. This is
not valid at very low temperatures and/or high injection
current densities. If the number of excess quasiparticles
is not small, then the lifetime will be reduced and is ex-
pected to have quite a different behavior than the one ob-
tained in perturbation theory. The temperature depen-

dence of the rate is expected to be most affected by these
possible nonequilibrium effects. This will be most pro-
nounced in 2D because of the higher quasiparticle injec-
tion densities and also the possibility of Joule heating.
One would have to use nonequilibrium distribution func-
tions in order to treat this case properly. This remains
to be explored in the future.
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APPENDIX: A SELF-CONSISTENT TREATMENT
OF THE COULOMB CONTRIBUTION

In this appendix we describe the self-consistent calcula-
tion mentioned at the end of Sec. III. The basic idea is
that the scattering rate I should be included in the
Coulomb propagator and in the Green's functions in Eq.
(3.8). (I must not be included in the Kubo function
which by definition is a correlation function for the
noninteracting electron system. ) To keep things simple,
we approximate the eff'ect of I %0 on the Green's func-
tions by the substitution waco —I'. I . For the Coulomb
propagator, we focus on the recombination B„" [Eq.
(3.6a)]. B„"yields the leading contribution to the scatter-
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(Al)

where the P+, &z denote Legendre functions. For I ~0,
Eq. (Al) reduces to Eq. (3.6a).

We use these expressions in Eq. (3.8) and ignore the
frequency dependence of I on the right-hand side. We
find that for weak inelastic scattering y=—I c/25«1,
the rate for a quasiparticle at the gap edge is given by the
solution of the transcendental equation

2 Vo/
y =yo — lny, (A2)

ing rate, and B," [Eq. (3.6b)] shows less structure near the
gap and will be less affected by I . We make the above re-
placement in Eq. (2.21) of Ref. 19 and find, for
Dq » &ro( co —2b, ),

C„"(q,co ) = (n b—,Nf /2Dq )

(co —il )X Im P, )2
2A

where yo is given by Eq. (3.12b) normalized by 2b, . For
larger values of y, we have solved Eq. (3.8) numerically
by iteration. We find that the self-consistency leads to a
somewhat weaker temperature dependence of the rate,
but for yo && 1, the rate is well described by the perturba-
tive result.

For larger values of y, self-consistency raises the value
of the rate for low temperatures and reduces it for higher
temperatures until one reaches the region where y= —,'.
In this region both the interaction and superconducting
density of states approach their normal-state behavior as
the gap becomes more and more smeared. The rates then
rise sharply and approach their normal-state limits, and
the iteration procedure takes longer and longer to con-
verge. However, this occurs only for values of the disor-
der parameters which physically correspond to a super-
conductor well within the region of a localization transi-
tion to an insulator, a region which the present theory is
inadequate to describe. We therefore conclude that the
perturbation-theory expression for the scattering rate is
sufFicient unless the disorder is so large that one ap-
proaches the metal-insulator transition.
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—(2/10)[1/1n(h/T)+ 'li&T/b]], whe—re li is the loga-
rithm integral and A is a number of order unity. The gauge-
invariant potential thus yields only logarithmic corrections to
an exponential temperature dependence.

~6Since our approximation for the Coulomb potential [Eq. (3.7)]
di6'ers slightly from the one used in Ref. 18, the screening fac-
tor F given in Eq. (13) of Ref. 18 must be replaced by
(m. —1)/(~ —1) to obtain the present result.
Note that Eqs. (3.9) and (3.10) do not recover the normal-
metal result in the limit (6/co) ~0, since the integrand in Eq.
(3.8) was expanded for frequencies near 3h. In order to re-
cover the normal-metal limit, one must perform the integrals
in Eq. (3.8) exactly. This can be done, but little information is
gained thereby, and we therefore do not give the result.
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