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Chiral spin states, hole dynamics, and superconductivity in strongly correlated electronic systems
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Relation between strongly correlated electronic systems and anyonlike systems is established. A U(1)
gauge theory is developed for the frustrated Hubbard model in the limit of infinite on-site Coulomb
repulsion. An e6'ective Chem-Simons theory, which describes chiral spin liquids is obtained. The fer-

mions (holes) are coupled to the gauge fields creating thus an anyonlike system. I show that under some
circumstances the system is a superconductor for special value of the hole density.

I. INTRODUCTION

The discovery of the high-T, superconductors' stimu-
lated the search for additional mechanisms of supercon-
ductivity. In his pioneer work, Anderson stressed the
essentially two-dimensional (2D) character of these super-
conductors. This has lead to the development of theories
in 2+ 1 dimensions, which possess excitations with exotic
quantum numbers and statistics. '

An important step was done by Kalmeyer and Laugh-
lin. They argued that the ground state of the 2D frus-
trated Heisenberg antiferromagnetic is well described by
a fractional quantum Hall wave function for bosons.
This analogy was useful to understand high-T, supercon-
ductivity and has lead to the advent of the so-called
anyon mechanism of superconductivity. One can de-
scribe the gas of anyons in terms of a system of fermions
(bosons) coupled to U(1) Chem-Simons gauge fields (sta-
tistical gauge fields). The anyons have fractional spin
and statistics and violate the discrete symmetries P and
T. Fetter et ah. showed, in the random-phase approxi-
mation, that the current-current correlation function has
a Goldstone pole, and that this pole implies the Meissner
effect for an electromagnetic field.

A somewhat different approximation scheme is carried
out in Ref. 8. The authors describe the order parameter
for super conducting phase in terms of "spontaneous
breaking of commutativity of translations. "

A powerful condition for superconductivity was ob-
tained by Banks and Lykken (see also Refs. 10 and 11).
They proved that the Goldstone pole occurs when the in-
duced Chem-Simons term for the statistical gauge poten-
tial exactly cancels the bare term responsible for the
statistics. Then the Goldstone boson is described by the
scalar Bose field dual to the massless gauge fields in 2+1
dimensions.

If anyon models are relevant to high-T, superconduc-
tors, the P-and T-symmetry breaking can have important
experimental consequences. ' ' '

Many different models and approaches were used to
study the superconductivity induced by topologically
massive gauge fields. ' Several attempts have been made

towards a microscopic derivation of the anyon models, '

but this remains the weakest point in the theory, which
requires further elaborations. In this paper, I deal with
this problem.

I start from the 2D frustrated Hubbard-like model in
the limit of infinite on-site Coulomb repulsion. The un-
derlying problem is to create an adequate field theory.
Usually, the bosonic and fermionic raising and lowering
operators are used to realize Hubbard's matrix (or spin)
algebra. Some of these representations are true for
definite spin values. In other cases it is dificult to
separate the physical Hilbert space. In this work the su-
persymmetric extension of the holomorphic path-integral
representation of systems with SU(2) dynamical symme-
try ' is worked out. Coherent states for SU(2~1) su-
peralgebra are used to define the path integral. As a re-
sult, a U(1) gauge-field theory is derived. The spin fiuc-
tuations of the system are described by chargeless two-
component (spin-up and -down) Bose fields and the
charge of the holes is carried by spinless fermionic fields.
The spin fluctuations are effectively taken into account by
integrating over the Bose fields in the mean-field approxi-
mation. When the 2D antiferromagnet is sufficiently
frustrated, the P and T violating phase (called chiral spin
phase) is energetically preferable. ' The corresponding
states are spin-rotationally invariant, short range, and
effectively can be described by a topologically massive
U(1) gauge theory. The fermion fields are coupled to this
gauge potential, creating, thus, an anyonlike system. I
show that, under some circumstances and for some values
of the holes' density, the Chem-Simons term induced by
fermions cancels the topologically massive term in the
effective theory of the chiral spin liquid. Hence, the
Banks-Lykkem condition for superconductivity is
satisfied. Following Refs. 9 and 10, I obtain an effective
Ginzburg-Landau action. Some results of Ref. 17 are
used.

The paper is organized as follows. In Sec. II the path
integral for the large- U Hubbard-like theory is con-
sidered and the corresponding U(1) gauge-field theory is
presented. In Sec. III, I derive the effective theory of
chiral spin liquids. The dynamics of holes is studied and
the conditions for the hole superconductivity are ob-
tained. Section IV is devoted to the concluding remarks.
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II. COHERENT STATES
AND PATH-INTEGRAI. REPRESENTATION

I shall consider a theory with a Hamiltonian:

H= t,—g [C; C. +H. c. ]—t2 g [C; C +H. c. ]
&i,j)

+J, g S; S+J2 g S, S —p+CtC, , (1)
&ij) « i J))

where C; (C ) are Fermi operators of the electron on a
site i (j) of a 2D square lattice which act on states with
no double occupancy,

is the chemical potential.
It is convenient to introduce the projection operators

X = ~a, i & (i, b ~. One can consider the matrices
X,t, X;~ (X; 1, X; ~) as Fermi operators, and the remain-
ing as Bose operators. Then the operators X form a
basis of the supersymmetrical SU(2~ 1) I.ie algebra

[Xab Xcd] g (gbcXad+gadXcb)

and the Hamiltonian (1) can be rewritten in terms of
these operators.

Let us define the coherent states by the relation

[la i & ]
= Ilo, i &, I l, i &, I g, i & ] (2)

~g, z & =exp g [g';X,. t+Z, X11]~1' &, (4)

on a lattice site i.
By (i,j & I denote the sum over the nearest neighbors,

and by ((i,j » I denote the sum over the next neighbors
along a diagonal. The spin operators S, have a represen-
tation S; =

—,'C; 0. C;, where 0. are Pauli matrices and p

where Z; are c numbers, g; are Grassman complex vari-
ables, ~T &=II; t, i &, andi runs over all lattice sites. For-
mula (4) generalizes Radcliffe's' definition of SU(2)
group coherent states. It is straightforward to prove the
formulas

(g', z'~z', g'& =/(1+z,'z,'+g,'g),

. IgdZ, dZ, dg, dg,' g(l+Z, Z, +g, g, )

Following the holomorphic path-integral approach, I use the coherent states (4) in the evaluation of the partition
function Z(P) =Tre ~ . It is evident from Eq. (6) that this function permits the representation

Z(P) = . IgdZ, dZ, dg, dg,' g(1+Z,z, +g, g, )

Consider the operator e ~ as a multiple of many small evolutions:

e ~=lim 1 ——a
Q —+ oo

Thus,

z(p)= 11m f+(2 )-'dz, dz, dg, dg,
J

N —1

x II~2~'~ '
~a~z~~ ~a~z~~ (a~t~) (a~t, )( tz& ———a, z(~~, ) p~ ~)k=1

x . t(, ),z(, ) &
——a z, t)

Xexp —X»(I+Z, Z, +g, g, )[1+Z,(r„,)Z,.( „,)+g, ( „,g( „,)]
J

+ZJ(r1)ZJ('rl )+kj(&1)kJ(rl)]
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where Eq. (6) is used again.
Let us represent the kernel

r

p.„~,z(.„) i ——H z(., ),p., ))

in the form

g(rk), Z(rk) 1 — H—Z(ri), g(r, ) = 1 ——h(rk~r, ) (Prk}iZ(ri, )IZ(ri), g(ri))(
P P
n

=exp — h—(r„,r, )+ $ ln[l+Z, (r„)ZJ(r, )+g, (ri, )gi(r, )] (9)

In the limit N —+ ~, one obtains the path-integral representation of the partition function

Z(/3) =cIgdZ (r)dZ (r)dg (. r)dg (r)e. (10)

where

p Z, (r)Z, (r)+g;(r)g;(r)
A(Z, Z, g, g)= I dr g +h(r)

I+Z;(r}Z;(r)+g;(r)g;(r)

Z;(r) are complex fields, subject to periodic boundary conditions Z;(0) =Z;(I3), g;(r) are Grassman complex fields sub-
ject to antiperiodic conditions g, (0)= —g;(13), and c is a normalization constant.

The Bose fields Z;(r) are chargeless and describe the spin fiuctuations of the system [see Eq. (4)]. The Fermi fields
g;(r) carry the charge of the holes. The Hamiltonian can be found from Eqs. (1), (4), and (5):

g;gj+gg;+Z;Z g;g. +Z Z;g g,h()= —t, g ' '' ''' ' '''
r, g[ . . —]

&; J& (1+Z;Z;+g;g;)(1+Z Z +g g ) ((; i»

Ji (Z;+Z;)(Z +Z )
—(Z; —Z, )(Z —Z )+(1—Z;Z;)(1 —Z Z)

(i,j) (I+Z;Z;+g;g;)(I+Z. Z +g g )

J2 1+Z,Z,+ . . . —p (12)

where the ellipsis in the second sum stands for the expres-
sion in the first one, and that in the fourth sum stands for
the expression in the third.

The field-theoretical realization, Eqs. (10)—(12), of the
model, Eqs. (1) and {2), is quite complicated. It is desir-
able to introduce fields, making the theory more con-
venient for further calculations. Let us make a change of
the fields,

q, , (r)=a, (r)Z, (r), y, ,(r)=a, (r)Z, (r),

g;(r) a (r)g. (r} P (r) —a, (r)g;(r)

argy; z(r) =0 . (15)

where the real field a;(r) is subject to the condition

ip; i(r)y; i(r)+a;(r)a;(r)+P,"(r)g;(r)=1 .

I introduce a second scalar complex field y; z(r) so that
p;2(r)=a;(r) if

Then, making use of (14) and (15), one can rewrite, in
terms of the fields y; (r) (cr =1,2) and g;{r), the kinetic
term in the action, Eq. (11),

P 2

A„;„=J dr+ g q; (r)j; (r)+Q;(r)Q(r)
0 i o.=1

the Hamiltoman

h(r) =r, g [P,"g, (q,.q,'.)+H. c. ]
&i,j)

+t2 X [A, (V;.V,'.)+H c ]
((i,j))

+Ji g S; S +J2 g S, .S.—pg (1—gtg, . ),'«,.))
' '

where &; =
—,'y;o' y;, and the constraint, Eq. (14),

%i, l(r)Vi, l(r)+'ii,', 2(r)q;, 2(r)+ g,'(r)p;(r) = 1
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X +5[argq);2(r) ]e

where the action

A= j dr ~ g q)t (r) —iB,(~) q)j (r)

+P (r) —iB (r) ))'j (r)G

Cg7.

Introducing a Lagrange multiplier B;(r) for the con-
straint (17) and summing up all that is mentioned above,
one obtains a final expression for the partition function:

Z(P)= J+Q~q; ( )&q); ( )&ft( )&g;( )&B;( )

Following the standard procedure ' one can go to an ar-
bitrary gauge condition. A convenient one is the tern-
poral gauge condition imposed on the field B,.( r). The
gauge invariance ensures the connection with the theory,
Eqs. (1), (2), and (10)—(12).

It is convenient, sometimes, to introduce dynamical
collective coordinates. The gauge-invariant one can be
dropped in calculations, but the gauge-field excitations
must be accounted for because they make a contact with
the starting theory, Eqs. (1), (2), and (10)—(12).

One can write the action (19) from (1) by hand making
use of the slave-boson (-fermion) technique. The pro-
cedure is correct if the principles of gauge theory are ob-
served.

+iB (r) +h(r) ' (19)

III. T- AND P-SYMMETRY BREAKING,
HOLE DYNAMICS, AND SUPERCONDUCTIVITY

is invariant under the gauge transformations

qj, (~)~e' " 'q, , g, (r)~e' " 'P, (r),

B (~)~B (r)+ a(j,z)J7
if a(j,0)=a(j,p). The connection between Eqs.
(10)—(12) and (16)—(19) needs further elucidation.

Let us start from the theory, Eqs. (16)—(19). Imposing
the gauge-fixing condition (15) and solving the constraint
(17), we obtain Eqs. (10)—(12). The fields Xj(r) and gj. (r)
are the physical degrees of freedom of the theory, Eqs. (1)
and (2), and they build up the physical Hilbert space.

A. T- and P-symmetry breaking and chiral spin
liquids

Let us consider the theory, Eqs. (16)—(19). The spin
term S; -S can be rewritten in the form

S; S = g [(q; q. )(q q; )

—
—,'(lq;il'+ lq;~l')(Iq, il'+ lq, 21')] .

I introduce collective complex fields Uj(r) and Vj(r) by
a Hubbard-Stratanovich transformation. Then, the
Hamiltonian, Eq. (16), reads

h(r)= J dr
0

zt2
g [AU,;0;+0 U;, 4, ]+ J g Aljfj

& [&jVj&+«Vj&j]
((i,j»

X ~ U(, Uj Uljqloq'jo Uj, q'loqjjo
(gj& 1

22t2 t t 2
Pl Pl Pj 4j g lj lj lj q lOq jO ljq !O'q jO'

(&,j» (&i,j»
—

V X (1—«'0;) (21)

The terms (lq), , l
+ lq), 2l )(lq), l

+ lq).zl ) are omitted be-
cause they lead to renormalization of the chemical poten-
tial and four-fermion terms.

The gauge-symmetry properties of the theory remain
unchanged if the gauge transformations of the collective
coordinates are

eia(il. )U ( )el,a(j, l)
lJ 1J (22)

and likewise for V, .( ). T~he purpose now is to take into
account the spin fluctuations. Integrating over the Bose
fields q); (q); ) one obtains, in soine approximation, an
effective action for the collective fields. There are many

mean-field approximations (phases). ' I am interested
in the phase with broken P and T symmetry. It is ener-
getically preferable when J2/J, )0.5.'

Let us represent the collective coordinate in the form

U j(r) =p(expi[5,"+B, (~)], "

Vj(r)=p~expi[a, +B, (r)),
(23)

where p& and pz are variational parameters. The phases
5,"= JjB.dr, where 8 determines a uniform "magnetic"
field perpendicular to the lattice plane and with a Aux
through each plaquette equal to m. The phases a;. are
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given by the relations

a(i,i;i„+a,i +a)=a(i, i;i a, i——a)
=m(i /a+ —,'),

a(i,i;i +a, i —a)=a(i, i»;i„—a, i»+a)
rr(i /—a+ —,'),

where a is the lattice spacing.
The excitations 8," around the mean field must be tak-

en into account since they are described by gauge fields
defined on the 20 square lattice, while the modules of the
coHective fields U, , V;. are gauge invariant and their Auc-
tuations can be dropped.

The mean-field e6'ective Hamiltonian for the Bose fields
(without gauge-field fiuctuations) reads

2

h,~(r)= g p, +Inert(i„, i )y (i„+a,i )+y (i +a, i»)q& (i„,i»)

+( —1) [y t(i, i )y (i„,i +a)+y (i,i»+a)y (i,i»)]J

+jpzg( —1)" [y (i,i )p (i„+a,i +a) g(—i,i»)y (i +a, i»
—a)

—qrt(i, +a, i +a)p (i„,i»)+y (i, +a, i» —a)p (i,i»)] (25)

In terms of new fields, ' &0 (i„,i ) related to y (i,i») by

(i„+i )/a i /a i /a
q&(i, i»)=i " ' (o2)' (o, )" 4(i, i ),

where 0.
&

and o.
z are Pauli matrices, the Hamiltonian takes the form

h,s(r)=ip, g [N (i,i )cr,4(i +a, i ) —4& (i +a,i )o i@(i,i )

+4& (i,i )o.2C(i, i +a) —4 (i„i +a)a 42(i, i )]
—p2+ [N (i„,i )o34(i„+a,i +a)+4 (i„,i )o~4(i„+a,i —a)

+4& (i +a, i +a) os(i, i )+4& (i„+a,i —a) os(i, i )] .

In momentum space,

h,z= —I [2pi[C& (k)o iC&(k)sin(k a )+&0 (k)os@(k)sin(k a )](2')'

+4p24& (k) .
o%3( )kc o( s„k)acos(k a) J

=I 4 H@,d k

(2~)

(26)

(27)

where —~/a & k„k & m /a.
The eigenvalues of the matrix H are E+=+a(k ),

—

E(k)=2[p, [sin (k a)+sin (k a)]
+4p2cos (k„a)cos (k a)],

and the free energy of the spin Auctuations in the mean-
field approximations

have a nontrivial (p, AO, p2%0) solution. Numerical cal-
culations show, for example, that in the region
0 1 &p2/p] & 2 5 a solution exists if 1 &Ji /J2 & 1 7 and
that p, /p, & 1 if 1, 1 &J, /J, & 1,7.

To obtain the efFective action for the gauge fields B(r)
and 8, (r), one has to integrate over the Bose fields

y (y ). Let us denote the result of integration as

4 2 4 2
Pi P2+ 2a d k

1 P'/ — P'/ 29
P (2m. )'

exp[ —W(B)] . (31)

The mean-field equations

BE
~pi ~pz

(30)

By definition, 8'is equal to Tr lnD, where D is the opera-
tor in the quadratic form of the fields y [see Eqs. (21) and
(23)]. The minus sign is due to the Bose statistics of the
fields. I am interested in the terms in 8'which break the
T and P symmetry. To obtain them, it is enough to con-
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Expanding the eigenvalues of the Hamiltonian, Eq. (28),
around these points, one obtains the dispersion law of a
relativistic particle with mass m =2p2/a p„

e(k)=2ap, [k„+k +m ]'~

Therefore, e6'ectively, there are four relativistic particles
in the theory and 8' can be represented as a sum of four
terms. Each of them is a Tr lnD', where D* is the opera-
tor D in the vicinity of the degenerate points. It is
straightforward to see ' ' that, near any one of the
points (32), the operator D is exactly the Dirac operator
in 3D Euclidean space:

D =y„(a„iB„)+—m, (33)

where y&=a&, yz=u&, y3=v~3, v =2aP&, B=B3,
and

sider the continuum limit of the theory in the vicinity of
the degenerate points in the Brillouin zone. ' In the
case under consideration, we have four such points:

(k,*,k*)=(0,0), (0,~/a), (~/a, O), and (vr/a, ~/a) .

(32)

The last term is gauge invariant and preserves the T and
I' symmetry. When the gauge-field fluctuations are small-
er than the mass ( ~a„B,—a+„~ ((m ), one can calculate
8'in the large-m limit. The final result is

W(B)= J d x[1/g (c E; +H )

+(i /2~)e„ iB„a+i], (34)

where c =U '=2ap&, g =6~~m ~, E, =a3B, —a, B3
(i =1,2), and H =a,B —a B, .

I want to stress the Bose statistics of the y (4&) fields
which refiects in the minus sign in Eq. (31). This fact, be-
ing technical, has far-reaching consequences and I shall
elucidate it more deeply. As we know, the kinetic term
of the gauge fieIds induced by fermions has a sign oppo-
site to the sign in the Maxwell theory leading to the de-
stabilization of the gauge-field fluctuations. In contrast
with this, in the case under consideration, the induced ki-
netic term has a true sign, due to the Bose statistics, and
the effective theory, Eq. (34), describes stable short-range
excitations (scalar particle with mass M —=2g /m).

j
B; = I g Bkdxk.

k=1

Making use of the mell-known result for D one obtains

W=4TrlnD = 1 d x e „iB a+i+ W(B) .pvA, p

B. Hole dynamics and superconductivity

The fermions (holes) P; are coupled to chiral spin exci-
tations and create an anyonlike system with e6'ective ac-
tion

A,s.= W(B)+ f dr g gt(r) —iBJ(r) PJ(r)+iB (r).
g p, [gj(r)e "g, (r)e ' +g, (r)e "QJ(r)e " ]1

2tp

J2

2t
+J,

p, [P,(r)e "g;(r)e " +y, (r)e 'g/(r)e '
]

((i,j))
2t

g g;(r)g;(r)Pj~(r)P, (r)+ g g;(r)g;(r)g&(~)g, (r) pg [1—g;(r)l—i;(r)]
(i,j ) 2 ((i,j ))

(35)

—,'(q,'li, —»= (a,B,—a,B, &
—i', (a,E, & . (36)

where W(B) is given by Eq. (34).
Varying with respect to B (r) (=B3), we find one of

the field equations which, in terms of the Green's func-
tions, has the form

This equation implies that the path integral over the
gauge fields B is defined in a space of functions B„(x)

which determine nonzero "magnetic" strength
B&Bz—B2B& when the space coordinates go to infinity
aiBq —a2B i ~FAO.

It is convenient, in this case, to redefine the gauge fields

B„~B„+B„,
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so that these gauge fields have a zero asymptote at
infinity (up to gauge transformations). I choose
8 3 0 8

&
8 2 time independent and 8&8p 828

&

=F,
where F is a nonzero constant. Under this transition, the
gauge-field action (34) acquires an unessential linear term
and the phases 5;, and a, in Eq. (35) get the additions

1J 1J 1J ~ 1J 1J 1J '

I should like to determine 6, in such a way that the
Chem-Simons term, induced by the fermions (holes), can-
cels that in the action (34). It is known from the theory
of 2D electron hopping in a magnetic field (Hofstader's
problem ' ') that the energy spectrum of the hopping
Hamiltonian has p isolated zeros (degenerate points) if
the magnetic fiux through each plaquette is 2mq/p with p
even. Each zero corresponds to a (2+1)-dimensional
Dirac fermion in the continuum limit. In the case under
consideration, the problem is involved due to the pres-
ence of frustrations, but one expects that the general
statement about the number of fermion spaces remains
true.

Let us make a change of variables (37) in the action
(36) with B =(0, vrxi/—2a ). Then,

0, Jx =l~ +Q and Jy =ly
s,, +s',, =

and J =~++Q
2Q

and

a(i, i;i +a, i +a)+a (i„,i;i +a,i»+a)

—(i„/a + —,
' ),

a(i„,i;i +a, i —a)+a (i„,i;i +a, i»
—a)

(i—la+ —,') .

The effective Hamiltonian of the fermions (holes),
without four-fermion terms and gauge-field fluctuations,
reads

((1,j»

(38)

The term with chemical potential is dropped because p
can be regarded as a constant shift of the field B,(r) in
zero-temperature case.

In the momentum space,

2

/if f 2 6i 2 cos(ak„)li (k, k»(g(k, k» )+g k„+,k p(k„, k )exp(iak )+H. c.
(2m. ) 2Q

+82 P k +,k g(k„,k )exp(iak„+iak +in. /4)+H. c.

+gt k, —,k g(k„,k )exp(iak iak i~/4)—+H—c.
2Q (39)

where —~/Q ~ k, k ~ m. /Q, 0, =2t, p, /J &, and
02=2t2p2/J2. I introduce a four-component "spinor"
it, (k ),

f,(k, k )=it k +,k
2Q

2

if= f "",q'(k)Hli(k),
(2m )

where k„and k run over the reduced Brillouin zone

(41)

In terms of the fields g, (k), the Hamiltonian has the
form

rr/4a ~ k„~~/4a, ——m/Q k„~/Q, (42)
$2(k„,k )=p k +,k

2Q

(40)
and a 4X4 matrix H is given by

—Q, z*bi zb 2+

$3(k, k )=g k +,k»
2Q

g4( k, k» ) =g k +,k»Q'~

zb I

4b +
2

Q2

Qb2

0

Qb

Qi

zb+

0
iicb +

1

Q2

(43)
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wherez=exp(iak ), a, =28,sin(ak, ), a2=28, cos(ak, ),

b+, =—8,+28~cos( ak —~/4 ),
and

bz~ =8,+282cos(ak +~/4) .

The secular equation

E —8( 8i+ 82)E + 16&28~8 E
—168zsin (2ak )sin (2ak )

+4(8i —28~) [sin (2ak )+sin (2ak )]=0 (44)

Equation (36) yields the connection between the holes'
density and 8 . With the above choice of 8 (respective-
ly, 5,

&
and a;.), the number of holes per lattice site is

equal to —' [the filling factor v= —,'(1 —( ij'r g) ) is equal to
—,']. Therefore, a system with a filling factor —,

' and small
positive A. is a superconductor.

It is easy to check that, at the points (A, *) =—,'(2+V2)
and k*=(+m/4a, +sr/4a), where the + signs are not
correlated, two bands touch too. Following the same
scheme as above, one obtains, in the continuum limit and
for small AX= A,

—k*, the efFective action (45) with mass

M'=(2+&2)(hk)'/a' .

has four roots for fixed values of k and ky Therefore,
the original band for the tight-binding model is split into
four bands.

Let us denote the ratio 02/01 by k. At the points
A,

*=0, k = (0,0), and (0, +~/2a ) of the three-
dimensional space (A, , k„k ), two bands touch. In the vi-
cinity of any of these points the corresponding eigenval-
ues of matrix (43) have a form of the energy of the relativ-
istic particle with mass M =X/a,

E(q)=+c(M +q„+q )'

where c =3a /&2 and q; =k,. —k,". Therefore, in the con-
tinuum limit for small A, , one obtains an effective theory
of four Dirac fermions coupled to the gauge fields 8 .P'
In the presence of an electromagnetic field 3„, the
effective action reads

The Chem-Simons coefficient is ~=sgn4A, ; however, the
filling is not the same when the Fermi energy is just at
this degenerate mode.

The above discussion is a special case of Ref. 33. To
obtain all values of A, for which K=1, one needs more
refined methods.

One can take into account the four-fermion terms also.
For that purpose, it is convenient to introduce the collec-
tive coordinates b, (r)=g,. (r)P, (r), and the correspond-
ing Lagrange multiplier d, (r). Then the four-fermion
terms can be rewritten in the form

2t' 2t2
L~= g b;(r)b (r)+ g b;(r)bj(r)

1 ( ',J') 2 ((,J'))

+ g d;(r)[b;(r) —f;(r)g;(r)] .

4

Lf = g [f y„(r)„iB„+ie—A )Q +M/ Q ), (45)
a=1

where y;=y; (i =1,2), y3=c y3, y„are 3D Euclidean
Dirac matrices, and e is the electromagnetic charge of the
holes.

From Eqs. (34), (35), and (45) and integrating out the
fermions, one obtains an effective Lagrangian for the sta-
tistical gauge fields 8-„-- and the electromagnetic potential

One can set the collective coordinate equal to their
mean-Geld value

(d, (r))=b( —1). " ',
(b, ( ))=b( —1) '"

where b and d are constants. Then the effective Hamil-
tonian (38) gets an additional term

dg( —1)

L,s.=(1/g )[c E; (8)+H (8)]+ e„&B„B+z+i83pvA. p

—(1/g )[c E, (8 —eA )+H (8 —eA )]

e„z(8„—e A )B,(8& —e A z )
2~ "

+L (A)+isa, B, , (46)

where g = 6m.
~
M ~, the Chem-Simons coefficient is

lr=sgnA. , and the Maxwell Lagrangian LM(A ) for the
electromagnetic field is added. The last term in (46) is the
gauge-fixing term. It was systematically dropped in pre-
vious formulas. I use the Coulomb gauge 8;8;=0, and R
is the corresponding Lagrange multiplier.

It is clear that when A, & 0, the Chem-Simons term in-
duced by fermions exactly cancels the Chem-Simons
term in Eq. (35). Hence, the Banks-Lykken condition for
superconductivity is satisfied.

This term makes the calculations technically more
dificult, but the final result is qualitatively the same.

Let us choose the parameters of the theory in such a
way that the Chem-Simons coefficient in (46) v= 1. The
mean-field approximation is correct if the statistical
gauge Auctuations are small and stable. The last condi-
tion is implemented if

1 c c
2E g g2

1

g
2

are positive. Make a transformation B„~B„+eA„in
the Lagrangian (46). Then one obtains
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L,z= E, (8+eA )+ H—(8+eA )+ e„&B„BA&+i83+iRBB;+ [c E; ( A )E;(8)+H( A )H(8)]
2E 2

2 ~ 2

+LM( A )+ [c E, ( A )+H ( A )]+ e„&A„B„A&+ieDB; A;,PVA, P P, (48)

where e and y are given by Eqs. (47).
Make a dual transformation ' introducing the fields e;(x ) (i = 1,2) and b(x ). The Lagrangian reads

L,s= —e;+ b +ie;E;(8+eA)+ibH(B+eA)+iRB;8;

+iB +i@„,B„d A + [c E;(A)E;(8)+H(A)H(8)]

2 2

+LM+ [c E; (A)+H (8)]+i e„&A„r),A&+eiRB;A, .PVA, P V (49)

Now, let us make the transformations

e, ~e;+i E;(A ) ——ej A. ,
. 2ec e

b +b+i— H( A ) ——A3,. 2e e
(50)

in the Lagrangian (49). The result is
2 2

L,z= —e; — c; A. —+ b ——A3 +ieP, e,. ——e, A E;(A)+ieP2 b ——A3 H(A)e e e . e . e

2

+i e„&A„d,A&+eRd, A, +LM. +8;(—i83e; i'd, R— e. JB—~b)+i83(B;e;+1),@VX P V (51)

where P, = 1+2eec /g, Pz= 1+2e/g y, and LM is the
renormalized Maxwell Lagrangian

LM =LM+ E,. ( A )+ H( A ),2E„2
where 1/(2e„)=(e c /g )(1—2ec /g ) and

y„/2=(e'/g ')(1—2/yg ') .

The efFective Lagrangian (51) depends on 8„ linearly and
the gauge fields can be integrated out, yielding the con-
straints on the fields e;, b, and R:

the system only has the solution R =f=0 and one ob-
tains e, =e,"i) co and b=B3co. Substituting into Eq. (51)
the expressions for e;, b, and R, I obtain the e6'ective
Ginzburg-Landau Lagrangian in 3D Euclidean space:

T 2 2
1 e e eI. = 0 m+ —A +—8 m+ —A.cP 2 3 3 2 1 l

ie P, e; E—;( A ) B.co+ —AJ.

33e; —e; r);b+r);R =0,
3;e;+1=0 .

Let us represent e; and b in the form

b =r)3co+f .

(52)

(53)

(55)

where co(x ) is the Croldstone boson, and the effects of the
broken P and T symmetry are due to the third and fourth
terms.

IV. CONCLUSIONS

rI+1=0, dg+B, R =0, B,f—+82R=0 . (54)

In the space of function with a zero asymptote at infinity,

Putting (53) in (52), I obtain three equations for the func-
tions R, f, and q:

In this paper the relation between the strongly corre-
lated electronic systems and the anyons was explicitly es-
tablished. I studied the frustrated Hubbard-like model.
An adequate U(1) gauge theory [Eqs. (16)—(19)] was ob-
tained making use of the coherent states for SU(2~1) su-
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peralgebra. Different parametrizations of the coherent
space (different representations of the electron operators)
favor different mean-field schemes. I chose Bose fields to
describe the spin fluctuations. In the Aux phase, when
the system is sufficiently frustrated, they generate stable,
short-range excitations around this mean field. An
effective topologically massive gauge theory [Eq. (34)]
was obtained. Another peculiarity arises in the finite-
temperature case. It is well known that fermions gen-
erate a Chem-Simons term with a coefficient which de-
pends on the temperature as tanh(M/T). Hence, when
the temperature T goes to infinity, the coefficient goes to
zero. In contrast of this, in the case under consideration,
the Chem-Simons term depends on the temperature as
coth(M/T) (due to the Bose statistic of the spin fiuctua-
tions), and it increases when T increases.

I studied a Aux phase with a Aux through each pla-
quette equal to m. Most generally, one can put it equal to
2mp/q. Then, following the same consideration, one ob-
tains an effective Chem-Simons theory with a Chern-
Simons coefficient 2q/Srr (spin-up and spin-down excita-
tions are taken into account). But, the coefficient in front
of the kinetic term linearly depends on q too. Hence, the
correlation length of the chiral spin excitations (the mass
of the scalar boson), which is proportional to the ratio of
the two coefficients, is independent of the choice of the
Aux. Nevertheless, there are arguments that the chiral
spin states are also characterized by an integer appearing

in front of the Chem-Simons term (2q). This integer can
be measured by measuring the vacuum degeneracy of the
states on a torus.

I also studied the dynamics of the holes. Coupled to
the statistical gauge potential, they form an anyonlike
gas. I showed that a system with filling factor —,

' is a su-

perconductor. The fact that superconductivity appears
only for a separate value of the hole density confuses, but
this is a consequence of the simplification of the model.
A more significant problem is the finite-temperature be-
havior of the system. In this case, the spin fluctuations
generate an effective gauge theory with Chem-Simons
coeScient which depends on the temperature. It is easy
to see from Eq. (36) that, for a fixed hole density, the
phases 5; and a," depend on the temperature. Then, the
hole dynamics is described by an effective hopping Ham-
iltonian in a magnetic" field which depends on a param-
eter (temperature). The solution of this problem is not
clear.

After submission of this manuscript, I learned of
Wiegmann's paper Ref. 36. This author is concerned
with the microscopic background of anyonic supercon-
ductivity and its relations with the doped Mott system
too. Using a somewhat different approach, the author
comes to the same conclusions about the superconduc-
tivity of the system and the same Ginzburg-Landau
effective action is obtained.
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