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We use Monte Carlo simulations of a layered LY model to study phase Auctuations in high-T, su-

perconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is

found in the low-temperature regime. This is in agreement with a zero-temperature variational calcu-
lation. At temperatures just above the two-dimensional (2D) vortex-unbinding temperature, the linear
term vanishes and an ordinary 2D vortex behavior is found. This explains the finding that high-T, su-

perconductors show 2D properties in the vortex Auctuations responsible for the resistivity transition
close to the critical temperature.

High-temperature superconductors exhibit a resistivity
transition similar to conventional thin-Glm type-II super-
conductors. ' The transition of thin films has been un-
derstood in terms of unbinding of thermally activated vor-
tices. A detailed Coulomb-gas scaling theory has been
developed and is very successful in describing the resistivi-
ty transition in thin films. The very fact that Coulomb-
gas scaling also works well for those high-temperature su-
perconductors, taken together with the layered structure
of these materials, suggests that the resistivity transition is
driven by thermally activated vortices within the individu-
al CuG planes.

A crucial ingredient in the scaling theory is the func-
tional form of the vortex-antivortex interaction. In a
Ginzburg-Landau description, the two-dimensional (2D)
interaction energy pertinent to thin films has a logarith-
mic dependence on the separation. The coe%cient of the
logarithmic term and the core energy of a vortex can be
tied together within this description. The Hamiltonian
constructed for the vortex gas can be recast into a dimen-
sionless thermodynamical description with all the
sample-dependent properties absorbed into the tempera-
ture scale. This is the key ingredient of Coulomb-gas scal-
ing and has been well established for thin superconducting
films.

The layered XY model is a simple model of such a
structure of weakly coupled superconducting planes. The
intraplane interaction will introduce an extra contribution
to the vortex-antivortex interaction. In a zero-temper-
ature variational calculation by Cataudella and Minn-
hagen, this extra term was found to depend linearly on
the vortex separation. The subject of this Rapid Com-
munication is an investigation of the eAect of thermal
fluctuations, especially vortex excitations, on the vortex-
pair interaction.

We have performed Monte Carlo measurements of the
vortex energies in two weakly coupled layers of XYplanes.
Our simulations show that the thermal vortex fluctuations
decouple the planes at a certain temperature. The decou-

pling retrieves the 2D functional form of the vortex-
antivortex interaction. We parametrize the energy of a
vortex-antivortex pair of size a by the following form sug-
gested by the zero-temperature variational calculation by
Cataudella and Minnhagen,

E(a) =E,+E) In(a/ao)+E2(alao

where E, is the creation energy of a vortex pair at a dis-
tance equal to the core diameter ao of a vortex. In the
Cataudella-Minnhagen calculation, a vortex pair is im-
posed as a boundary condition in one plane. The energy of
the pair is calculated variationally under the condition
that the adjacent plane is fixed in the ground state. The
logarithmic interaction at short distances is the familiar
two-dimensional vortex-pair interaction. The linear con-
tribution is due to the interplane coupling. It is of great in-
terest to study how this zero-temperature result is
influenced by thermal fluctuations. We use Monte Carlo
simulations to calculate the vortex-pair energy in the case
where the adjacent plane is allowed to fluctuate freely,
i.e., spin-wave excitations as well as thermally induced
vortices are present. In the plane of the imposed vortex
pair we restrict the fluctuations to spin waves only.

Our main result is that vortex fluctuations in the adja-
cent plane makes the coe%cient of the linear term in the
energy vanish as the temperature increases. As this hap-
pens, the vortex-antivortex interaction recovers its usual
2D logarithmic form. This occurs for temperatures just
above the vortex unbinding temperature of the 2D XY
model. This finding might explain how the layered three-
dimensional high-temperature superconductors can exhib-
it 2D Coulomb-gas scaling behavior in the resistivity tran-
sition.

The model is defined by the Hamiltonian

2

Ho =
J~~ g g cos(8 —8J) +J&g cos(8; —8 ), (2)

v 1(ij) l

where 8 E [0,2tr) is the angle at site i in plane number v.
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The summation (i,j ) is over nearest neighbors. The cou-
pling J~ models the Josephson coupling between the
planes in the superconductor. We have periodic bound-
ary conditions along the x and y directions. The variables
8 are located on the sites of a square lattice in the (x,y)
plane.

Our purpose is to study the eAect of thermal fluctua-
tions in plane II on the energy of a vortex pair in plane I.
We especially want to identify the role played by the vor-
tex fluctuations. Hence, we need to be able to control the
density of thermally induced vortices in both places.

In order to control the number of vortices, we modify
the original Hamiltonian Hp to

2

H) =Ho+ g A, "g ~vf~, (3)
Ir~] j

where vj is the vorticity at site j in the dual lattice for
plane number v. The values of vj'are + 1 or 0, k'is a La-
grangian multiplier controlling the vortex density. The
vorticity at site j in the dual lattice is defined as the
discretized version of the integral along a close loop
(I/2n) gV8 dl in the following way: vj = (I/2x)
xg;-~[(8;+~ —8;) (mod)2n)l. Here, the site index i
runs in the positive direction through the four corners of
the smallest square in the direct lattice enclosing the site j
of the dual lattice. It is understood that site i+1=5 is
identical to site i = l.

We define E(one pair) as the energy of the two-layered
XY model with just one vortex pair of separation a in
plane I. This vortex pair has been put in as a boundary
condition on the 8 variable in plane I. E(no pair) is the
energy with novrotex pair in plane I. The energy for a
vortex pair E(a) is calculated as the diA'erence between
two thermodynamic expectation values of the energy
E(a) =E(one pair) E(no pair) In —order to. show that
vortex fluctuations in the adjacent plane decouple the
planes, we chose diA'erent sets of values for the Lagrang-
ian multipliers.

For X' =10 and k" =0 we exclude vortex Auctuations in
plane I, whereas there are no restrictions on plane II. A
large A.

' is necessary in order to be able to study the two
vortices in plane I at large separation. If we did not apply
a Lagrangian multiplier to plane I, the following would
happen. We induce (by the boundary condition) 1+ (vor-
tex at position x+) and 1

—(vortex at position x-). As
the separation between these two vortices is increased a—vortex will be created spontaneously close to the + vor-
tex at position x+. Correspondingly, a + vortex will pop
up next the position x —.We would then have two small
vortex pairs at separation a = ~x+ —x —

~
instead of one

pair of vortices at large separation a.
The energies measured for A,

' =10 and A,
"=0 are com-

pared with the case where thermally activated vortices are
excluded from both planes by choosing A,

' =X"=10.
It is important to notice that the Lagrangian multipliers

A,
' only influence the vortex excitations and leaves the

spin-wave spectrum unaA'ected. Moreover, we found no
dependence of E(a) on the value of A, '& 10 as long as the
Lagrangian multiplier is su%ciently strong to exclude the
thermal activation of vortex pairs.

The bare vortex energies in Eq. (1) are calculated using
the ordinary Metropolis algorithm. We used a lattice
consisting of two planes each of size 64x64. The values
for the coupling constants are chosen as J]~ = 1.0 and
J& =0.1. The temperature is measured in units of J~~. Re-
sults for the ordinary 2D XY model (J& =0) are used as a
comparison to the layered system. The 2D XY model un-
dergoes a vortex unbinding transition at the critical tem-
perature T, =0.9. ' ' Under the critical temperature
the vortices are bound together in pairs and above T, a
mixture of bound vortices and free vortices coexist.

We now turn to a discussion of the measured vortex en-
ergies E(a) which we compare with the functional form
given in Eq. (1).

In Figs. 1(a)-1(c), we show results for E(a) at low
(T=0.1), intermediate (T=0.9), and high temperatures
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FIG. 1. Monte Carlo results for the energy E(a) as a function of the vortex-pair separation for the layered system at three diFerent
temperatures: (a) T 0.1, (b) T 0.9, and (c) T= 1.g. The energy is plotted either vs a (the x axis at the top of the figure) or vs
In(a) (the x axis at the bottom of the figure). The arrows on the graphs indicate which axis applies. In all three cases, X 10 and

0. Solid circles represent the energy of the layered system. The open circles show the corresponding results for the 2D XYmodel.
The crosses in (c) represent the energy for a layered system with no vortex fluctuations in either plane; here, X' A.

" 10 was chosen.
Solid lines are only guides to the eye.
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(T=1.8). The energy of the layered system (solid circles)
is plotted as function of a (the axis at the top); whereas
for the 2D XY model (open circles), we plot the energy as
function of ln(a). Unless indicated, A.

" in plane II is zero
and in plane I, X'=10. At the low temperature con-
sidered in Fig. 1(a), only low-energy spin-wave excitations
are present. Hence, we expect the form of the zero-
temperature mean-field result in Eq. (I) to apply. This is
supported by Fig. 1(a) since E(a) is found to be linear in
a (except at the shortest separations) when Jj & 0. No-
tice that we recover the familiar logarithmic form of E(a)
when J& =0, since E(a) given by the open circles in Fig.
1(a) is linear in In(a).

In Fig. 1(b) we show a typical result for the intermedi-
ate range of temperatures. For temperature T=0.9,
coeScient E~ of the 2D XY models jumps from a finite
value to zero. ' The important ingredient to renormalize
Ej to zero is the existence of thermally activated vortex
pairs. ' ' These pairs are suppressed here by the La-
grangian multipliers. Consequently, E ~ has not renormal-
ized to zero for the results (open circles) shown concern-
ing the 2D XY model. The solid circles are the results for
the layered system. As can be seen, the interaction energy
E(a) is, even at this high temperature, dominated by the
linear term predicted by the zero-temperature result in
Eq. (I).

In Fig. 1(c) results for the temperature T 1.8 are
shown. In this case, both the vortex energy measured for
J~ =0.1 and J~ =0 are linear functions of ln(a). This is
in clear contrast to the situation discussed above at lower
temperatures. The vortex Auctuations in plane II have re-
normalized the coe%cient of the linear term E2 to zero.
To stress the role of the vortex Auctuations we plot crosses
on the same figure, where E(a) measured with
=X"=10 ensures that no thermally activated vortex pairs
are present in either plane. This energy is linear in a. Our
simulation shows that the reduction of E2 from a finite
value to zero occurs in a narrow temperature interval.

The vanishing of the linear term in Eq. (1) indicates
that the planes become decoupled by the thermal Auctua-
tions. To pursue the investigation of the eAective coupling
between the two planes, we divided the vortex-pair energy
into contributions produced by the intraplane coupling
plus the contributions from interplane coupling.

In Fig. 2 we show the energy for a fixed distance E(a)
(a =15) as a function of temperature. The total energy is
given by the curve with the solid circles. The three other
curves represent the following: the energy of plane I [the
contributions from the first term in the Hamiltonian given
by Eq. (2) and the second term in Eq. (3)l is given by the
open circles, the asterisks show the Josephson contribution
[second term in the Eq. (2)] of the energy, and the crosses
indicate the energy in plane II. The energy E(a) (a =15)
is the sum of the three latter terms. The coefticient E2 is a
consequence of the Josephson coupling between the
planes. Accordingly, we find that E2 vanishes in the tem-
perature region where the Josephson contribution to E (a)
(a = 15) goes to zero. Below the temperature T= 1.3 the
functional form in Eq. (I) applies. Above the tempera-
ture T =1.5, the coefFicient to the linear term E2 vanishes
and E(a) assumes the ordinary logarithmic form.
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FIG. 2. DiA'erent contributions to the vortex-pair energy of a

pair at fixed separation a =15. The value of the Lagrangian
multipliers are k' =10 and X"=0. Solid circles represent the to-
tal energy of a vortex pair in plane I as a function of tempera-
ture. The other three curves represent the following: (open cir-
cle), the energy in plane I; (asterisks), the energy of the
Josephson-coupling term; (crosses), the energy in plane II.

It is worthwhile pointing out that this temperature
(T=1.5) is approximately the same as the transition tem-
perature identified in the Monte Carlo study of the aniso-
tropic 3D XY model by Chui and Giri in Ref. 16. In the
study of the vortex-antivortex free energy in the aniso-
tropic 3D XYmodel by Minnhagen and Olsson, ' it is also
concluded that the linear contribution to the free energy
vanishes above a certain temperature. This temperature
coincides with the temperature at which these authors find
that the magnetization and the helicity modulus vanish.

Apparent from Fig. 2 is the peak in the energy of plane
II (crosses). This indicates an increase in vortex number
in plane II due to the existence of the pair in plane I. In
Fig. 3 we show the excess in vortex number in plane II
caused by the vortex pair in plane I. The extra vortices in
plane II is a way for the system to release the strain in the
Josephson energy between the two planes, caused by the
existence of a vortex pair of separation a in plane I. Three
curves are drawn for diAerent separations of the vortex
pair in plane I. The maximum number of vortices in plane
II increases as the separation of the pair in plane I in-
creases. However, the maximum number of induced vor-
tices in plane II occurs at the same temperature for all
three separations. Above this temperature the excess
number of vortices rapidly vanishes. This indicates that,
for all separation, the adjacent planes cease to be suscepti-
ble to each other with respect to vortex Auctuations as the
temperatures is raised above a specific temperature
T*=1.5 for the considered J&=0.1. In this sense, the
planes decouple for temperatures above T*.

The thermal decoupling is also apparent from Fig. 4. In
this figure we compare the number of thennaIIy induced
vortices N, , (J& =0) in the 2D XY model with the corre-
sponding number N, , (J& & 0) for the layered model. The
difference hN, , =N, , (J& & 0) —N, , (J~ =0) is plotted as
function of temperature. Both Lagrangian multipliers are
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FIG. 3. The induced number of vortices in plane II caused by

a vortex pair of fixed separation a in plane I as a function of
temperature. The three curves represent different sizes of the
vortex pair. Open circle, a=10; solid circles, a =15; and aster-
isks, a =20. The value of the Lagrangian multipliers are A,

' =10
and ~"=0.

FIG. 4. The suppression of vortex Auctuations due to the
Josephson coupling between planes in a 64X64x2 XY model.
The quantity hN, , is calculated as the difference
AN, . =N, . (J&CO) N, , (J~ =—0). Solid circles are for J& =0.1

and open circles represent J~ 0.05. The value of the Lagrang-
ian multipliers are X.

' =k" =0.

equal to zero and no vortex pair is imposed in plane I.
The curve with open circles represents hN, , for J& =0.05
and the solid circles J& =0.1. Again a specific crossover
temperature T* can be identified. Below T* the planes
are highly susceptible to each other, as discussed above.
hN, , is zero in this temperature region because both
N, , (J& &0) and N, , (J& =0) are equal to zero. On the
other hand, above T* both N, , (J& &0) and N, , (J~=0)
are nonzero but equal to each other. Hence, the thermally
induced vortex density becomes the same for the layered
system and for 2D XYmodel as soon as the temperature is
increased above the decoupling temperature T*.

We have studied the eA'ect of thermal fluctuations on
the bare vortex-antivortex interaction in a layered XY
model. In particular, the role of thermally activated vor-
tex fluctuations in the plane adjacent to the host plane of
the considered vortex pair were investigated. These vortex
fluctuations induce a crossover in the functional form of

the vortex-pair energy E(a) as function of separation a.
At low temperatures E(a) depends linearly on a. A

crossover in the behavior of E(a) occurs in a narrow tem-
perature region just above the vortex unbinding tempera-
ture of the 2D XY model. For temperatures above this re-
gion the usual 2D logarithmic dependence on vortex sepa-
ration is retrieved despite the fact that J& & 0, i.e., the
thermal fluctuations renormalize the eAective interplane
coupling to zero.

This finding might explain the fact that the 2D
Coulomb-gas scaling theory describes the resistivity tran-
sition in the layered high-temperature superconductors at
temperatures above the onset of resistivity, i.e., at temper-
atures above the vortex unbinding temperature.
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