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Collective excitations and mode coupling in layered superconductors
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We investigate the collective-mode spectrum for a layered superconductor structure. For wave vec-
tors directed close to the superlattice axis, we find that the plasmon modes remain below the supercon-
ducting gap edge. This is in sharp contrast with the situation for isotropic superconductors in three di-

mensions, for which the Anderson-Higgs mechanism lifts all such modes out of the gap. We also find

that, as a mode crosses the gap edge, either by increasing the wave vector or tilting its direction with

respect to the superlattice axis, there is a unique mode-coupling e6'ect between pair-breaking excitations
and the collective mode. This manifests itself as a line splitting in the dielectric response, which may in

principle be used to determine the gap of such a system. We also calculate the effect of interplane tun-

neling on the collective-mode spectrum. We find that, if the tunneling rate is large enough, the plasmon
modes may all be lifted out of the gap. We show that estimates for the plasmon energy based on the
effective-mass approximation can grossly overestimate its minimum value.

I. INTRODUCTION

Since the discovery of high-T, superconductors, in-
tense investigations have focused on how the layered
structure of these materials determines and affects their
properties. ' The anisotropy introduced by this structure
can be extremely pronounced: the effective-mass ratio
I, /m, where I is the mass for motion within a plane
and m, is for motion between planes, has been reported
as high as 3X10 in bismuth-based compounds, and
more recently as at least 10 in thallium-based com-
pounds. Furthermore, one can, in principle, make the
mass anisotropy as large as one wants in artificially
grown superconducting superlattices, where the distances
between superconducting layers may be chosen by the
sample grower.

A natural question to ask about such systems is what is
the collective mode spectrum, given that the system is
layered and exhibits superconductivity? After all, for
semiconductor superlattices, it is well known that the lay-
ered structure completely changes the plasmon dispersion
from its isotropic counterpart. ' In what follows, we will
investigate, in detail, the collective-mode spectrum for
the superconducting superlattice system, working in the
BCS approximation with 5-wave pairing. This work fol-
lows up an earlier short publication by the present au-
thors, providing some details of that work as well as
some additional results.

One of the most interesting results of this investigation
is that, if the tunneling between planes is small enough, it
necessarily follows that there are plasmon modes whose
energy is less than the gap, 26. This is a unique result be-
cause it is generally believed that there are no electronic
excitations below the gap in a clean, isotropic (s-wave)
BCS superconductor. ' The behavior of the latter type
of system directly follows from the Anderson-Higgs
mechanism, which is essentially a screening effect, and

hence is dependent upon the detailed form of the three-
dimensional Fourier transform of the Coulomb potential,
4me /Kq, where q is the wave vector and K the appropri-
ate dielectric constant. By contrast, the appropriate
Coulomb interaction for a layered system is softer at
small q, so that the Anderson-Higgs mechanism is not
completely effective in these systems. It is thus clear that
the absence of modes in the gap for isotropic supercon-
ductors is a question of detail, rather than physical neces-

10, 11

A typical example of our calculated plasmon disper-
sion co(k) is shown in Fig. 1. Here we have chosen sys-
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FIG. 1. Plasmon dispersion co(k)/A. Solid lines are obtained

g e pan o in Fkll ~ for a) 0=0.01, (b) 0=0.05, and (c)
0=0. 1 rad. All other points are obtained by numerical integra-
tion of Eqs. (12). Triangles correspond to 0=0.01, crosses to
0=0.05, and open circles to 0=0.1. Material parameters

O

chosen are n, = 1.0X 10' cm, m *=5mo, ~=4, d = 10 A, and

T, =125 K.
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tern parameters appropriate to model a hypothetical
high-T, superconductor: sheet density n, =10' cm

0

interplane distance d = 10 A, in-plane eftective mass
m*=5mo, where mo is the bare electron mass, x=4, and
T, =125 K. The unit of energy here is half the gap 6
which, in the BCS approximation, is given by5= 1.76k& T, . In this example, tunneling between planes
is ignored. The dispersion is quite sensitive to the propa-
gation angle t9, defined as the angle between the k vector
and the superlattice axis. For small 0, we see that
co(k) (2b, in the long-wavelength limit. For these param-
eters, we find that co(k) (2b at small k for 9(g„where
0, = 8 . This behavior can be summarized by a "phase di-
agram" such as that shown in Fig. 2, which shows the
wave vectors for which these modes are below the gap
edge at 2A.

We have also calculated the density response function
y(k, co), which is essentially the dielectric response of this
system to electromagnetic radiation. We find a. very
unusual phenomenon when the plasmon mode crosses
2A. This behavior is illustrated in Fig. 3, where we plot
the absorptive part of the dielectric response, Imp, as a
function of co for fixed k.

For co(k) (2b„we see a sharp 5-function peak in Imp,
representing the plasmon mode, and a small broader peak
above 25, arising from pair-breaking excitations. As k is
increased such that co(k) crosses 2b. , we obtain a line
splitting in Imp, arising from mode coupling between the
collective mode and pair-breaking modes. ' As k is fur-
ther increased, a large plasmonlike peak moves out to
large energies, while a smaller peak remains at 25. We
note that, although this behavior is illustrated here for
fixed t9 and increasing k, the same phenomenon will arise
if one fixes k and increases 0 until the plasmon energy
co(k) crosses 2h. Thus, this line splitting should occur in
the long-wavelength limit (kd ((I), and would be ob-
served if one can detect the plasmon mode at a given k,
and then tilt the sample with respect to k/k until co(k)

FIG. 2. Wave vectors for which the plasmon mode lies in the
gap; the region below the curve indicates where the modes are
present. The diagram is periodic in k, d with period 2~. Only
data for 0~ k, d ~2~ are shown. Material parameters are the
same as in Fig. 1.

exits the gap. One important byproduct of an observa-
tion of this phenomenon would be a unique and direct
identification of the energy gap, since the leading edge of
one of the two peaks always remains at 2A.

Finally, we have examined in detail the eFect of inter-
plane tunneling on the dispersion relations for these
modes. We find that modes with k directed close to the
superlattice axis are very sensitive to the presence of such
tunneling in the long-wavelength limit. In particular, we
find that if one plots ro(k) for fixed k, as a function of k~~,

a gap opens up at k
~~

=0 of order 8, where 8' is the inter-
plane tunneling matrix element. By contrast, co(k) van-
ishes at k~~

=0 when 8'=0. An example of this behavior
is illustrated in Fig. 4. This means that. the introduction
of enough interplane tunneling will push the plasmon
mode out of the gap. Such behavior is not surprising,
since as one increases 8' the system becomes more three
dimensional, in which case we expect the Anderson-
Higgs mechanism to become e6'ective in producing a gap
or a mass in the plasmon spectrum. For the parameters
of Figs. 1—4, we expect that collective modes will still be
present in the gap if 8'&0.236 for a clean, layered sys-
tem at T =0. An estimate for the Y-Ba-Cu-0 materials
based on a measured mass anisotropy of m, /m~~ =l00
gives 8'=0.00755, well within the range for which such
modes should remain in the gap. For the cases of Bi-
based ' and Tl-based materials, the mass anisotropies
have been measured to be 1 and 3 orders of magnitude
larger than this, making the prospects for subgap modes
in these materials extremely good. However, we note
that direct measurements of 8'in these materials are not
readily available, so that one should not take our estimate
for 8'too literally. With this caveat in mind, it is impor-
tant to notice that estimates of the plasma frequency for
0=0, k —+0 computed directly from the effective-mass ap-
proximation' [i.e. , co =4rre p/m, ] can grossly oueresti
mate the minimum value of ~(k).

It is natural to ask whether such modes are readily ob-
servable in electromagnetic absorption experiments such
as infrared absorption' and Raman scattering. " To date,
we are not aware of any experiments clearly showing the
results discussed in this work. This is not surprising,
however, because nearly all absorption experiments on
single-crystal samples of high-T, materials have worked
with E, the electric field of the light, in the a -b plane. In
this situation, the k vector is strictly along the c axis, and
the oscillator strength of our predicted plasmon mode
turns out to vanish (for &=0) in this limit. In general,
the oscillator strength for the subgap plasmon modes
scales as (k~~d ), where d is the interlayer spacing, so that
one needs to look at modes propagating at an angle with
respect to the c axis. Our belief is that the best system to
look for these modes is in artificially layered supercon-
ductors, where d may be made as large as one likes, both
increasing the oscillator strength (for a fixed k) and de-
creasing the value of 8'.

This article is organized as follows. In Sec. II we will
review the Nambu formalism and its application to lay-
ered systems. In Sec. III, we develop expansions for the
dielectric response valid in the long-wavelength limit, and
show how one may determine the subgap plasmon disper-
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FIG. 3. (a) Absorptive part of dielectric response as a function of unitless frequency, co/6, in units of m /A . Material parameters
as in Fig. 1, 0=0.1, and (i) kd =2.8 (sharp line represents a 5 function at the position of the plasmon pole), (ii) kd =3.15, and (iii)
kd =3.5. (b) Reactive part of the dielectric response.
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sions from those. In Sec. IV we present numerical results
for the dielectric function, valid at larger values of k, and
discuss, in detail, the mode-coupling effect. Section V
discusses the effect of interlayer tunneling on the plasmon
dispersions. We conclude in Sec. VI with a summary.

II. FORMALISM

In this section, we briefly review the Nambu formal-
ism' ' and its application to layered superconductors
with no interplane tunneling, and show how it is used to
derive the density response of the system. Our starting

I

FIG. 4. Plasmon dispersion co{k) for fixed k, as a function of
k~Id for different values of the tunneling rate W. Material pa-
rameters as in Fig. 1, (a) W=0, (b) W=0.00756, and (c)
W =0.16.

Here, 4&,.—= (ck,.&, c z;~), cz; creates an electron in
the ith layer with spin o in the state kth momentum state
(k here is a two-dimensional vector in the x -y plane; the
superlattice axis is taken to lie along the z direction).
The quantity Ek =—k /2m —p, and r3 is the usual Pauli
spin matrix. The interparticle potential is taken for sim-

plicity to be

2 227M

Kq
'

where d is the interplane spacing, ~ the dielectric con-
stant, the first term is just the two-dimensional Fourier
transform of the Coulomb interaction for electrons
confined to planes a distance ~i

—j~d apart, and the last
term represents a weak, short-ranged attractive poten-
tial. ' This form is essentially the usual weak-coupling
BCS approximation as applied to a layered structure.
The quantity of interest here is the density response func-
tion, whose poles give the collective mode energies. It is
de6ned as

y(kll, k„co)= i f —dt e'"'( [p( kt ),p( —k, O)] ),
where p(k, t) is the three-dimensional Fourier transform
of the density operator in the Heisenberg representation.
In the Nambu formalism, this is written as

y(k, ~, k„~)= i f"—dte' '
2 Q P(T+p ~(t)~3+p Q (t)%t QT3+q Q)'

P)~Pp~ l
q

where L is the surface area of a plane. We next perform
a diagrammatic expansion of y in terms of the interaction
H;„,. The density response may be written in terms of an
irreducible polarizability as shown in Fig. 5. A key ob-
servation here is that, because of the absence of inter-
plane tunneling, the interaction [Eq. (l)] cannot scatter
electrons into different planes. This means the solution to
the equation shown in Fig. 5 is

II(k ~(, co)
g(k„,kz, ~)=

1 v(kii k, )II(kii ~)
(2)

where II(k~~, co) is the irreducible polarizability for a sin-
gle, isolated sheet, and

2 2

j II

sinh(k~~d) —V
a.

k~~ cosh(k~~d) —cos(k, d )

rr x

FIG. 5. Diagrammatic representation of the dielectric
response in terms of the irreducible polarizability II. Dotted
line represents contact interaction, the way line represents the
Coulomb interaction, the double lines are Green's functions
with self-energy corrections, which are matrices in the Nambu
formalism. Each Green's function carries a layer index; since
the interactions do not scatter electrons into different planes,
each nonvanishing diagram must have the same layer index in
all three Green's functions.
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dcoid pi
II(k, co)= i Tr —

3 F36(pi, coi)1 (pi, k, co)
(2m. )

X G(p, —k, coi —co), (4)

The fact that H is manifestly diagonal in the layer in-
dex is a great simplification because it allows us to write
the density response of the superlattice system in terms of
the polarizability of an isotropic, two-dimensional system
via Eq. (2). The superlattice structure here enters only
through the form of U (k~~, k, ) shown in Eq. (3).

To evaluate II, it is necessary to construct a gauge-
invariant, number-conserving approximation in order to
get the collective-mode spectrum. This is accomplished
by choosing diagrams that are consistent with the form of
the self-energy correction ' "" to the Careen's func-
tions (which in the Nambu formalism is a matrix). Fig-
ure 6(a) shows the diagrams we include in the self-energy
matrix. ' ' The last contribution, which is an exchange
self-energy, must be kept in order to include the super-
conducting instability. The second diagram, which is the
direct Hartree term, vanishes in the presence of a uni-
form neutralizing background charge. We note that this
form for the self-energy amounts to a self-consistent Har-
tree approximation in the Coulomb interaction, and a
self-consistent Hartree-Fock approximation in the con-
tact interaction. ' Because an exchange term has to be
kept in the self-energy, one must include, consistent with
the Ward identity, ladder diagrams in the polarizability
in order to get a gauge-invariant result. Our approxima-
tion for the polarizability is shown in Fig. 6(b). It may be
written in the form

+ 0 ~ ~

FIG. 6. (a) Self-consistent equation for self-energy correction.
{b) approximation used for polarizability, which generates a
gauge-invariant result of the dielectric response.

I (k, co) =r3—+i VOM(k, co)

defines a matrix M, which satisfies

(6)

Q' dc01
M(k, co)= f r3G(q, co, )[r3+iM(k, co)]

(2~)

XG(q —k, w, —co)r3 . (7)

Equations (6) and (7) show that the vertex part can be
found by solving a linear matrix equation rather than an
integral equation„as at first seems the case in Eq. (5).
The solution to Eq. (7) is found by expanding M in the
Pauli spin matrices: M=+, OM;r, , and then equating
the coe%cients of the ~ s on both sides of the equation.
We drop terms of 0 (b /EF ), where b. is the order param-
eter, satisfying the BCS equation

where the Green's functions G are 2 X 2 matrices, and I
is a vertex matrix. Because of the simple form we have
chosen for the attractive part of the potential, the vertex
part (which in our approximation is the sum of ladder di-
agrams) satisfies the equation

d q dc@1
I (pi, k, co)=r3+iVor,f, '

G(q, co, )I (q, k, co)
(2~)

g

(2~)2 2Eq

where E =E~+b . [This equation is derived in the
Nambu formalism by solving the self-consistent equations
for the self-energy in Fig. 6(a). The integral in Eq. (8) is
formally divergent; this will be discussed below. ] After
much algebra, one finds that Mp —M1 —0, and

XG(q —k, co, —co)r3 . (5)

One can easily see from Eq. (5) that I (p„k,co) has no p,
dependence. Writing

M2 = l'Ct)G E'VpF M2 +Ct) Vp GM3

M3 =F++coVpGM2+tVpF+M3 S

where

(9)

G(k, co)=b,f d c01d 1 1

(217) (co, + ,'co) E+,/2„(co—i ,'—co) E i/2k———
2 2 ] 2 g2+—d c01d ~1 4 ~ ~ —~q+ 1/2k~q —1/2k

E+(k, co) =
3 2 2 2 2[(Coi+ gCo Eq+i/2k ][ ~l 2~ Eq —i/2k ]

Combining Eqs. (4), (6), and (9), one finally arrives at
the result

where

II(k ) =
1 —VOC(k, co)

(1 la) (1 lb)
Voco G ( k, co)

C(k, co) = iI'+(k, co)+—
1 i VOI' k,co—
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Equations (10) and (11) are essentially the two-
dimensional version of Prange's result, ' '" and they share
many of the properties of their three-dimensional coun-
terparts. The frequency integrals in Eq. (10) may be han-
dled analytically, leading to the forms

G(k, iu) = i —f (2~)' 4E, +Eq

co —E +
—E +i6

1

co+E ++E —i6

d q Eq +Eq — ~ —~q+~q-
F+(k, co) = i—

(2~) q+ q—

(12)

ct) Eq + Eq + l 6

1

co+E ++E —i5

(13)

where q+—=q+ —,'k. The remaining task of our calcula-
tions, and the part in which the bulk of our work lies, is
in finding various ways to evaluate Eq. (12). Before
describing these, there is one important technical detail
that must be clarified. One may notice that, in the limit
co~ k ~0,

—i /Vo to and subtract the integral in Eq. (13) from our
expression for F (k, cu). The resulting expression is per-
fectly finite when coD —+ ~, so that taking this limit once
again only introduces errors of 0 (b /cuD ).

With this correction for F, we may now embark on
our task of evaluating Eq. (12). We essentially have two
approaches. The first involves expanding G and F+ for
small values of k, which will prove useful for evaluating
the plasmon dispersions inside the gap. These expan-
sions, however, turn out to be invalid at frequencies
greater than 2A —

vzk~~ /2, where v~ is the Fermi velocity.
For larger wave vectors, it is necessary to evaluate Eqs.
(12) directly. We will see that it is possible to express
ReG and ReF+ in terms of elliptic integrals; the imagi-
nary parts may be found then by a Kramers-Kronig
transform. This latter technique turns out to be useful in
illustrating the mode-coupling effect when the plasmon
mode crosses the gap. In Sec. III below, we discuss the
results from the long-wavelength expansion; in Sec. IV,
we show the results of the Kramers-Kronig transform.

III. SMALL-k EXPANSIONS

Before discussing the full expansions of Eqs. (12), it is
helpful to investigate the form of H and y when both
co, k

~~

/2m &&2h. In this case, we find

lm (uFkll )
2

G ~ 1—
4~&

2le 1+ co

2m 4Q

which, as it stands, is logarithmically divergent. The
reason this divergence occurs is because we have chosen a
point-contact potential for the attractive interaction,
which has important contributions out to q~ ~. Any
real potential, however, will have some nonvanishing
range, and in the original 8CS approach this was
modeled by integrating only over wave vectors q such
that

~ E~ ~

~ iuD, where iuD is the Debye frequency. Such a
cutoff should, in principle, be present in our integrals;
however, taking the cutoF to infinity in Eqs. (12) intro-
duces errors of 0 (b, /iuD ), which we will take to be small,
with the sole exception being the case of F . We need
not, however, introduce an explicit cutoff for this case."
Comparing Eq. (13) with Eq. (8) makes it clear that we
may identify F (0,0)= i /Vo Thu—s, we .can add

(m /m. )(uokll )
H—=

iu —(1+m Vo/2ir)(uokll )
(14)

where uo = uF /&2. The divergence in H at iu = uokll is
the sound mode one expects in a neutral Fermi gas with
weak attractive interactions. It is essentially the Gold-
stone mode associated with the broken gauge symmetry
of the superconducting ground state. Substitution of Eq.
(14) into Eq. (2) yields

+ [ —,'(uFkll)~ —iu ],
Vp 8m''

where VF is the Fermi velocity. Combining these forms
with Eq. (11) yields

(m /~)(uokll )
y(k„,k„)= +6(kll, iu kll, cu ) .

2 —[1+mV0/2ir+(m/rr)u(kll'k )](uokll)
(15)

We thus find the plasmon poles in the limit k~td ~0 at
1/2

1

1 —cosk, d
2me d

k
vokco( k

ll(, k, ) =

for fixed k, d. It follows that, for k~~ &&k„one may al-

I

ways find a plasmon mode at arbitrarily small energy, in
particular, with energy iu(kll, k, ) (2b.. We see then that
our form for the polarizability, Eq. (14), forces upon us
the presence of modes in the gap. It is worthwhile re-
marking that this form is actually quite general: the zero
in the denominator appears because one has broken
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gauge symmetry, and the fact that Il(k ~O, co=0)=k
is necessary to satisfy number conservation. " This
means that the presence of modes in the gap is really
quite general for the layered superconductor: it is in-
dependent of the pairing mechanism, and even of the ap-
propriateness of the BCS approach. The only important
assumption is that one may ignore tunneling between the
planes. We will return to this point in Sec. V. Finally,
we note that the factor (uok») in the numerator of Eq.
(15) implies that the oscillator strength for the plasmon
mode actually vanishes as the k vector is directed closer
and closer to the superlattice axis. This means that, al-
though the lowest-energy modes are found in this situa-
tion, one needs to consider modes at higher k or directed
at an angle in order to maximize the coupling of the
mode with an experimental probe.

We next expand Eqs. (12) for k» /2m ((2b, , with no
assumption of small co. The resulting expansions are well
behaved for co (2b, —

U~k» /2. For values of co approach-
ing 2A, these expressions become divergent, indicating
that F+ and G are not analytic io k~~ when co=26. The
precise expressions are presented in Appendix A. With
these expressions, one may find the poles of the density
response function by finding the zeros of the denominator
in Eq. (2). Figure 1 illustrates typical results for the
plasmon dispersion co(k), where here k=(k», k, ) for a
fixed angle 0=arctank, /k~~ as a function of the total
wave-vector magnitude k =(k, +k» )'~ . In this exam-
ple, we have used a hypothetical high-T, structure,
roughly modeling Y-Ba-Cu-O, with sheet density
n, = 10' cm, d = 10 A, effective in-plane mass
m *=5mo, dielectric constant K =4, and T, = 125 K. The
gap 2A is found via the usual BCS formula,
2A =3.52k& T, . To summarize the wave vectors for
which there are plasmon modes in the gap, we would like
to know the values of k such that co(k)=25. Unfor-
tunately, this cannot be accomplished directly, because
the expansions break down at this frequency. However,
we find that, if one plots co(k) versus k~~ for fixed k„ the
result is extremely linear (see W =0 case of Fig. 4). This

2.0 I j I I

J
I I I I

]
I I I I

f
I I I (

[
I I I I

f
I I I I

J
) I I I

1.5—

means it is a simple task to extrapolate the dispersion
co(k) for fixed k, to co(k) =26, thus giving us a value of
(k», k, ) for which the plasmon mode crosses the gap. We
note that direct numerical integration of F+ and G give
values of k at which co=26 in very good agreement with
this extrapolation technique. The results of this calcula-
tion are presented in Fig. 2, where k values below the
curve denote wave vectors for which co(k) (2b, , and
points above satisfy co(k) )2b, . The curve is plotted for
0 (k, d (2'; however, because k, d only enters U ( k», k, )

through cos(k, d), it is clear that the phase diagram is ac-
tually periodic in k, d. Because of this periodicity, a
plasmon mode may actually leave and enter the gap
several times as a function of k for small angles 0, as illus-
trated in Fig. 7. However, the angles necessary to
achieve this situation are quite small, and are probably
not physically relevant in most situations. Finally, we
note that when tunneling is introduced (WWO), the
periodicity of the phase diagram is lost, and all modes in
the gap with k, d &2m may vanish even for relatively
small values of 8'.

IV. NUMERICAL RESULTS
AND THE MODE-COUPLING EFFECT

For values of co) 2b, —U~k»/2, the expansion method
for evaluating F+ and G breaks down, and one needs to
evaluate these functions exactly. The real parts of Eqs.
(12) may be written in terms of elliptic integrals, for
which excellent numerical packages already exist to
evaluate them. One should note that ReG, ReF+ =0 for
~(26; this is a direct statement of the existence of an
energy gap for pair-breaking excitations. In Appendix B,
we represent ReG and ReF+ in their elliptic integral rep-
resentation. With Eqs. (B2)—(B4), it is possible to gen-
erate the imaginary parts F+ via Kramers-Kronig trans-
forms, such as

„co'ReX ( k „,co )
ImX(k», co)= Pf des',

7T 0 Q7 (

where X may be G or F+, and P here denotes a principle
value integral. For the case of F, we need to treat the
formally divergent part of the integral carefully. The
proper expression in this case is

~'ReF «», ~)
ImF (k», co)= — Pf—d—co

CO CO

co (k) 1.0— ReF (0,co')

O O
I I I I I I I I & I I i I I I I I I I I I I I I I I I I I I I I I I

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
kd

FICx. 7. Plasmon dispersion for 0=0.01, material parameters
as in Fig. 1. For very small angles 0, the plasmon mode may
enter and exit the gap several times.

The principal value integrals can be performed in the
usual way, subtracting from the numerators of the form
co' ReX(k~~, co') their values at co' =co to remove the singu-
larity, and performing the integration of the subtracted
term analytically. Some care must be taken, however, at
the jump discontinuities in ReF+ and ReG; direct in-
tegration over these introduces large errors in the numer-
ical integration. One can overcome this by adding simple
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functions to ReF+ and ReG, such that the integral per-
formed numerically has a continuous integrand, and then
performing the principle va1ue integral for the added
functions analytically. '

Once the integrations have been performed, one can
simply substitute the forms for I'+ and G into Eqs. (11) to
generate II, and then use this form for II in Eq. (2) to
generate the density response function. We illustrate
some typical results for the same material parameters as
Fig. 1 in Fig. 8. Here we present y as a function of co for
fixed k; we take, for concreteness, O=arctank, /k~~ =0.05
rad. For kd=2. 0, one has a pole near co=0.85 in Rey;
this translates into a 6-function singularity at this fre-
quency in Imp which represents a plasma mode in the
gap. For this wave vector, the plasmon contains nearly
all the oscillator strength for absorption. There is also a
peak in Imp at 2b; this represents absorption via pair-
breaking excitations, but by noting the scale at Imp one
can see that there is, in fact, very little oscillator strength
in these excitations. For kd =5.5, one can see that the
plasmon mode has moved out to co =4.85, and having ex-
ited the gap now has a finite width, corresponding to a
finite lifetime for these collective excitations. There is
some very small structure at co=26; this once again
represents absorption by pair-breaking excitations with
very low oscillator strength. We note that this
behavior —dominance of the oscillator strength by the
collective mode —is typical of dielectric functions at long
wavelengths. This at first may seem surprising, since we
are looking at kd & 1.0; however, the relevant wavelength
for such considerations is k~~d=—kd sinO, which for a
small angle such as 0=0.05 easily satisfys k~~d «1.

The behavior illustrated in Fig. 8 indicates that the
plasmon mode shows little dependence on whether it lies
either above or below the gap. One has a finite lifetime in
the former case, leading to a broadened peak; however,
the peak is actually quite sharp, and experimentally it
might be difBcult to distinguish the two cases. This
might lead one to conclude that if the collective mode is
observed and followed either as kd is increased or 0 is in-
creased, then one might not know when and whether the
mode has exited the gap. In fact, this is far from the
case. In Fig. 3, we plot Imp for values of kd such that
the collective mode just barely crosses the gap edge at
2A. One can see that strong mixing occurs between the
collective mode and the pair-breaking excitations. This
efFect leads to the unusual line splitting visible in Fig. 3.
Two important comments are in order here: first, the
mixing of the pair-breaking and collective modes allows
the former to play an important role in the dielectric ab-
sorption of the system; this is a unique situation, because
we saw in Fig. 8 for k~~d «1, these excitations have a
negligible oscillator strength. Second, the mode-coupling
phenomenon seen here is unique to layered superconduc-
tors: one does not have it in normal layered systems,
where pair-breaking excitations do not exist (i.e., there is
no gap), and isostropic superconductors do not behave
this way because the Anderson-Higgs mechanism pushes
the collective mode far above the gap edge at 2A. As dis-
cussed in the Introduction, an observation of this
phenomenon would allow a unique way to experimentally
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FIG. 8. (a) Dielectric response for 0=0.05, kd =2, material
parameters as in Fig. 1. Solid line is Imp, dashed line is Rey.
(b) Dielectric response for 0=0.05, kd =5.5.

determine the gap of a system such as this, because one of
the two peaks in the line-split dielectric response always
remains at 2A.

To understand the mode-coupling phenomenon in
more detail, it is helpful to examine the behavior of
II(k~~, co) near co=26, . The quantity II is actually qualita-
tively the same as the function C(k~~, co) [cf. Eqs. (11)],
and it is the latter quantity we will examine, because its
value is independent of our choice of Vo. In Fig. 9, we il-
lustrate ReC for k~~d =0.315, and material parameters as
in Fig. 1. C has a pole near ~=0, which is the sound
mode discussed in Sec. III associated with a neutral su-
perconductor. On a scale that is reasonable for illustrat-
ing this pole, ReC appears structureless near co=26;
however, if we blow up this region, one actually finds two
cusps in ReC, : a downward cusp, located right at
co=26, and an upward cusp at co=(4b, +Uzk~~ )'
These cusps are associated with the pair-breaking excita-
tions, and we will discuss their precise origin in a mo-
ment. That this structure occurs on such a fine scale here
is not surprising, because we are in a regime (small k~~)
where the oscillator strength of the collective mode
overwhelms that of the pair-breaking excitations. We
note that similar structure was noted by Prange for the
three-dimensional isotropic superconductor.
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0.90
x10

I t I l & l

FICz. 9. Behavior of ReC [cf., Eq. (I la)] for material parameters as in Fig. 1, with 8=0.1, kd =3.15. On a coarse scale, ReC ap-
pears smooth, but a blowup of the region near co =2K reveals two Van Hove singularities.

The structure near co=26 in C translates into a very
similar structure in II, also existing only on a very fine
scale. However, when we form y, the full dielectric
response function, we get a huge amplification of this
structure if the plasmon mode ro(k) is close to 2b, . This is
easily seen in Eq. (2): the plasmon mode frequency is
given by a vanishing of the denominator on the right-
hand side of this equation; since g o- II, the small denomi-
nator for ~-2A means that structure on a small scale in
H is blown up to a much larger scale in y. There is no
similar phenomenon in isotropic superconductors; in
those materials, the plasmon mode is pushed up too far to
ever allow this amplification phenomenon. Thus, we see
that the suppression of the Anderson-Higgs mechanism
by the layering effect allows one to actually probe struc-
tures in the dynamical response that would otherwise be
dificult to see. Finally, we note that the fact that one of
the two peaks present in Imp is always centered at 26
occurs because the downward cusp in ReC is located pre-
cisely at c0 =26.

The origin of the cusped behavior in ReC may be
traced to the fact that cusps are also present in the ab-
sorptive part of C, ImC, as illustrated in Fig. 10. These
cusps may be understood as Van Hove singularities, ap-
pearing because of the behavior of the available phase
space for creating pair-breaking excitations of a given k~~

and co. This behavior enters through the factor
o(m E~+ Ez ) appear—ing in—the integrands for ReG
and ReF+ (cf. Appendix 8), where q+ ——q+ —,'kII, and q is a
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FICi. 10. Behavior of ImC near co=26; parameters as in Fig.

two-dimensional momentum that must be integrated
over. The values of q satisfying the 5 function may be il-
lustrated by the following geometric construction: on a
q -q~ plane, we draw two circles, one centered at q= —,'k~~

(which for concreteness we take to lie on the q» axis), and
the other centered at —

—,'kI~. This is illustrated in Fig. 11~

The radii of the circles, q& and qz, are chosen such that
E =c and E =co—c, where c. is a parameter that we al-

gl
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(a)
in ReG and ReF+ with peaks with widths of order k~T.
Interplane tunneling, by contrast, does not smooth out
the singularities, so that as long as the tunneling rate is
small enough to allow modes to remain in the gap, one
still expects to see the line splitting. The effect of tunnel-
ing on the plasmon dispersion —in particular, the extent
to which one might still expect to have modes in the
gap —is the subject of the next section.

V. EFFECT OF INTKRPLANK TUNNELING

In this section, we will derive the plasmon dispersions
co(k) when there is some degree of interplane tunneling.
Our method of introducing tunneling is to put it directly
in the single-particle spectrum:

e(k) =k
~i

/2m —W cos(k, d ) . (18)

(b) The formal development parallels that of Sec. II, and
we will not run through the steps again. The results are
given by Eqs. (2), (11), and (12), with the following
modifications: (1) The integrals in Eqs. (2) are now three
dimensional, rather than two dimensional, with q, in-
tegration running from —rr/d to rr/d; (2) the quasiparti-
cle energies E = I b, +[E(k)—p] I' must use the mini-
band approximation for E(k) in Eq. (18); and (3) the
effective interaction is taken as

sinh(k~~d )
U(k) = —V0 .

cosh(k
II

d ) —cos(kid )
(19)

FIG. 11. Geometric construction that shows the allowed q
vectors for a pair-breaking excitation with a given k and co. (a)
Dotted lines show values of q that are allowed. (b) Situation in
which the circles touch tangentially creates a Van Hove singu-
larity.

low to vary over the range 6 ~ c. ~ co —A. It is clear that
the locus of points q(E ) for which the two circles intersect
represent values of q that satisfy the 5 function. We see
now that the slope discontinuity in Imc arises because
there is no allowed interval for c when ~ & 25. As r. is in-
creased above 25, the allowed q values form a pair of
arcs traced out across the q axis [Fig. 11(a)]. The arcs
get larger as co is increased, until they meet at the q axis
when co=co, =(4b, +uFk~~ )' . If we increase co above
this, then for values of c. &co, —6, and also for values
E ( b, +(co—co, ), there are no points at which the two cir-
cles intersect. The critical point at which c.=co, —6 is il-
lustrated in Fig. 11(b), where one can see that the two cir-
cles touch tangentially on the q axis. It is this behavior
that is characteristic of a Van Hove singularity, and it
leads directly to the second cusp in Imc(k~~, co).

We see, finally, that the line splitting in Imp is a result
of Van Hove type singularities in the available density of
state for pair-breaking excitations, amplified tremendous-
ly when the collective mode crosses the gap at 2h. The
physical origin of this line splitting implies that it would
be suppressed by disorder and finite temperatures, the
former smoothing out the Van Hove singularities, and
the latter effectively replacing the 5 functions appearing

The extra factor of d in the Coulomb interaction arises
because, in this situation, we must use a three-
dimensional rather than a two-dimensional Fourier trans-
form. This form is appropriate when the width of the
wells in which the electrons are confined is much smaller
than the layer separation.

Since we are interested only in the plasmon dispersions
in the gap, we will use the small-k expansions, as in Sec.
III, to find them. We note from the outset that, so long
as a mode may be found in the gap, then as one increases
k such that the mode exits the gap, one will get strong
mode-coupling effects when co(k)=26„along with the
line splitting in Imp explained in detail in Sec. IV. Al-
though there will be some changes in the details of the
line shape, we expect its basic structure will be the same
as in Sec. IV. The large amount of effort required to nu-
merically generate F+ and G with the single-particle en-
ergies in Eq. (18) would only yield some detailed changes,
and we believe no new physical insight would accompany
it.

In the small-k expansions, Eqs. (11) may be written as

G (k, co) —= i [KI,(co)+J, (k, co—)

+(1/2b. )J2(k, cir)]+6(k ),
F+(k, co)-=i[26 I, (co)+J, (k, co)+J2(k, co)]+6(k ),

(20)

+i [I2(k,co)+I~(k, co)]+6(k") .
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=u(k)[2b, (I2+I3)+—,'co (J, J~) 2c—o b—J, ], (21)

where U(k) appears in Eq. (19). For a fixed value of k,
the value of co satisfying Eq. (21) is the plasmon frequency
co(k). We note that, as in Sec. III, our expansions be-
come invalid when co ~ 2b, —U~k

~~

/2; in the long-
wavelength limit, this only limits us in a small interval
below the gap edge.

In Fig. 4, we plot co(k) for fixed k, d =m. /100 as a func-
tion of k~~d. One can see that, at smaller values of W the
major effect of tunneling is to open a small gap near
k~~d =0. For larger values of W (e.g., W=0. ib, in Fig.
4), we see that entire dispersion co(k) is pushed up to
slightly higher energies. It is easy to see that, for large
enough W the entire plasmon mode may be pushed out
of the gap. It is also interesting to consider how the
phase diagram illustrated in Fig. 2 is modified by the
presence of tunneling. Unfortunately, for WWO, it be-
comes dificult to meaningfully extrapolate the disper-
sions to ~=26, especially when k, d is large, which is ac-
tually the region most affected by interplane tunneling.
However, we can get an idea of what happens by plotting
the locus of points at which co(k) =1.6b„ for which our
expansions are perfectly valid, for different values of W.
Clearly, these curves will be very similar to the "phase
boundaries" given by co(k)=2D. This is illustrated in
Fig. 12. One can see that the curves move inward to-
wards k=0 as W is increased; the initial slope of the
curve also decreases with increasing W. This latter be-
havior indicates that the critical angle 0, is a decreasing

The exact forms of the functions I„I2, I3, J„and Ki
are detailed in Appendix C. To find the plasmon modes,
we need to set the denominator of Eq. (2) to zero. Using
Eqs. (11)and (20), this yields

I2+I3
4 Ct) +

2 ]

function of W, as expected. - (Recall that modes propaga-
ting in a direction 0 (0, with respect to the superlattice
axis will always lie in the gap at small enough ~k~; this is
the definition of 0, .) In Fig. 13, we plot 8, as a function
of W; note that here we have been able to extrapolate
essentially all the way to 2A, bemuse the range over
which our expansions begin to fail (v~k~~ /2) is vanishing-
ly small. As stated in the Introduction, we find that
g, =8 for W=0, and 0, vanishes at W=0.236. Note
that the vanishing of 0, indicates that all modes have ex-
ited the gap,' within our approximations, for the sample
parameters indicated in Fig. 1, there are no modes in the
gap when W & 0.236. If we estimate W from the
effective mass approximation, we find W=1/m, d, and
using a mass anisotropy of r =m, /m

~~

= 100, and

M~~~
-—Smo (as would be appropriate for Y-Ba-Cu-O), with

mo the bare electron mass, we find W=0.00756, for
d = 10 A and 6 given by the BCS formula with T, = 125
K. Thus, we find that, in this estimate, our hypothetical
superconductor (roughly modeling Y-Ba-Cu-0) should be
well inside a region where modes can propagate inside
the gap. 'We note, however, that the effective mass ap-
proximation is not actually valid at the densities we con-
sider, so that the value of W obtained this way is some-
what suspect; however, so long as this estimate is within a
factor of 30 of the actual value of W we still expect there
to be collective modes in the gap. It is important to no-
tice that the case for having modes in the gap for Bi-
based and Tl-based compounds is even stronger, where
the measured mass anisotropies have reached r =3 X 10
in the former case, and r & 10 in the latter.

Finally, it is important to note that estimates based
directly on the effective-mass approximation' for modes
propagating along the x direction —i.e., co
=4vre p lm, —may grossly overestimate the long-
wavelength limit for the I9=0 mode. For example, if we
use this estimate with the parameters listed in Fig. 1, and
m, =5rmo, with r = 100, we find m = 1.46, which is over
an order of magnitude larger than our estimate based
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FIG. 13. Critical angle, in degrees, of long-wavelength modes
as a function of tunneling rate, 8'.
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directly on Eq. (21) (see Fig. 4). Thus, such rough esti-
mates tend to be unreasonably pessimistic about whether
one can find modes in the gap when the tunneling be-
tween planes is small.

VI CONCLUSION

In this work, we have shown that layered superconduc-
tors can support low-energy collective excitations, such
that, for wave vectors k directed close to the superlattice
axis, the plasmon energy cv(k) may be smaller than the
gap energy, 2h, in the long-wavelength limit. This is an
unusual situation because, for isotropic superconductors,
the collective-mode energies are well above the gap. We
find that as the plasmon dispersion crosses the gap edge
at 2A —either by increasing k, or by tilting the angle of k
with respect to the superlattice axis—an unusual mode
coupling occurs between the collective excitations and
the pair-breaking excitations. The mode coupling leads
to a line splitting in the absorptive part of the dielectric
response. We find that one of the peaks in the line shape

is always maximum at 2h, suggesting that if one can
detect the collective mode, then one can uniquely identify
the gap as the mode passes through the gap edge at 2A.
Finally, we have considered the e6'ect of interplane tun-
neling on the collective-mode spectrum; we find that, as
the tunneling between planes is increased, the plasmon
modes are pushed up in energy. Our rough estimates for
this tunneling rate suggest that, for most high-T, materi-
als, the interplane tunneling is not strong enough to push
the plasmon mode out of the gap. Finally, we note that
estimates for the plasmon energy based on the eA'ective-
mass approximation can grossly overestimate this energy
when the interplane tunneling is weak.
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APPENDIX A: SMALL-k)( EXPANSIONS
OF I'" g AND g IN THE ABSENCE OF TUNNELING

Equations (12) may be directly expanded in k
~~

when co (26, and the resulting integrals may be handled analytically.
We find

im6 imA
G (k II, co) =— arctanu +

2&x co 8m

1 5 1 1——+
8x2g2u 3 u u 3

11+ arctanu
u

1 2 1 1+ —u +—— 1+ arctanu
4x2/2u3 3 u u2

1 3 1 2 3
2 2

+1——(1+u ) z
—1 arctanu ' v+k 2. (A 1)

—imA 2im 6
F+ ( k

~~,
co ) —= arctanu +

fax co 7j

—1 2 1 6 1—u +—— arctanu
u~2g 3 u x u

u 5 1+
2 2

+
3 4 4

arctanu4' 6 3u u x u

1 3 1+ „+ 6
— ——arctanu ( vzk

~~~

)
8x4u ]6x u 8x6u 2u 2

(A2)

lF (k)(, co) —=

~o

im co lm 1
arctanu +

4~x 4x u

1 11+ arctanu ——
u u

1 1+ +—1—
2ux

1 2arctanu .(vFk~~ )
u

(A3)

where x =6 —co /4 and u =co/2x. These expressions are well behaved for co &26—vzk~~/2. In the interval
2A —v~k~~/2~co ~25, they increase sharply and are divergent at co=26. For co) 26, they are invalid. Because the
wavelengths of interest to us are long, we have v~kI~ /2 &&2A, so that the nonanalytic behavior near 2A does not present
a problem, so long as we apply these results only to the dielectric response for frequencies below the gap edge.

APPENDIX B: ReF~ AND ReG IN TERMS OF ELLIPTIC INTEGRALS

The real parts of the quantities F+ and 6 may be expressed as one-dimensional integrals because we may write
ImI 1/[co+(E ++F. —i5)]I =+rr5(co+(E ++F )) in Eqs. (12), allowing the angular integration to be performed
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—mh dX

4~ J (1 2)1/2( p 2)1/2

2 2 ] 2
m 2x yp co

( 1 2)1/2( p 2)1/2
dX

ReF (k, co) = — f dx
'~' r' 1

4 y2 J
( 2/4 2 2)(1 2)1/2( px2)1/2

ReG(k„,~)

ReF (k„,co) ——

analytically. After a great deal of algebra, we find these integrals may be written most completely as

(81)

for cu) 26, where a=co (EFkl /2m —yo), /3

=yo(2EFk~~ /m —co ), yo ——co /4 —6, and a =0 for A@2

—4«~k
~~~

/2m+ ~'), ~ = I~/pl '" «r ~') 4(E~k1/2m
+b, ).

For a, /3) 0, these take the form

m ~ ~'+4yo I«pl
ReG = F(5,r)

4~~'I pl'" (I~/pl+1)'"

—4y', (1+la/Pl)'"E(5, r)

mA

417 co
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1/2

4 2 1/2
y pox

F(g, t) rn 2y o
2 1/2

cc+ pl
lpl

ReF+ =—

4 2 1/2

+ E(g, t)
1/2

1 —a—4ay o a —pa
1/22I 2yo a

21r p'" p

1 co F(g, t)
2 1/2

[F(g, t) —E(g, t)]

I /2
1 —a+2ay0

a —pa

Plh) 6 16y oReF
41r ct ' [co —4(a/p)yo](co —4yo)

co /3 4ccy0x 1 ——H g,
p cc) cc 4y11

(82)

F(5, r )
(a+lp )'"

ReG=,
/2 F(A, , s) —4 2E( , /1) s~,

Am 3'p

ReF

, /2 [2yoE(l, ,s) —,'co F(l,,s)], —(84)

m co 1 —
I a/Pl

4~p 1/2 '
1 2/4 2'

——'co' F(5,r )
p )1/2

2

ReF neo 1 II 6, — r
4~ ( + p )1/2 ' g2

where cos5=a, r =1/(Ia//3I+1)' . Finally, for a(0,
p(0, we find

, —1 F(g, t)
4yo

where F, E, and II are elliptic integrals of the first,
second, and third kinds, respectively, t = (p/a )', and
sing=[a(1 —ct )/(a —pa )]' . For a)0, p(0, we find

where sink. =[(1—a )/(1 —Ia/pl)]'/ and s =(1
—

I a/pl )' . Note that, in all three cases,
ReG=(4b, /co ) ReF+', however, because the Kramers-
Kroenig transform is a frequency integral, the imaginary
parts of these will not, in general, obey a simple relation-
ship.

APPENDIX C' FORMS FOR I] ~ I2~ I3~ 1] ~ J2~ AND K]

Integrals involved in computing ImF+ and ReG when tunneling between planes is allowed may be evaluated in a
fashion similar to that described in Appendix A. We find that the integrations with respect to q and q may be han-
dled analytically; the integrations over q, must be performed numerically. The latter is not dificult, however, because
the integrands are very well behaved, and hence may be handled with standard integration packages. We find that the
functions are conveniently parametrized as shown in Eq. (20), with

I, (co)=—m 1 7T

21' arctanu + dz arctanuo(z)
8~ COX 7T

(C 1)
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(C4)

8' cosz 1 1 1 1
1 — + 1+ [arctanu +arctanuo(z) ]

u x u

+ 1+
2

1 1

x u

u Vo

1+u 1+Up

1 (u+uo) .
b u

(C5)

1 pz 1 1
IC, (k, ro) = J, (k, co)+ dz P(z) arctanu +arctanvo(z) — (u +uo —arctanu —arctanuo

2b. (2n )2d 4rox —vr u
(C6)

where x —= (b, ro /4)'~, u =co/2—x, uo(z) =you/(yo+6 )'~, u, (z)= ro/2(b, +yo)'~, yo(z—) =EF+ 8'cosz,
p(z) —=yo(z)k

~~

/m+( 8'k, d sinz), and b (z) =
—,
' [k

~~

/m+( 8'cosz)(k, d ) ]. One may check that, with these expressions,
Eqs. (20) reduce to the forms shown in Appendix A for I'+ and G when W~O, as we expect. Note that I2, I&, J), Jq,
and K& all vanish when k~~, k, —+O.
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