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Spin-wave theory for anisotropic Heisenberg antiferromagnets
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The anisotropic Heisenberg antiferromagnet (AF), which is defined as a three-dimensional simple-
cubic lattice with in-plane antiferromagnetic interaction JII and interplane coupling J& =yJII and is be-
lieved to describe the magnetic properties of the cupric oxide materials, is studied using low-

temperature spin-wave theory. The dependence of the T 0 staggered magnetization, ground-state en-

ergy, transverse susceptibility, spin-wave velocity, and the Neel temperature T& on the anisotropy pa-
rameter y (0» y~ 1) are obtained. These resu1ts are found to be in satisfactory agreement with ex-

isting experiments on cupric oxide materials. The apparent difference between the muon-spin reso-
nance and neutron-scattering results for the ordered moment in the AF state is well explained.

The discovery of the copper-oxide superconductors ' has
produced great interest in the Heisenberg antiferromag-
netic (AF) model. This is because the antiferromagnetic
order of Cu + spins has been observed in La2Cu04 and
YBaqCu306, which become superconducting when doped.
While it has been proposed that magnetism may play an
important role in high-temperature superconductivity, the
study of magnetic ordering in these families of materials is
interesting in its own right. These systems are highly an-
isotropic with a very strong coupling between Cu spins in
the plane and very weak coupling between planes. Thus,
these systems have interesting magnetic properties which
may be representative of a wider class of quasi-two-
dimensional antiferromagnets. For this reason, we decid-
ed to carry out a detailed study of the magnetism of a
classical Heisenberg model with interactions in the range
appropriate to cupric oxides.

It is now well established from numerical work (quan-
tum Monte Carlo, Green-function Monte Carlo, series
analysis ) and different variational methods that the
ground state of the two-dimensional (2D) S = — Heisen-
berg AF does indeed have long-range Neel order. All of
its ground-state properties as well as the long-wavelength
excitations are well described by straightforward spin-
wave theory. ' Spin-wave theory is based upon a large-S
expansion, starting from a ground state with Neel order.
Why spin-wave theory is so accurate even for 5=

2 is still
an open and interesting question. Due to these successes,
we decided to use the regular spin-wave theory to study
the ground-state properties of the anisotropic Heisenberg
antiferromagnet on a simple cubic lattice. In order to in-
vestigate the dependence of the Neel temperature, T~, on
the anisotropy parameter y we generalized the Green's
function formalism ' with its random-phase decoupling
to the anisotropic Heisenberg antiferromagnet. This
random-phase approximation gives a better estimate of
Ttv compared with Monte Carlo-simulation results'' than
mean-field-theory and low-T spin-wave theory results.
One of the most interesting results of this study is that it is
possible to have large changes in T~ as the anisotropy y
changes, while the staggered magnetization, i.e., the or-
dered moment of the AF state, remains constant. This
is consistent with muon-spin rotation experiments' on

La2Cu04 —~ and not with the neutron-scattering experi-
ments. ' Details of the calculation and discussion of the
results will be presented in the remainder of the paper.

We have studied the Heisenberg antiferromagnetic
model on a simple cubic lattice with in-plane antiferro-
magnetic interaction Jll and interplane antiferromagnetic
interaction J&, which is much weaker than Jll. The Ham-
iltonian for this model is

0 = —Jtgs" s —J gs's

&0= —
2 ~l Jill»'(I+&/»

The staggered magnetization is

(s;& =(s —) '/s),
the perpendicular susceptibility at T=O is

x (0) = [I —(1/2s) (x+k')1,Wg pg

(2)

(3)

and the spin-wave excitation energy is

e(k) =42~
I JiilS(I+V2S)ka,

where the first sum is over four nearest neighbors in the
plane and the second sum is over the nearest-neighbor in-
terplane interactions. The ratio of the two interactions,
y =J~/Jt, is inversely proportional to the strength of the
anisotropy of the system and should determine the transi-
tion temperature T~ of the model. When y=0, we have a
2D Heisenberg AF with no interplane interactions and
T~ =0. When y =1, we recover a simple cubic Heisen-
berg AF with equal interactions for which T~ =1.35 for
classical spins'' S; with magnitude equal to one. We will
use the Boltzmann constant ktt =1 and l J~tl = l.

To obtain, within the spin-wave theory, the ground-
state properties, as well as the spin-wave excitation ener-
gy, for the anisotropic Heisenberg AF model given by Eq.
(1), we follow the standard two-sublattice approxima-
tion. ' Using the Holstein-PrimakoA' transformation in
the two sublattices, the Fourier transform of Eq. (1) can
be easily diagonalized. Following the notation in Calla-
way's book, we have the following results. The ground-
state energy is given by
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where

~-I ——g(1 y)—) '"a,
N I

—lb,2 1

(1 y2) 1/2

yq
- (2cosk„a+ 2 costa+ 2ycosk, a)/zc

and z =4+2y. The values of X and X' have been calculat-
ed numerically and our results for y=O (square lattice)
and y=1 (simple cubic lattice) agree with those of An-
derson and Kubo.

To understand the dependence of the Neel temperature
T~ on the anisotropy parameter y, one must develop a
theory that will give T+ =0, when the interplane coupling
J& =0, i.e., when the model given by Eq. (1) becomes a
2D Heisenberg antiferromagnet. The simplest of the
mean-field approximations is that in which the Geld spin
feels is just determined from the sum of its interactions
with its neighbors. For the classical Heisenberg model
with spins of unit magnitude, Ttv = —,

'
(4~Ji ~

+2)J&()= —,
' (Jt[(4+2y), which obviously is wrong be-

cause for y=0, it gives a finite T~. This simple mean-
field approach is not good, since it does not correctly take
into account the strong Auctuations which destroy long-
range order in the limit of J& 0. We have, therefore,
calculated the Neel temperature T~ from the theory of
ferromagnetism which is based on the Green function
method. ' Bogolyubov and Tyablikov were the first to
apply the Green function method to ferromagnetism for
the spin- 2 case and they have evoked the random-phase
decoupling scheme to reduce the Green functions to the
lowest order. We have followed ' the random-phase
decoupling method to calculate the Ttv for the general
spin S for the anisotropic Heisenberg model. Within this
approximation, the result for T~ can be written as

3G(0) '

where G(0) =gt, 1/z(1 —yk), z =4+2y, and yt, is given
by Eq. (6). G(0) is the Green function' of the periodic
anisotropic tight-binding system at the bottom of the
band. G (0) can be calculated analytically for y =0
(square lattice) and numerically for all the other values of
the anisotropy y. A simpler expression for G(0) can be
obtained' by integrating over the two variables k, and k~
and yielding G(0) =(I 2/~ )fodk, tK(t), where t =2/(2
+ y

—ycosk, a) and K is the complete elliptic integral of
the first kind. In the limit of small anisotropy parameter
y~ 0, we obtain G(0) =(I/4tt) ln(32/y), which gives an
analytic expression for the dependence of T~ versus y. In
this weak limit, we have

correlations in the planes exactly, and the interplane in-
teractions within the mean-field approximation. The rela-
tion between Tz vs y is very important and in Fig. 1 we
compare the random-phase approximation results [Eq.
(7)] for TIv with the Monte Carlo simulations results on
the classical anisotropic Heisenberg system. Notice that
the agreement is extremely good for all the anisotropies y.
Ttv increases very rapidly as y increases for small y, but
for y) 0.1, Ttv is nearly linear with y. In particular, the
small y dependence of Ttv is described very well by the ex-
pression given in Eq. (8). However, our Monte Carlo
techniques cannot handle very small y, since at these
smaller interplane interactions the magnetic correlation
length is much larger than the sample size [most of the
simulation runs" were on sizes 1V -18000 (30x 30 X 20)].
This is a very interesting result. It shows that the transi-
tion from a paramagnetic Ttv =0 for y=O to an antiferro-
magnetic T~~O takes place abruptly. Notice that even
for very small anisotropic coupling, y=0.001, T~ =0.404,
of the same order of magnitude as the y 1 value of Ttv,
which is roughly equal to 1.36. This is simply due to the
fact that the two-dimensional character (Ttv =0) is very
unstable, being approached (as y~0) very slowly. In
other words, even a very small out-of-plane coupling is
enough to destroy the two-dimensional character of the
transition. In Fig. 1, we also plot the results for T~ versus

y which we have obtained" using the modified spin-wave
theory of Takahashi. ' While the agreement with the
Monte Carlo results is good close to y =1, for all the other
cases the spin wave T& are always lower than our Monte
Carlo simulations. In Takahashi's approach, T~ is like a
Bose-Einstein condensation temperature below which
long-range order results. The random-phase approxima-
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Similar results were obtained' for the dependence of the
mobility edge on anisotropy parameter for a disordered
anisotropic tight-binding model. Equation (8) can also be
written as (y/32) exp(4'~ J~~ ~/3T~) =1, which is similar to
a renormalized mean-field theory" that treats the spin

FIG. 1. Neel temperature T~ as a function of the anisotropy
parameter y=J&/J&. Results from the Monte Carlo (MC)
simulations (solid triangles), from the random-phase approxi-
mation (RPA) (solid circles), and the low-temperature spin-
wave theory (open circles) are presented.
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tion ' scheme to reduce the Green's functions to the
lowest order takes into account the hierarchy of coupled
equations. As expected, the naive mean-field theory re-
sults (not shown in Fig. 1) overestimate T~ for all the
values of y (e.g., Trv =1.33 for y 0 and T~ =2.00 for
y= 1). We have also compared" the results of the renor-
malized mean-field theory with the Monte Carlo simula-
tions, not shown in Fig. 1 and have found" that T~ ob-
tained within this renormalized mean-field theory is much
higher than the Monte Carlo" for y~ 10

In Fig. 2, we plot the spin-wave results for the staggered
magnetization (So) and the T=O perpendicular suscepti-
bility x&(0) versus the Neel temperature Trv for the case
of S= 2, in order to be able to compare our results with
experiments on the cupric oxide materials. Notice that
the ordered moment (So) in the AF state remains the
same, close to its y=O value of 0.303, as T~ increases
from its zero value, all the way to T~=0.3. As T~ in-
creases further, the system is more three-dimensional and
its (So) increases almost linearly from Trv =0.4 to
T~ =0.9 and then (So) saturates to its three-dimensional
value of 0.4216. The behavior of x&(0) vs T~ follows
that of (So). It has been known' that the magnetic prop-
erties of the AF compound LazCu04 —~ depend sensitively
on small diA'erences in the oxygen content y=O to 0.03.
The input of 0, equivalent to the substitution of Sr +

for La +, removes electrons and creates holes in the sys-
tern, and therefore, suppresses the three-dimensional AF
ordering. Neutron scattering experiments ' on La2Cu-
04 —~ have revealed that the T=O ordering moment of the
antiferromagnet decreases by as much as a factor of 3 as
the Neel temperature Tjv decreases. However, muon-spin
rotation experiments' on the same samples show that the
ordered Cu moment remains unchanged close to =0.6
pg/Cu despite the large difference in the ordering temper-
ature Trv (from 300 to 15 K). A similar behavior has
been observed in YBazCu306~„(Ref. 18) and Sr2CuOz-
C12 (Ref. 19) samples. In this respect, muon-spin rotation
and neutron measurements appear inconsistent. Our
theoretical results from Fig. 2 show that the T=0 ordered

1.32—
I ! t

I
t 'I I

1.28

moment (gag(So)) remains constant, closed to 0.60
pg/Cu, while T~ can change a lot. These results are con-
sistent with the muon-spin rotation experiments. %ithin
our spin-wave theory, the introduction of oxygen defects
does not change the T=O moment but changes mostly JII
and possibly J~ which then drastically changes Trv, since
T~ is a very sensitive function of the anisotropy y (see
Fig. 1). To reconcile with the neutron-scattering results,
one has to argue that either the long-range order is not
over the whole sample, and that is the reason for the
reduction of the T=O moment, or that the magnetic or-
dering becomes more and more short ranged with increas-
ing oxygen content (i.e., with increasing number of holes)
resulting ' in the decrease of Tz. Alternatively, if the
T=0 magnetic moment of 0.34 p~/Cu seen in the
neutron-scattering experiments for low values of T~ is
uniform throughout the volume of the crystal, then its
reduction to such low values, much lower than the spin-
wave value, is due to as yet an unidentified mechanism.
From Fig. 2, we have that x~(0) remains constant equal
to its two-dimensional value of 0.449 Ng pq/2z I J~~ I, while
Tz drastically changes. Some preliminary results ' sup-
port this picture, i.e., that Tz can change drastically while
x~(0) remains constant. However, more careful experi-
ments on single crystals have to measure x&(T), (So), the
spin-wave excitation energy, and Tz to check the predic-
tions of our anisotropic spin-wave theory. In Fig. 3, we
plot the ground-state energy F.o and the spin-wave veloci-
ty U, versus the anisotropy y for the 5= 2 case. %'e have
normalized Eo by the Neel energy EN«~ = —N!J~~IzS /2
and the U, by v 2z

I J~~ISa. Notice that the behavior of Eo
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FIG. 2. The T=O staggered spin (S$) and perpendicular
magnetic susceptibility x&(0) vs the Neel temperature Tz for
an anisotropic Heisenberg antiferromagnet with S= 2 . The
x&(0) is normalized by Ng pa/2zI J~~I.

FIG. 3. The ground-state energy Fo and the spin-wave veloci-
ty v., vs the anisotropy parameter y. Fo is normalized by
Era i= —,

'
NzI Jt|IS and v, by ~2z IJiiISa.
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and v, vs y is quite similar. For y=0, we have the 2D re-
sults of Eo =+ 1.3159 EN„~ and v, =1.158&2!Jt!a. As y
increases, Eo and U, decreases and monotically reach their
3D results for the simple cubic lattice with y =1.

Within the anisotropic Heisenberg AF model, the only
parameter that enters the theory is the anisotropy param-
eter y. For LazCu04, we have that Ttv/JR~=300/1000
=0.300, which gives a value of y= 3 x 10 . The T=0
staggered moment is (So) =0.304, while x&(0) =0.45
&g ptt/2z! JI~ I

=2.11 x 10 cm /mole using =2 and the
spin-wave velocity Av, =de(k)/dk =1.158 2!J~~!a=0.54
eVA using a =3.8 A. and J~~ =1000 K. For YBazCu306,
we have that Ttv/Jt =450/1200=0. 375, which gives that
y=4X 10, and therefore, (So) =0.31, x~(0) =1.80
X 10 cm /mole, and A v, =0.65 eVA. using a =3.85 A.
For Sr2Cu02Clz, we have that Tjv/J~~ =250/900=0. 278,
which gives y = 1 x 10, and therefore, (So)=0.303,
while x&(0)=2.35X10 cm /mole, and Av, =0.50 A
using a =3.8 A. and Jt =900 K. Notice that the most an-
isotropic system is the SrzCuOzC12 since the distance be-
tween the Cu02 planes is the largest, while the coupling
between the planes in YBa2Cu306 is stronger than in
LazCu04. The above predictions for x&(0) and Av, are
in qualitative agreement with the experiment. ' ' How-
ever, more experiments are needed to check the predic-

tions of this theory.
In conclusion, we have calculated within the traditional

spin-wave theory the ground-state properties of the aniso-
tropic Heisenberg antiferromagnet on a simple cubic lat-
tice, this model is believed to describe the magnetic prop-
erties of the cupric oxide materials. We have also calcu-
lated the Neel temperature Ttv versus the anisotropy pa-
rameter y. While the dependence of the T=O ordered
moment versus T~ is in agreement with muon experi-
ments, more detailed experiments on single crystals have
to measure x~(T), (So), v„and Ttv in order to be able to
check the predictions of the anisotropic spin-wave theory.
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