
PHYSICAL REVIEW B VOLUME 44, NUMBER 9 1 SEPTEMBER 1991-I

Stability of the Nagaoka state in the one-band Hubbard model
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We discuss the stability of the saturated ferromagnetic state of the one-band Hubbard model in the
thermodynamic limit. We prove rigorously that the Nagaoka state is stable on a d-dimensional (d =2, 3)
simple-cubic lattice if the number of holes Nh is less than 1V&, 0 a & 1/2d. Finally, we explain briefly
why the Nagaoka state is probably unstable when Nz )&1K&

An understanding of strongly-correlated electron sys-
tems becomes increasingly important in present-day
condensed-rnatter physics. Apart from its possible
relevance to high-temperature superconductivity, the
Hubbard model, which is the simplest strongly correlated
electron model, could also be the right model for
itinerant ferromagnetism. In fact, the only known
rigorous result about itinerant ferromagnetism, the
Nagaoka theorem, ' was derived from the infinite-U
Hubbard model. Unfortunately, despite extensive work
over many years, this model and itinerant ferromag-
netism are still poorly understood. Recently, many phy-
sicists have actively pursued these problems. In par-
ticular, in Ref. 8, we proved that the Nagaoka saturated
ferromagnetic state is stable in the thermodynamic limit
when the number of holes, N&, is finite. However, the
problem of whether the Nagaoka state is stable when the
density of holes is finite in the thermodynamic limit is
sti11 unsettled. The authors of Ref. 7 showed that the
Nagaoka state is unstable if the hole concentration is
larger than 0.49. Very little is known about smaller-
hole-concentration cases.

In a recent paper, Barbieri et al. showed that, when
Nh « lnNA (N~ is the number of lattice sites) in two-
dimensional or N& «X~ in three-dimensional lattices,
the Nagaoka state is locally stable in the thermodynamic
limit. Although the density of holes is zero in their case,
their results give us a deeper understanding about the sta-
bility of the Nagaoka state. In this article, we show that
results of Ref. 9 can be greatly improved in the two-
dimensional case, using a technique we developed in Refs.
3 and 8. And our proof is mathematically rigorous.

Our main results can be summarized in the following
theorem.

Theorem: Let A be a d-dimensional simple-cubic lat-
tice. Let Xz=L, " be the number of lattice sites and X&
be the number of holes. Then, the Nagaoka state is stable
in two dimensions (three dimensions) as Nz —+ oo, if
N„-NA with 0&a& —,

' (0&a& —,').
The strategy of our proof is simple. We first use the

variational principle to find an upper bound to E, the
energy of the exact ground state. In fact, we choose the
Nagaoka state as the trial function. Then we obtain a
lower bound to E by a well-known lemma in matrix
theory. Finally, we show that these bounds approach the
same quantity in the thermodynamic limit under the con-

ditions stated in the theorem.
This article is organized in the following way. We

shall first introduce some necessary notation and termi-
nology. Then we write the Hamiltonian in matrix form
and make some important observations. After these
preparations, we prove the theorem. Finally, we make
several remarks.

Take a finite lattice A. With an infinite on-site repul-
sion, the Hubbard Hamiltonian reduces to

H=Pg g t(ctc +etc; )P,
o &ij )

where c;, c; are the creation and annihilation operators
of an electron with spin o at site i and (ij ) indicates
nearest-neighbor pairs. In formula (1),

P= Q (1—n;tn;q)

is the projection operator that projects wave functions to
the subspace without double occupation at each site. Al-
though our results can be proven for either sc, bcc, fcc, or
hcp lattices, we shall stick with a square lattice with
XA =L sites for definiteness. There is one point that is
worth mentioning. With respect to the Hamiltonian (1),
sc and bcc lattices are bipartite; i.e., their sites can be di-
vided into two separate groups such that an electron does
not hop among sites belonging to the same group. In this
case, the sign of t does not make any difference. But, for
fcc or hcp lattices, our theorem only holds under the con-
dition t )0. One can find a detailed discussion about this
subject in Nagaoka's original paper (Ref. 1). Further-
more, we shall impose the open boundary condition on
lattice A for technical convenience.

Following Nagaoka, we shall introduce a set of orthog-
onal and normalized many-body wave functions which
completely span the Hilbert space. In doing that, we
have to be cautious about the order of the electron opera-
tors. First of all, we define an order among the lattice
sites by alphabetical order. Setting up a coordinate sys-
tem, we assign a pair of integer coordinates (x,y) to each
site of A. Take two sites i =(x„y, ) and j=(x,y2). If
x, & x2, then we define i &j. When x

&
=x2, the order of i

and j is determined by their y coordinates. By alphabeti-
cal order, y, &y2 implies that i &j. With this order, we
now introduce
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c i c . c 10) (3)Jpf j —
$ J~ j + i

h Nh h Nh A

H=P g g ( t)(c —cf +c.; cj )P,
cr (ij )

(5)

and use the anticommutation relations. A direct calcula-
tion yields the above conclusions. Letting
(j„jz, . . . , j~ ) and a run separately over all the possible

h

configurations, we obtain a set of wave functions. Obvi-
ously, they are orthogonal and normalized. It is easy to
show that they are a basis of the Hilbert space with Nh
holes and without double occupation. In terms of them,
we can write the Hamiltonian in a matrix that has the fol-
lowing characteristics.

(i} Since the Hamiltonian preserves N& and N&, which
are, respectively, the number of up-spin and down-spin
electrons, the matrix H is formed by some square subma-
trices along its principal diagonal line. Other elements of
H are 0's. Each of these submatrices corresponds to a
specified pair N

&
=n, and N

&

=n 2. Obviously, the
lowest eigenvalue of H coincides with the lowest eigenval-
ue of some submatrix H(ni, nz). Therefore, we can con-
centrate on these submatrices.

In (3), ~0) denotes the vacuum state and a stands for the
spin configuration

(+1»+ —1~+ ' +1~ ~ +' —l~+ ' +1~ ' ' ~ +NJl J] Nh Nh A

(4)
Since there are N& creation operators missing in
'll( ji, . . . , jz ', a), the wave function contains Nh holes lo-

b

cated at sites j, &jz « jz . The phase factor in (3)
h

deserves more explanation. With this factor, the signs of
the nonzero Hamiltonian matrix elements are negative
when one hole changes order with no hole or an even
number of holes (for an odd number of holes, the matrix
elements are positive). To see that, we rewrite the Hub-
bard Hamiltonian

(ii} Since the Hamiltonian contains only hopping terms,
all the elements along the principal diagonal line in
H(n„nz) are 0's. Furthermore, the nonzero elements
are either t or —t. For convenience, we call a pair of
wave functions %,=%(j„.. . , j&,a) and

h

hz =4(j'„.. . ,j „'p) superneighbors if they contribute a
h

nonzero matrix element &'Il, ~H ~%'z). It is not difficult to
see that, for 4& and %2 being superneighbors, some jk
and jz must be nearest-neighbors in the lattice A and the
rest of the sites should be identical, since the Hamiltonian
can only change the position of one electron each time.
Therefore, any wave function has, at most, zN& super-
neighbors where z is the number of the nearest-neighbors
of each site in A. On the other hand, if N& ~

—,'Nz, then
there is at least one wave function 4 which has exactly
zN& superneighbors. For instance, Fig. 1 represents such
a wave function. In other words, each row of H(n i, nz }
can have, at most, zNh nonzero elements, while, for
NI, ~ —,'N~, there must be one row which has exactly zN&

nonzero elements.
These observations are indispensable to our proof.
Proof of the theorem We firs.t find a good lower bound

to the lowest eigenvalue E of H(n„nz). This is
achieved by applying the following lemma.

Lemma: Let A =(a; ) be an n Xn matrix. Any eigen-
value A, of it must satisfy at least one of the following ine-
qualities.

One can find a proof of this lemma in Ref. 3.
In our case, all the matrix elements a;; vanish and ~a;k ~

are either 0 or t.
Therefore, any eigenvalue of H ( n „nz ) satisfies

~A,
~

& t times the largest number of the nonzero elements in a row

=t(zNh ), (7)

c.e.,
—zN~t A, zNI, t .

+trial
I JI J~

h

h
(10)

In particular, inequality (8) holds for the lowest eigenval-
ueE . Therefore,

—4N t~Eh — g

for z =4 in the two-dimensional square lattice.
To get an upper bound to Eg, we take the Nagaoka

state as our trial function. Let

In (10), the spin configuration index a is dropped because
all of the spins are up in the Nagaoka state. The varia-
tional principle tells us that

Notice that 4„;,& is a linear combination of
'p(ji, . . . , j~ ) with equal weight. Therefore, evaluation
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FIG. 1. The configuration of a wave function having exactly
zXh super-neighbors. 0 Electron. 0 hole.

0

FIG. 2. The positions between sites i and j are marked by a
cross.

of (11) can be reduced to a problem of combinatorics. In
particular, the denominator in (11) is

Nh NA.

N), !(N~ —
N), )!

(12)

which is the number of ways to distribute N& particles
among Xz lattice sites, subject to the condition that no
double occupation is allowed. Calculation of the numera-
tor is also straightforward but a little cumbersome. For
the reader's convenience, we shall show it in detai1.

Consider a term of H

tal part of the Hamiltonian.
Take a horizontal bond (ji&. Assume that i &j.

Then, there are L —1 lattice sites between them with
respect to alphabetical order. In Fig. 2, these sites are
marked by crosses. There are two cases which we have to
consider separately. (a) There are no holes or an even
number of holes between i and j. (b) There are an odd
number of holes between i and j.

In case (a), the nonzero matrix elements are t As--.
sume that there are 2k ~L —1 holes between i and j.
Distributing these holes among L —1 available positions
gives a factor CI &. Therefore,

h, =( —t)P(cjc; +c;cj )p (13) Nh (2k + 1)
t. l I"j I q't. ) & zk

= 2rcN —(I.+ l ) cL —l (15)

&q'„;.)IH. I+„;.) &
& —2«N" 2(NA —41. ) . (14)

Next, we calculate the expectation of H&, the horizon-

(the spin index cr is dropped). The pair of sites i and j are
in either a vertical line or a horizontal line. Therefore,
the Hamiltonian can be split up into two sums, H„and
H), . H„(H), ) contains only vertical hopping terms (hor-
izontal hopping terms). With respect to alphabetical or-
der, a vertical hopping term cannot change the order of
holes since i and j have the same x coordinate. There-
fore, all the nonzero matrix elements to which a vertical
hopping term contributes are ( —t)'s as we said before.
Furthermore, if (tIl, lh; ItII2& = —t, then either i or jmust
be a hole and another is occupied. In 4, and %2, the hole
and the electron change positions. Therefore, the expec-

Nh
—1

tation of h; in the Nagaoka state is —2tCN 2, which is

the number of ways to distribute N),
—1 holes (one hole

sticks with bond (ij &) among N~ —2 available positions
(sites i and j are excluded). The factor 2 comes from two
possible choices i and j for the hole sticking with them.
Since there are more than N~ —4L vertical bonds in A,
the expectation of H, satisfies

where ( &2k indicates a 2k-holes-between-i-and-j sector.
In case (b), the matrix elements are t's Therefo. re,

Nh (2k +2)
( +trial I ij I +trial & 2k + 1 CNA —(L + 1) L —1

Summing up these contributions, we obtain

(16)

k+] Nh
—(k+1) k—2t g ( —1) CNA (L+1)CL 1

k=0

(17)

Under the conditions stated in the theorem, i.e., NI, -Nz
with 0 a & I /2d, the sum in (17) is negative when N/, is
sufficiently large. (In fact, by following the analysis from
(19) to (25), one can show that the sum is approximately

[—2tN), +o(l)]CN" jN/, where o(1) is an infinitesimal

quantity) Multiplying this quantity by the number of
horizontal bonds in A, which is more than N~ —4L, we
obtain

L —1

~ +tria)IHh I+trial &
& 2t(NA —4~ ) & ( —1)"+'CNA (L+ ))CL 1——

k=0
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The sum in the curved bracket can be estimated as follows.

k+1 Nh (k+1) k
'

Nh
—(k+1) k Nh (k+1)

C)v~ (L—+ i) L —i y C)v„(L—+ 1) L —i + x CN (L—+ i)CL —i
k=0 k=0 k is odd

k~1

Nh
—1 h (k+1) k——

C~A 2+2 g C~~ (L, +i—)CL
k is odd

k&1

Nh
—1 .

Here, we used the fact that the first sum after the first equals sign is the coefficient of t " in the expansion of

(1+t) A (I+t)~ i=(1+t)

(19)

(20)

Combining formulas (11), (12), (14), (18), and (19) yields

&g « +„;.)IH l~„;.) &/& +„;.)I+„;.i &

= ( & +„;.ilH. I +„;.) &+ & +„;,) IHh I +„;.i & )/C)v"

Nh
—1 Nh Nh

—(k+1) k Nh4t(N~ —4L)C—iv" 2/C~" +4t(NA 4L) g— C)v" (L, + i)CL, , /C~"
k is odd

k~1

A little algebra shows that the first term of (21) is

4N„t+—O(N), L/NA) .

(21)

(22)

The second term demands more thinking and the term of k =1 in the sum has to be evaluated separately. First, each
term of the sum satisfies

h Ck /C h & (1/k 'I)[N0+1L k/(N L )k+i][1 (N /N )]2 —k

& (1/k! )[N"+ 'L "/(N L)"+']— (23)

NhL/(NA L) & 1, — (24)

then the right-hand side of (23) is a decreasing function of k. In particular, for N), -NA, O a & —„the condition (24)
holds when Nz is sufficiently large. Replacing the terms in the sum with their upper bounds, we see that the second
term of (21) is bounded by

4t(N~ 4L) g (1—/k!)[ Nq"+'L /(NA L) +']—
k is odd

k&1

=4t(N~ 4L)[NhL/(—N~ —L) ]+4t(Nt, 4L) $ (1/—k!)[Nh +'L "/(NA L)"+']—
k is odd

k~3

& 4t [Ni, L/(Nq —L)]+4t(N~ —4L)(1/3!)[NhL /(N~ L) ](L/2)—
=O(NhL/NA)+O(N), L /N~) .

Therefore,

4Nht &E & —4N), t+O(N—), L/N~)+O(NhL/NA)+O(N), L /N~) .

(25)

(26)

Since L =Nz, the last three terms of the right-hand side
of the above inequality approach zero if Nz -Nz,
0~ ca (—,'. It implies that the energy of the exact ground
state E and the energy of the Nagaoka state E~, become
degenerate in the thermodynamic limit. And the degen-
erate energy is —4N& t.

Our proof is accomplished. QED.
Some remarks are in order.

Remark 1. Using the same technique described above,
we can easily show that the Nagaoka state is stable in
three-dimensional simple cubic lattice, if Nh-N~ with
0~ a & —,'. In this calculation, one should notice that the
largest number of holes between i and j is
L 1-O(NA~ ). The—refore, one has to evaluate the
sum in inequality (21) to k = 5 term.

Remark 2. Our result shows that the energy of the ex-
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act ground state approaches —%&zt in the thermodynam-
ic limit when the number of holes is less than Xz,
0&ca & —,'d. On the other hand, Nagaoka's theorem tells
us that the energy of the ground state is —zt if there is
only one hole in the system. ' Therefore, it seems that
each hole behaves like an independent particle and con-
tributes a "Nagaoka energy" —zt to the system. That
can be achieved by getting away from other holes as far

as possible. In other words, holes tend to Bee away from
each other to be independent. Certainly, when there are
too many holes and space is too crowded, independence is
destroyed. In this case, the Nagaoka state becomes un-
stable. Although we cannot prove it, we doubt that,
when XI, ~ X~, o.) 1/2d, the lattice is already too
crowded for holes to be comfortable.
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