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Adiabatic demagnetization of antiferromagnetic systems:
A computer simulation of a planar-rotor model
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We report a computer simulation of the adiabatic demagnetization of a two-dimensional antiferro-
magnetic (AFM) model system, based on the molecular-dynamics method, and motivated by recent stud-

ies in the nuclear magnetism of copper. As opposed to Monte Carlo computations, we are able to calcu-
late directly the isentropes 8(T) with perfect control of adiabaticity, having macroscopic reversibility
available as a signature. We then find a distinct minimum temperature at a nonzero external field in the
vicinity of the phase-transition line separating the antiferromagnetically ordered phase from the high-

temperature region. This is compatible with both earlier Monte Carlo calculations of Lindgard, Viertio,
and Mouritsen [Phys. Rev. B 38, 6798 (1988)] and a mean-field-approximation analysis also presented in

this paper. We propose that the shape of the isentropes is a feature of simple AFM systems with next-

neighbor interactions.

I. INTRODUCTION

For about the past decade, there has been a continuous
period of interest in nuclear magnetism. In 1982 Huiku
and Loponen' reported a phase transition in the spin sys-
tem of copper at nanokelvin temperatures. The experi-
mental methods have been improved a lot since, and
different methods of investigation have been employed
(e.g. , recent neutron-diffraction studies of nuclear order-
ing). Yet a sound theoretical understanding of the order-
ing process in antiferromagnetic systems subject to an
external magnetic field must still be developed. As is
often the case, one resorts to MFA analysis and computer
simulations to get first ideas of how nature actually
works.

Our interest in the demagnetization of antiferromag-
nets is based on this background. However, we find it is
appealing by itself to show the counterintuitive features
of the isentropes in such systems.

II. OUR NIGDEL

Interestingly, the Hamiltonian of a nuclear spin system
like copper is quite well known. Disregarding all the
complications of the spin Hamiltonian of copper our
model is classical, contains no contribution of long-range
interactions, and particularly no dipolar forces: We
study a two-dimensional array of 32X32 classical rotors
at fixed positions, each possessing one rotational degree
of freedom with next-neighbor interaction. Our Hamil-
tonian is

H= —J g cosa,.cosa, —Bgcosa,
(i j) i

J(0, B)0,
with an Ising-like anisotropic interaction, well suited for
a continuous multistep algorithm in a molecular-
dynamics calculation. A similar model has been studied

by one of us earlier and in a different context. As dis-
cussed there, we add a small ferromagnetic coupling
—Kg(; ~

&sina;sina~, with K )0, ~K~ &&
~ J~, which at low

T prevents the separation of the system into independent
oscillators and thus facilitates transport through the lat-
tice. We leave aside a further discussion of this perturba-
tion, because its only measurable effect is the improve-
ment of the data in regions where the decoupling of ro-
tors would effectively inhibit equilibration.

To avoid misunderstanding, our model is not from the
very start meant to model true nuclear magnetism, but is
a vehicle to show the qualitative behavior of antiferro-
magnetic isentropes, which we assume to be independent
of the particular Hamiltonian. (In the same sense as the
plateau and cusplike behavior of the perpendicular and
parallel antiferromagnetic susceptibility, respectively, is
discussed as a universal feature of such systems. )

In the following paragraphs we first report the results
of a MFA analysis of our model system, thereby heuristi-
cally discussing the expected behavior of antiferromag-
netic isentropes. Then we give a short overview on the
simulation techniques which we employed and finally we
present the results of the computer simulation.

III. MOLECULAR FIELD ANALYSIS

From the MFA Hamiltonian H = —(zJm-
+B )cosa+ (where the index denotes two sublattices with
respective magnetizations m ——= (cosa+) and z is the
coordination number) one has the coupled self-
consistency equations

m —=( I /Z —)Tr[cosa+exp[P(zJm + +B )cosa+]]

with

Z —+ =Tr [exp[P(zJm +B)cosa+] I

which are easily stated in terms of modified Bessel func-
tions of zeroth and first order.
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IV. COMPUTER SIMULATION

First of all a survey of the methods will be given and it
will be shown how one can use a simple calculation of the
rotor dynamics for extraction of thermodynamical quan-
tities.

Until now we have only specified an interaction to
define the AFM model (1). For the purpose of molecular
dynamics we have to add a prescription for the dynamics
of the system. As usual this is done by adding a kinetic-
energy term to the interaction Hamiltonian. In our case
it is the rotational kinetic energy of classical rotors with a
fixed center of mass and one angular degree of freedom.
We will refer to the model system governed by this
modified Hamiltonian as the "rotor model. " It should be
emphasized at this point that we introduce the rotor
model for dynamical reasons only while we are finally in-
terested in the magnetic model (1). Consequently we
have to extract observables for the rotor model from
simulation data and then to transform these into the
equivalent observables of model (1). Obviously this is a
problem for such observables which are based on the
momentum distribution, as, e.g., temperature and entro-
py particularly. We will address this topic in some detail
below.

To find the observables of the rotor model we study the
classical motion of the system. In fact, we numerically
solve Newton's equation of motion of such a classical ro-
tor system, using a simple multistep algorithm of Bee-
man which is correct to third order in the time step
and —most importantly —stable for our model system,
even over a range of several hundreds of thousand steps.

The interesting thermodynamical quantities are gath-
ered by time-averaging certain mechanical quantities of
the system. It is well established that some purely ther-
m odynamical variables can thus be related to
mechanics by an asymptotic equivalence or—more
problematically —by application of Auctuation-
dissipation theorems. Examples are the magnetic suscep-
tibility and temperature. Specifically, from the classical
equipartition theorem it follows that the mean kinetic en-
ergy is a measure for the (canonical) temperature which
in turn is equivalent to the microcanonical temperature
in the macroscopic limit.

There exists, however, no unique direct method of
finding the entropy for a system under simulation. Yet in
our case the system degenerates into a system of indepen-
dent particles in the high-temperature limit and into a
harmonic system in both the high-field and the low-
temperature limit. One knows the classical entropy of
these systems; so if we are able to adiabatically take the
system into one of these regions, we know the entropy.
One might argue that in the limiting case of known entro-
py the system is not suited for computer simulation due
to the lack of equilibration processes. This is a serious
objection, but our computations show that we can main-
tain macroscopic reversibility up to fields high enough to
show the expected high temperature behavior.

Now we will show in the following argument that for
large systems (N = 1024 in our case) T=2K /N
+O(1/N ) is an approximation to the microcanonical

temperature of the magnetic model system (setting
kii=l). Let Q(E,K)=Qx(K)Qz(E —K) be the number
of states available to the system for a fixed kinetic energy
K and total energy E =K+@. Qz(K) is the number of
available states in momentum space at fixed kinetic ener-

gy [Q@(E—K ) in configuration space at fixed
N =E —K ], respectively. If Qz, (E —K ) is a monotoni-
cally increasing function of its argument (which needs not
be true if the system undergoes a first-order phase transi-
tion} then Q(E, K) has a single sharp maximum at
K=K*(E). There the partial derivative of lnQ(E, K)
with respect to K vanishes and consequently
P x(K*)=P+(E—K*) where P~=(d/d@)lnQ@(C ) (and
similarly Pz) is the/p microcanonical definition of inverse
temperature. Qx. (K)=const XK' "~ is known so that

Pq, =Px =(N —1)/2K.
Next we consider the determination of the entropy for

model (1). In a large enough system the entropy is deter-
mined from the number of states at the mean value of the
kinetic (potential) energy: one simply writes

Sq, (E—K')=S(E) S~(K*),— (4)

where S is the observed entropy of the rotor system and
S~ is the entropy in configuration space (Sz in momen-
tum space). Since Sx.(K) is known, as well as S(E) for a
system of harmonic oscillators, we have

Se(~') (2N —1) (E E0 }
ln

2X
(N —1) 2K—lnco- ln- +C (N),

2 N

where co is the frequency of the system of identical classi-
cal oscillators with ground-state energy Ez toward which
the model system degenerates in the high field limit; par-
ticularly co=(zJ+8)'~ . C(N) is a term which depends
only on N and vanishes as (1/N)lnN. For constant and
not too small N this term may be neglected and Eq. (5)
simplifies to

Sq, (@) (E—E() )
=ln —1nm ——' ln (6)

Equation (4), however, is known to be an exact equation
only in an infinite system. For a finite system one gen-
erally has to add a "defect" term D (E,N) to the right-
hand side of (4) which represents the contribution of
states with kinetic energy difT'erent from the mean value.
The defect D is generally assumed to converge to zero as
the number of particles approaches infinity as constant
E/N. Yet in our case (harmonic system) we can even cal-
culate D exactly. It is of order O((1/N)ln(E/N)) and
negligible against the terms in (6}. This justifies the use of
(6) for entropy determination in the finite system with
X= 1024.

A11 simulations have been performed for the same
Hamiltonian. The moment of inertia of all rotors is
chosen to be 1. The interaction constant J is set to be—0.5 leading to a MFA critical temperature
T, =z~J~/2=1 and a critical field B,(T=0)= ~zJ~ =2.
Our goal was to generate isentropes in and near to the or-
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d d hase region. In zero external field we knowere p a
alT, =0.68 and we have an estimate of the range of tota

energies which yield isentropes in the interesting region
when an external field is adiabatically imposed. The time
step was dt =0.05 and a typical measurement took
100000 steps after 10000 to 30000 steps of equilibration.

Having generated starting configurations of different
entropies in zero field —by shifting the total energy step
by step in a series of runs at constant energy —the system
is guided along an isentrope by gently sweeping the mag-
netic field upward between two measurements. The

sweep speed must be balanced between total simulation
time cost and the goal of reversibility conservation. We
found a value of 1 000000 steps per unit of magnetic field
to fit these needs.

The basic technique to assert adiabaticity is to prove
long-term reversibility. This is established by a reverse

b-sweep, back over the full range of up-sweeping. The o-
servables are found to be reversible within (approximate-
ly) 1% precision, except for very low entropies. There we
observe irreversibility, but only in the ordered phase for
low temperatures.
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FIG. 3. The order parameter of the model under study on
both, the (B,S) plane (a) and the (B,T) plane (b). The values of
entropy S/So shown in (a) are computed from formula ( ),
where So is the corresponding dimensionless unit entropy (note
k& =1). This (B,S) plot is more reliable due to the fact that en-
tropy is a well-controlled parameter of our simulation. Qn the
contrary, temperature is determined from a fluctuating quantity
and obviously suffers from finite-size effects (b).

FIG. 4. Isentropes B(T) of the model actually simulated (a)
demonstrate the quality of original data. The lower plot (b)
shows isentropes of the model (1). Only such data points have
been drawn which directly result from the interpolation being
used to extract the entropy for model (1) from simulation data.
The shape of the isentropes is in fact much better determined
than the relatively few data points may indicate. The curve pa-
rameters are entropy values in the same units as in Fig. 3.
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All simulations have been executed on the AMT-DAP
parallel computer in Erlangen, which is perfectly suited
for our purpose. It is using a 32X 32 array of processors
with hardware support for data transport between neigh-
bors and for toroidal boundary conditions, both of which
have been heavily used.

In Figs. 3—5 we present some results of simulation.
Figure 3 shows the order parameter of the model system.
The very steep descent in (B,S) plot of the order parame-
ter could naively be interpreted as a signature for a first-
order phase transition. However„based solely on our

data for a single lattice size this proposition cannot be
proven.

It should be noted that the points shown are very "di-
luted" when compared to the original simulation data
(not shown) for the rotor model. Reducing the data to
the entropy of the system of interest a two-dimensional
set of data points may be obtained. Only the points along
the original isentropes have been recuperated and are
shown in the figure.

In Fig. 4 the isentropes are depicted. Again, the most
striking result is the shape of the isentropes: the charac-
teristic feature is a distinct minimum value of the temper-
ature at a finite field and approximate linearity for high
fields.

Qualitatively the shape of isentropes is found to be
quite well reproduced by the MFA. Even numerically,
the correspondence between MFA and simulation data is
good (entropy differences being regarded), particularly in
the low temperature region. But this point should not be
overestimated, as we assume the precision of our entropy
determination not to be better than a few percent.

In Fig. 5 the phase diagrams are represented. To con-
struct a phase diagram the transition point has been lo-
cated within intervals outside of which the order parame-
ter is definitely zero (nonzero, respectively); furthermore
the well-defined maxima of magnetic susceptibility (not
shown) are found within these intervals. Despite the rela-
tively large error bars, a knowledge of the zero-field tran-
sition temperature allows us to determine the separation
line with good precision. As one is expecting, MFA
yields too extended an area of the ordered phase in the
B-Tdiagram.

The line of minimum temperatures along each isen-
trope is located between the MFA phase separation line
and the actual phase boundary, that is well in the
paramagnetic region. In MFA of both, Ising system and
the model under study (but not shown for the latter), it is
partially inside the ordered region and partially at the
transition line.

V. CONCLUSIONS

0.5—

0.5 B/I z J I

FIG. 5. Phase diagram of the antiferromagnetic Ising system
(a) (as calculated by mean field theory) and of model under
study (b) (MFA as well as simulation results). For the Ising sys-
tem (a) the bold line shows the line of minimum values of tem-
perature along the isentropes which is partially identical to the
phase boundary between the paramagnetic phase (P) and the or-
dered phase SF/AF. (There is no phase transition between AF
and SF.) For our model system (b) the bold line marks the
phase boundary between AF and P. The line of minimum
values of temperature is shown between the true one and the
MFA phase boundary.

The method of molecular dynamics computations has
certainly proven to be successfully applicable. But we
feel that the computer time needed to perform our simu-
lations is close to the limit which is acceptable. This big
amount of computer time required is due to the intrinsic
necessity to simulate a continuous change of state, when
one wants to directly find the isentropes in a model sys-
tem. The time needed to sweep to the next point of mea-
surement actually triples the simulation time.

Our investigation obviously lacks a finite-size analysis
as well as a true quantitative evaluation of simulation
data. It has not been our goal to obtain accurate infor-
mation about the nonanalytical behavior at the phase
transition (critical exponents). Therefore we have not at-
tempted a finite-size analysis, in particular on the back-
ground of simulation times needed. This is also the main
reason why we avoid statements on the nature of the ob-
served phase transition, which one would naively classify
as first order like, due to the very steep descent of order
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parameter. Based on other work by us, we have learned
to be very cautious in establishing the nature of a phase
transition in a finite system. A serious discussion of this
topic is definitely impossible on the background of
presented results.

We find and thereby confirm the observations of Lind-
gard et al. that isentropes in antiferromagnetic systems
tend to have a distinct minimum temperature if entropy
is low enough in order that the phase separation line is
passed. This statement is supported by a molecular field
consideration. The minimum temperature is reached in

the paramagnetic region and the temperature attained
may be much lower than the zero-field limit.
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