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The random-anisotropy model in one dimension, at zero temperature, is studied analytically and in
Monte Carlo simulations, focusing on the magnetization curve as a function of disorder strength D, and
on the susceptibility and correlation functions. The predicted scaling of the susceptibility (for weak dis-
order), y~D ~', is verified, as is the prediction ~M —

1~ ~H ~ on approaching saturation. The corre-
lation length does not follow the expected behavior, Rf ~D '. Nonequilibrium effects are evident:
Hysteresis persists even for small disorder, and (steady-state) correlation functions depend strongly upon
the initial state of the system. A new simulation method is introduced, which is more effective than the
usual Metropolis algorithm for weak disorder.

I. INTRODUCTION

Experiments on amorphous ferromag nets have re-
vealed a number of systems whose properties are well de-
scribed by the random-anisotropy model. ' In particu-
lar, it yields correct predictions for spin-spin correlation
functions, the susceptibility, and the magnetization
law. This model has attracted considerable interest,
in both the strong- and weak-anisotropy limits. ' ' Since
neither of these limits has been solved rigorously, some
important questions remain unanswered. Among them
are the range of validity of the continuous-spin-field ap-
proximation, the role of metastable states, and the sharp-
ness of the transition from strong- to weak-anisotropy be-
havior. In the present work we examine various proper-
ties of the model, including the magnetization law and
correlation functions, analytically, and in Monte Carlo
simulations. For simplicity, we investigate a one-
dimensional version of the model.

In this paper we present a detailed analytical and nu-
merical study of a classical, one-dimensional, ferromag-
netic, XY'chain with random anisotropy, at zero temper-
ature. The system is characterized by the Hamiltonian

E= —$ [JS; S, +,+D(n; S;) +H S;],

where S, and n;( S;~ = ~n;~ =1), are the spin and easy-
axis vectors at site i J( )0) is .the nearest-neighbor cou-
pling, D is the anisotropy strength, and H is the magnetic
field. The easy axes n, (representing frozen-in disorder)
are uniformly and independently distributed on the unit
circle. In the limit D ))J, spins are oriented along the
anisotropy axes, and one obtains an Ising model with ran-
dom couplings and external fields, as investigated recent-
ly by Derrida and Zippelius. ' When D « J, S is slowly
varying, so that it is also useful to consider a continuous
spin-field version of the model

E=f dx —iVS~' ——(n S)'—H S
2 2

where ct ~ J,P~D, and S(x ) and n(x) are, respectively,
the spin and random-anisotropy fields.

Applying the usual prescription of statistical mechan-
ics to this model at zero temperature, one would evaluate
thermodynamic properties in the ground state for a given
set of [n,. I, and then average over disorder. However,
the ground-state configuration is inaccessible analytically
and numerically, and is likely not relevant in many exper-
iments on disordered materials at low temperatures.
That is, the presence of many local energy minima, mutu-
ally inaccessible on laboratory timescales, causes the sys-
tem to be generically in a metastable state, and gives rise
to reproducible hysteresis effects. In the present study
the emphasis is on properties of local minimum-energy
configurations. The nature of this configuration often de-
pends strongly upon the initial state.

The limit of weak anisotropy presents subtleties not en-
countered for strong disorder. While the spins remain
correlated over large domains, it is known that random
fields and random anisotropy"' destroy long-range or-
der in systems with a continuous symmetry order param-
eter, for dimension d ~4. Even in the ground state, the
local magnetization vector S describes a random walk un-
der the influence of the disorder, so that, in the absence
of an external magnetic field, S smoothly and stochasti-
cally rotates along the chain. In the presence of weak
disorder, the ground state is characterized by a ferromag-
netic correlation length Rf, the length over which S(x)
exhibits a significant rotation. The correlation length is
expected to scale as Rf cc (J/D )

~'

The low-temperature, weak-anisotropy regime of the
model has been variously described as a "correlated spin
glass" (CSG), and as a ferromagnet with wandering axes
(FWA). Because of the long correlation lengths, simula-
tions in the weak-anisotropy limit involve long relaxation
times. We are aware of two previous simulation studies
of the XY model with random anisotropy. The first is by
Scrota and Lee' who found (for a one-dimensional sys-
tem) that the hysteresis and memory effects commonly
associated with strong disorder also occur when D «J.
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The second is a very recent study of the model in two di-
mensions by Dieny and Barbara. ' ' Their work focuses
on spin-spin correlations and the role of topological de-
fects in the magnetization process.

In this paper we present a more detailed study of the
model in one dimension. In Sec. II we derive analytical
results for the magnetization on approaching saturation,
and in the demagnetization process, and for correlation
functions. We describe our Monte Carlo simulation
methods in Sec. III, and present the results in Sec. IV.
Section V contains a brief summary and discussion.

II. THEORY

A. Demagnetization

(3)

where P; is the angle between n; and H. Local equilibri-
um requires that for each i

J[sin(0,.+,—0, )
—sin(0; —0;, ) ]

Dsin[2(0, ——P; ) ] HsinO, =0—. (4)

Since the 0; are assumed small, sinO, . —=0;, and Eq. (4) be-
comes

(b —p )0; = (DIJ) ins2$,—,

where b, 0, =0, +,+0, ,
—20;, and p =H/J. The for-

mal solution is

0,. = (D /J ) g G; (p )sin(2$. ),
J

where the Green's function is

(6)

e g(i —j[
G; (p)=

2(1 —e ~)+p

with coshg=l+p /2. The (disorder-averaged) loss of
magnetization, 5M = 1 —M = 1 —

& cosO, &, is then

5M = ( 1/2 ) &
02

&

—
( 1 /2)(DA /J )2 y —Q( ~i

—j~+ ~i
—k~ )

X & sin(2$, )sin(2$, .
& ) &, (g)

We begin our discussion with the demagnetization
curve, in the strong-field limit. This is the simplest re-
gime to understand, as the strong field dominates the ran-
dom anisotropy, and renders the system essentially linear.
We assume that H remains sufticiently large that M =1.
It is convenient to describe the configuration in terms of
0;, the angle between S; and H (the latter is taken along
the +x direction), so that

F. = —g [J cos(0; —0;,)+D cos (0;—P; )+H cosO; ],

5M=(DA/2J) g e
J= oo

=(DA /2J) cotllQ

(D /4J )2
1 +p /2

3
( 1 +p 2 /4 )

3 /2 (9)

Equation (9) is valid when the magnetic field is
sufBciently large that 5M « 1. For strong disorder,
(D/4J) ))1, this implies 2H &)D, and in this limit
5M=D /4H, independent of J. In the case of weak dis-
order, (D/4J) «1, 5M «1 when H &)J(DI4J)
When J &)H »J(D/4J) /, 5M ~H, while for
J«H, 6M =D /4H, as in the strong-disorder case.

&S; Sj &
= &sinO;sinO & . (10)

For the demagnetization regime studied in the previous
section, ~0; ~

&&1, so that the right-hand side (rhs) of Eq.
(10) reduces to & 0;0. &. Then using Eq. (6) we obtain

&S,'S,'&=(DIJ)'g G;„(p)G, (p)
n, m

X & sin(2$„}sin(2$ ) &

2/
=2(D/4J)

3( 1 +p 2/4 )3/2

X ( 1+ ~i
—j ~

tanhg )e

with coshg= 1+p /2 as before.
When i =j, Eq. (11) is equivalent to Eq. (9). The two

expressions share the same range of validity, viz. ,
p ))(D/4J) . Let E =(D/4J) . When E «p «1, Eq.
(11)becomes

&S, S, & =(e/p)'(I+p ~i
—j ~)e (12)

where p '=(JIH)'/ ))1 is the transverse correlation
length. Note that D appears only in the prefactor of Eq.
(12), so that the normalized transverse correlation func-
tion c (~ii—j~)=&S;Sj &/&(S; ) & is independent of dis-
order strength. The validity of Eq. (12) fails when p & E

(H & E J), at which point the transverse and longitudinal
components of 8 are of comparable magnitude.

The evaluation of the full spin-spin correlation func-
tion for the random-anisotropy model remains an open
problem, although the calculation is tractable in the
mean spherical approximation. We show in the Appen-
dix that this approximation yields (for H=0) the follow-
ing expression for the correlation function:

C(~i —j~}—:&S(x, ) S(x }&

B. Spin-spin correlation function

In this section we present a heuristic argument for the
spin-spin correlation function for weak anisotropy. Con-
sider the correlation function for spin components S,.
transverse to the field:

where A =[2(1—e ~)+p2]
& sin(2$ )sin(2/k ) & =5.k /2, we have

Using
with

=(1+k~x, —x2~)e (13)
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(14)

where r is the correlation length for the random axes n;
(on the order of one lattice spacing). Equation (14) is in
accord with the result of the Imry-Ma argument.

C. Approach to saturation

To get an idea of how the magnetization behaves on
approach to saturation, we first consider the model
without disorder. In the continuous-space version of the
model the spin field is described in terms of an angle 8(x),
and the energy takes the form

E= Idx —(d 8/dx ) Hcos—8
2

Extremal trajectories satisfy the time-independent sine-
Cxordon equation:

d 8/dx =—sinO .
H .

a (16)

Equation (16) admits the well-known soliton solution

8(x) =4 tan 'Iexp[~ti(x —xo)]] (17)

D. Susceptibility

The prediction that for D « J, the zero-field suscepti-
bility scales as

~ ~ (J /D )4/(4 —d) (19)

in random-anisotropy systems has been obtained by three
groups of authors using different arguments. This
prediction is in good agreement with the experimental re-
sult, g ~ (J/D )

— for three-dimensional amorphous
ferromagnets. For d = 1, Eq. (19) gives g ~ D . A

which corresponds to a rotation through (nearly) 2' over
a distance R (H) =p ' =(a/H )' . At x =xo the spin is
oriented opposite to the field. The low-lying
configurations of the (nonrandom) sine-Gordon chain are
a "gas" weakly interacting solitons or "kinks. " In the
present case, the kinks are a remnant of the initial condi-
tion. They may become pinned due to the random an-
isotropy. In any event, the system cannot relax to the
kink-free ground state via local dynamics. With increas-
ing field strength, however, the kinks shrink, and, in the
discrete-space model, disappear when p=1, i.e., when
H=J. For large H the system contains compact kinks
separated by essentially saturated regions. Each kink
represents a magnetization "deficit" of

Idx [1—cos8(x)]=4/p, (18)

where 8(x) is given by Eq. (17). If we let n be the number
of kinks per unit length, then 5M =4n /p. As long as H
is not large enough to destroy the kinks, n remains con-
stant and 5M ~H ' . We expect a more rapid ap-
proach to saturation when H & J, due to field-induced
collapse of kinks.

simple interpretation of this result is as follows. Accord-
ing to Eq. (9) the saturation knee (M=1) occurs at
H=Hi, =J(D/4J) . One may expect, therefore, that
y ~ 1/Hk ~D, in the presence of weak disorder.

In summary, we have presented simple theoretical ar-
guments for the correlation function (in zero field), and
for the magnetization approaching and departing from
saturation. The predictions are compared with simula-
tion results in Sec. IV.

III. SIMUI.ATION METHODS

The system consists of L sites (L =1000 or 2000), with
periodic boundary conditions. The nearest-neighbor in-
teraction parameter J is set to unity, so the system is
characterized simply by D (disorder strength) and H
(external field). Associated with each site is a spin vari-
able 8, and an easy axis P, . The latter are uniformly and
independently distributed on [0,2m]. For a particular
realization or "sample, " the P; are held constant while
the spins evolve toward a (local) minimum-energy
configuration.

Two simulation algorithms, both involving only
single-spin dynamics, were employed. The first is an im-
plementation of the standard Metropolis algorithm at
zero temperature. At each step of the evolution, a site j
is chosen at random and the spin 0 is subject to a ran-
dom displacement 8 ~8'=8. +g, where g is a random
number uniform on [ —d, d ]. 8, is replaced with 8' if the
attendant change in energy is less than or equal to zero;
otherwise 0 is retained. The scale of the random dis-
placement d is reduced during the course of the simula-
tion, so as to maintain an acceptance rate of about 25%.

The "pure Metropolis" algorithm described above is
not useful for D &0. 1, due to the very long time required
for each spin to reach its (local) minimum-energy orienta-
tion. Relaxation would be faster if the trial spin value 8;
were set to minimize the energy, given 8,. „8;+„P;,and
H. Since the energy is a fairly complicated function, it is
more efIicient to estimate the energy-minimizing 0; using
Newton's method. [To avoid the well-known instability
associated with Newton's method, the condition
E(8,') (E(8; ) is verified prior to accepting the trial spin
value. ] There is little point iterating the process at a
given site, as a change in one spin necessitates a change in
its neighbors. Instead, the process is repeated at another
randomly chosen site. Compared with the Metropolis al-
gorithm, our application of Newton's method yields a
more rapid approach to a local energy minimum, but is
less likely to discover deeper energy minima nearby. For
this reason we adopted a hybrid algorithm, in which
"Newton" and "Metropolis" steps alternate. The hybrid
algorithm was employed in all studies with D &0.1. A
comparison of results obtained with the two methods is
presented in the following section.

The initial stage of the simulation is typically an ul-
trafast quench from a disordered state to T=0, with no
applied magnetic field. The system therefore settles into
a local minimum-energy configuration. We regard the
system as effectively relaxed into a steady state when the
magnetization changes by less than 10 over a period of
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10 trials (for D ~ 0. 1, this period was extended to 10 tri-
als). The various contributions to the energy reach
steady values before the magnetization does. Once a
steady state was attained, subsequent points along the
magnetization curve were obtained by making an incre-
mental change in the applied field, and allowing the
configuration to evolve to a new steady state.

IV. SIMULATIQN RESULTS

H =0.5 H =07

A. Configurations

We begin with a qualitative discussion of typical spin
configurations. To convey the overall organization of the
system (with 1000—2000 spins) we employ a toroidal rep-
resentation, in which the azimuthal angle corresponds to
x (with periodic boundary conditions), and spin orienta-
tion is represented by the toroidal angle. Figure 1 shows
typical configurations in the absence of an external mag-
netic field. For very weak disorder (D=0.02) the spin
direction varies quite smoothly; for D =0.2 many more
kinks are evident. Figure 2 illustrates the disappearance
of kinks with increasing field strength H. At intermedi-
ate H values the configuration exhibits two kinds of
structure: an erratic„small-amplitude meander in
response to the random anisotropy, and occasional kinks,
which represent a remnant of the initial state. (All
memory of the initial configuration is of course erased
upon saturation. )

B. Hysteresis

A hallmark of the importance of metastability, and of
the inaccessibility of the ground state, is hysteresis. The

H =0.6 H =08

FIG. 2. Evolution of the steady-state configuration under an
increasing external field H. The disorder strength D =0.5.

initial magnetization curves and hysteresis loops observed
in simulations at D values of 1, 0.5, and 0.1, are displayed
in Figs. 3, 4, and 5, respectively. As expected, the extent
of the loop increases with D. Hysteresis is clearly present
even when D =0.1, and it is reasonable to expect it to
persist in the presence of arbitrarily small disorder. In
Figs. 4 and 5 the hysteresis loops observed using different
simulation algorithms (pure Metropolis and Newton's-
method —Monte Carlo hybrid) are compared. For
D =0.5 the curves are essentially identical, but for
D =0. 1 the loop obtained with the hybrid method is dis-
tinctly smaller. Thus, in the case of weak disorder,
differences in the dynamics may affect the details of the
magnetization curve, but not its basic features. Hys-
teresis appears to be an intrinsic property of the disor-
dered system evolving via local dynamics, as it is ob-
served with either algorithm. Also of note are the discon-
tinuities evident in the D=0. 1 magnetization curves.

I I I I I I I I I I I I I I I I I I
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Q
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FIG. 1. Typical zero-field, steady-state spin configurations.
In this diagram the position on the large circle represents the x
coordinate, while that on the small circle represents the spin
orientation 0(x). Upper: D=0.02 lower: D=0.2.

I I I I I I I I I I I I I I I I I I

-2 -1 C) 'I H 2

FIG. 3. Magnetization curve, D =1.0.
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FIG. 4. Magnetization curve, D =0.5. +: pure Metropolis
algorithm; squares: hybrid algorithm.

FIG. 6. Detail of magnetization curve, D =0.5. The slope of
the straight line is —1.57.

Their presence suggests that the weakly disordered sys-
tem can be trapped in a local energy minimum.

C. Demagnetization and saturation

A more detailed examination of the magnetization
curve near saturation is shown in Figs. 6 and 7, for
D =0.5 and 0.1, respectively. In both cases we find some
support. for the power law: M ~H, along the demag-
netization curve, derived in Sec. IIA. No evidence for
the scaling M ~H (expected to apply for H))P, is
found. Such behavior cannot be ruled out for larger fields
than were investigated, i.e., in the range 6M(10 . Fi-
nally, the data on approach to saturation shown in Fig. 6
give no clear evidence for the prediction M ~ H

D. Correlation functions

We have determined the spin-spin correlation function
(at H =0) for anisotropy strength D ranging from 0.05 to

0.9. Typical results are shown in Figs. 8 and 9, for
D=0.05 and 0.1, respectively. These plots represent
averages over five diIterent samples, which were allowed
to relax from a random initial configuration. Evidently
the correlation function of Eq. (13) (the result of the
mean-spherical approximation), can be fit to the data pro
vided the correlation length k is adjusted. The continu-
ous curves in Figs. g and 9 represent Eq. (13) with k
determined not by Eq. (14) (which yields a sizable overes-
timate for the correlation length), but rather from a
least-squares fit to the first 20 data points. While the data
do not provide a compelling justification for Eq. (13), we
note that the points cannot be At very well by an ex-
ponential or a Gaussian. The prediction k ~D is not
supported by the simulation results, which instead sug-
gest k ~ D (see Fig. 10).

The disagreement between Eq. (14) and the simulation
results for the correlation length may reAect the inade-

D= Q.'I
+ WWIB

+ +
+ + +

+++.

Q +
++

+ t+
I.

g c

p

+
4p

IW+ + +

-Q.A QA

InH

FIG. 5. Magnetization curve, D =0.1. Symbols as in Fig. 4.
FIG. 7. Detail of magnetization curve, D =O. l. The slope of

the straight line is —l.54.
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FIG. 8. Spin-spin correlation function C(x) for D=0.05,
H =0. The smooth curve is given by Eq. (13), with k =0.187, as
determined by a least-squares fit to the first 20 data points.

FIG. 11. Comparison of correlation functions at H=O and
D=0. 1, after relaxing from a maximally disordered initial
configuration (open squares), and from a smooth initial
configuration (solid squares).

quacy of Imry-Ma type arguments, which focus on "typi-
cal" local energy minimum and thereby ignore the strong
influence of the initial condition on the final state. (The
same limitation of course applies to the calculation of the
correlation function presented in the Appendix. ) Evi-
dence of the sensitivity of correlations to initial prepara-
tion is shown in Fig. 11, which contrasts the spin correla-
tion function resulting from a smooth initial
configuration with that obtained from the usual initial
state of uncorrelated spins. The smooth configuration
(obtained by averaging uncorrelated spins in blocks of
five), evolves to a local energy minimum with a markedly
greater correlation length.

I I I I I I I

0 40 80 x

FIG. 9. Same as Fig. 8, but D=0. 1 and k=0.252.

E. Transverse correlation functions

In Sec. II B we presented a rather straightforward ar-
gument for the correlation of transverse spin com-

I I I I I I I I

5 x 'IQ

I I I i I

0.02Q05 O.'1 Q2 Q5 'I D

FIG. 10. Dependence of the correlation length, k ', on dis-
order strength D. The slope of the straight line is 0.46.

FIG. 12. Normalized transverse correlation function C~(x)
for D=0.5 and H=0. 2 (diamonds), H=0. 5 (solid squares),
H=1.0 (open squares), and H=2. 0(X ). The smooth curves
are given by Eq. (11)with the prefactor set to unity.
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I 1 I I I
samples) by measuring the change in magnetization in
response to very weak fields (

—0.005 H+0. 005), fol-
lowing relaxation at H=0. (Typical "spontaneous" mag-
netizations of 0.01—0.02 are a finite-size effect. ) As is
shown in Fig. 14, the results are quite consistent with the
prediction y ~ D

V. DISCUSSION

CI

CI a
CI S

g CI CI 0 CI CI o CI i

~ ~ a s ~ ~

I I I I I L I I

)Q x 2C)

FIG. 13. Comparison of normalized transverse correlation
functions for H=0. 5 and D =0.5 (solid squares), and D=0. 1

(open squares).

ponents, under the assumption that the external field is
su%ciently strong that the 0; are typically small. In Fig.
12 we compare normalized transverse correlation func-
tions observed in simulations (averaged over five indepen-
dent samples) with the theoretical prediction. [The latter
is given by Eq. (11), ignoring the prefactor. ] Note that in
this case the correlation length Q is not treated as an ad-
justable parameter. Good agreement between theory and
simulation is observed for D =0.5 and H=2. 0, 1.0, and
0.5, corresponding to M=0. 9939, 0.9831, and 0.9361, re-
spectively. The agreement breaks down for H =0.2,
where the assumption of a nearly magnetized system is
no longer valid (M=0. 64 in this case). The results
shown in Fig. 13 support the prediction that the normal-
ized transverse correlation function is independent of D.

F. Susceptibility

We determined the susceptibility for D =0.05, 0.1, 0.2,
and 0.5 (averaging, in each case, over three independent

InX-

~m ~+I

s I t I

1 2 3 -InD

FICx. 14. Dependence of the magnetic susceptibility (in zero
field) on disorder D. The slope of the straight line is 4/3.

Our simulations of the random-anisotropy model in
one dimension, at zero temperature, suggest that the
model must be understood from a dynamic, nonequilibri-
um vantage. We have shown that hysteresis persists even
for very weak disorder, i.e., D=0. 1. This confirms the
result of Scrota and Lee' who found significant hys-
teresis for D/J=0. 5. Further evidence of the impor-
tance of nonequilibrium effects is our finding that correla-
tions depend strongly upon the initial condition. Since
qualitative features (e.g. , hysteresis) are insensitive to de-
tails of the dynamics, we may expect nonergodic or glassy
behavior in magnets with random anisotropy, evolving on
laboratory time scales at low temperatures.

Several theoretical predictions —for some aspects of
the magnetization curve, and for the scaling of the corre-
lation length k ' with disorder strength —are contra-
dicted by simulation results. (We are not aware of any
argument which explains the observed scaling,
k 'o-D ). On the other hand, predictions for the
dependence of the susceptibility upon D, and for trans-
verse correlations in a strong field, are confirmed rather
nicely. A unified interpretation of the conAicts and
agreements between theory and simulation is not obvious.
Certain of our findings suggest a fundamental inadequacy
in the usual static description. The presence of hys-
teresis, and the marked dependence of the correlations
upon initial conditions point to the need for a dynamical
theory.

While we believe that a more complete theory of the
random-anisotropy model must incorporate memory
effects, it is also clear that some predictions of the static
approach are correct. Theory and simulation are in ac-
cord concerning the transverse correlation function, and
the magnetization, both in a strong field. In these cases
the H. S term dominates the energy, forcing the system
into a rather well-defined low-energy state. (There may
still be a number of local energy minima, accessible from
various initial configurations, but their properties are
more uniform, being determined primarily by the exter-
nal field. ) Here disorder comprises a perturbation whose
effects may be accounted for in a simple manner. The
susceptibility, in contrast, has been determined in the ab-
sence of an external geld, and so the confirmation
of the (essentially static) prediction, y ~ D ~ is
noteworthy. It would be interesting to know whether the
susceptibility depends upon the initial state of the system.

There are several directions for future work on the
random-anisotropy model. It will be of interest to study
hysteresis and other dynamic aspects in greater detail, as
well as the effects of finite temperature, in simulations.
We expect the hybrid algorithm introduced in this paper
to permit more extensive studies of the weak-disorder re-
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gime. Finally, we note that our considerations may be
relevant to chain spin systems with an easy-plane anisot-
ropy, such as CsNiF3 and (C6H»NH3)CuBr3 (Refs. 21
and 22), in the presence of random fields or anisotropies.

E'= Jdx —(dS/dx) ——(n S) —Af dx S
2 2

(Al)

where A. is a (constant) Lagrange multiplier. Extremal
configurations S(x) satisfy
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(d /dx —k )S= ——n(n S), (A3)

S(x)=——jdx'G„(x —x')n'(n' S'), (A4)

where we put A, = —ak /2 (k )0). The formal solution
of Eq. (A3) is

APPENDIX: CORRELATION FUNCTION
IN THE MEAN-SPHERICAL APPROXIMATION

Consider the energy functional Eq. (2), but with the
fixed spin modulus condition lS; l

= 1 replaced with
(S ) =1 (i.e., the mean spheric-al approximation) Our.

problem is to minimize the functional:

G ( )
—kixi1

2k
(A5)

From Eq. (A4) we have a formal expression for the corre-
lation function:

where n'=n(x') and similarly for S', and where the
Green's function is

2

(S(x ) S(x2)) = — Jdx' Jdx" Gk(x) —x')GJ, (x2 —x")(Il' n "nI~nI~'5'S"), (A6)

where nl(x) is the component of n(x) along S(x). Now
for weak anisotropy, S(x) is only weakly correlated with

n(x), and we may replace (n' n "n~~n~~'S'S") with
(n'. n "n~'~n~'~')(S'S"). The easy axes n(x) have only
short-range correlations, so that

(n n nil nil
) —,1(lx' —x" ), (A7)

where I (0)= 1 and I (x)~0 for x ))a, where a is the
correlation length for the easy axes. (In the discrete mod-

el, a is one lattice spacing. ) The correlation length for
S(x) is k, and in the weak-anisotropy limit we expect
that a((k '. The coefficient in Eq. (A7) is found by
evaluating the lhs at x'=x"; it gives (n n~~ ) =(n~~ )
= (cos 8) =1/2. Using Eq. (A7) in Eq. (A6), and replac-
ing (S'S") with ((S') ) =1 (justified by the fact that S
is correlated on a much longer scale than is n), we obtain

r

(S(x, ).S(x,))=, Jdx G„(x,—x)G„(x —x),pr
2A

(A8)

where r —= Idx I (x ) =a. After performing the remaining

integration, one finds

(S(x, )-S(x2)) = (k + lx, —x2l)e
Pr 1 (

—k~x, —
x~~

2a 4k

(A9)

Setting x, =xz, and applying the condition (S ) =1, we
finally obtain Eqs. (13) and (14). For comparison with
simulations of the lattice model, we set a =J,p=2D, and
r =1. Thus, in the mean-spherical approximation, local
energy minima are characterized by a ferromagnetic
correlation length Rf =k '~(J/D) ~ . This is in ac-
cord with the prediction of the Imry-Ma argument for
the correlation length in the ground state.
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