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Tunneling in proton glasses: Stochastic theory of NMR line shape
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The effects of the tunneling motion of hydrogen on the NMR line shape in randomly mixed
ferroelectric crystals of the type Rbi „(NH4)„H2PO4, known as proton glasses, is studied. The
line shapes are calculated for the Clauser-Blume model with use of mean-field theory applied to
the infinite-range model of an Ising spin glass in a transverse field, which describes the tunneling
frequency of a proton in the 0—H . 0 bond. The interplay of tunneling and spin-glass-like order-
ing phenomena leads to characteristic features in the NMR, NQR, and EPR spectral line shapes.
Magnetic-resonance line-shape measurements thus permit discrimination between coherent tunneling
processes and classical thermally activated intrabond hopping across the potential barrier in proton
glasses.

I. INTRODUCTION

Randomly mixed hydrogen bonded ferroelectric and
antiferroelectric crystals such as Rbi ~(NH4)~HqPO4,
known as RADP, and its deuterated counterpart
D-RADP have at tracted a great deal of both
experimental and theoretical attention in recent
years. These proton and deuteron glasses are different
from ordinary glasses as they are characterized by solid-
solid phase transitions. On the other hand, they may be
viewed as akin to magnetic spin glasses. This is so be-
cause the underlying lattice structure of proton glasses
remains crystalline, whereas randomness is caused by
an admixture of ferroelectric and antiferroelectric bonds,
leading to both quenched disorder and frustration. A
systematic study of RADP and D-RADP crystals is thus
expected to throw some light not only on the rich and
intricate physics of the glass transition but also on the
fascinating new kind of statistical mechanics that is in-
volved in disordered systems.

In one respect, however, the above mixed crystals are
different from the usual spin glasses. They are governed
not just by the presence of bond disorder but also by ran-
dom local fields caused by substitutional disorder. The
latter feature makes these systems quite distinct from
other dilute magnetic systems where the random fields
are generated by the application of external magnetic
fields. The interplay of both bond disorder and random
fields has already been the subject of extensive investi-
gation in D-RADP crystals.

Our main interest in the present paper is in undeuter-
ated RADP-like systems where the quantum dynamics of
the proton lends additional features to the systems. The
"left" and "right" positions of the proton in an 0—I 0
bond are mapped onto an Ising pseudospin variable S'
which may take on values +I/O and —I/2. The Hamil-

tonian of interaction between two protons separated by
distances much larger than the bond length is governed
by the usual exchange couplings and local fields. Thus
the above model is equivalent to an Ising spin glass in a
random field and is appropriately referred to as a proton
glass. However, unlike the deuteron (in D-RADP), the
proton can tunnel between its left and right positions. As
this motion is governed by quantum laws and not ther-
mal activation, it persists down to zero temperature, and
requires a modification of the Ising Hamiltonian. ~6

Although at first sight the proton glass may appear to
be a hopelessly complicated system in which one has to
deal with not only random exchange and random fields
but quantum effects as well, there is one simplified aspect
that makes it amenable to theoretical studies. This is
the fact that, in spin glasses and related systems, mean-
field theory (MFT) based on the infinite-range random-
bond model provides a good description of the relevant
physics. 8 In what follows, therefore, we shall assume
the validity of MFT at the outset, in determining both
static and dynamic properties of proton glasses.

One of the most accurate tools for the study of pro-
ton and deuteron dynamics in hydrogen bonded glasses is
provided by the techniques of nuclear magnetic resonance
(NMR) and nuclear quadrupole resonance (NQR). ig In
this, one derives the advantage of a "local" probe which
is also extremely sensitive. Our principal aim in this pa-
per is to present a theory of the magnetic resonance line
shapes so as to bring out the salient features of disor-
der and tunneling. The hope is to construct a theory
that is intuitive and mathematically simple, in order to
facilitate a systematic comparison with experimentally
observed line shapes in proton glasses. One such the-
ory based on stochastic considerations and developed by
Kubo, Anderson and others, has been popular for
more than three decades. The Kubo-Anderson model as-

4387 1991 The American Physical Society



4388 S. DATTAGUPTA, B.TADIC, R. PIRC, AND R. BLINC

sumes a discrete jump process by which the resonant fre-
quency jumps at random from one value to another with
a probability determined by detailed balance of transi-
tions at finite temperatures. Q'hen it comes to pro-
ton glasses, however, the Ekubo-Anderson model has to
be generalized in order to incorporate the quantum ef-
fects of tunneling. Such a generalization, in which a part
of the system, called a subsystem, is treated quantum
mechanically, while the surrounding heat bath is han-
dled as a classical stochastic reservoir, was carried out by
Blume s and co-workers. We adopt here the Clauser-
Blume model for making an explicit line-shape calcula-
tion applicable to proton glasses. In this, the subsys-
tem is governed by a quantum Hamiltonian for the pseu-
dospins, embedded in an efI'ective medium characterized
by "mean" fields, and subject to fluctuations driven by a
classical heat bath.

With the preceding remarks about the purpose and
the scope of the present investigation, the outline of the
paper is as follows. In Sec. II, we present the line-shape
expression and also the basic Hamiltonian. We then cast
the line shape within the context of the Clauser-Blume
model. In Sec. III, we put forward the physical basis
of our proposed model for the relaxational dynamics in-
duced by the heat bath. Based on this model, the un-
derlying correlation function is calculated in Sec. IV, and
the limit of zero tunneling is recovered. Our main results
for the magnetic resonance line shape are then presented
in Sec. V. Finally, in Sec. VI we indicate the possibility
of comparing the derived expressions with experiments,
and also present our principal conclusions.

II. THE LINE SHAPE
AND DISORDER-AVERAGED
CORRELATION FUNCTION

In Fig. 1 we show schematically an 0—H .0-type
double-well potential, in which the proton moves. The
parameters of the potential and the temperature are such
that the proton spends most of its time at the bot-
tom of either the left or the right well and very little
time in between. One then essentially has a two-level

H =a I'+ A~ I' S',
where

(2 1)

1
4l = —(4Ir. + LJIr), ELd: (dn —Ml. .

2
(2.2)

The resonance transitions in the Hilbert space of the I
spin are caused by the raising and the lowering operators
I+ and I . The line shape is then given by

1
J(~) = —Re dt exp{—iut)C(t), (2 3)

where the correlation function C(t) is defined as

C(t) = &I (0)I+(t)&. (2.4)

Here the angular brackets denote the appropriate quan-
t, um and statistical average, and I+(t) are the operators
I+ in the Heisenberg picture:

I+(t) = exp(iHt)I+(0) exp( —iHt). (2 5)

It is easy to see that in the case of Eq. (2.1), the cor-
relation function is given by

C(t) = (exp[it(co+ Ace S')]&, (2.6)

after having carried out the trace over the quantum states
of I'. The angular brackets in Eq. (2.6) then denote the
remaining average to be done over the states of S'. If
S'(/) is assumed to be governed by a classical stochas-
tic process due to the dynamics induced by heat bath,
Eq. (2.6) may be written as

system2 (TI S) defined in terms of the pseudospin vari-
ables S' = +I/2, which designate the left or right po-
sitions of the proton in the double well. As the proton
moves from the left to the right well, the NMR, NQR, or
EPR resonant frequency is assumed to jump from ~L, to
~~, and-vice versa. While ~L, and ~~ can be multival-
ued, we assume without loss of generality that there is
just one value of the NMR, NQR, or EPR frequency in ei-
ther well. Thus the frequencies uL, and u~ can be seen to
occur as a result of transitions between the eigenstates of
a spin-half operator, 27 denoted here by I' = +I/2, and
the spin Hamiltonian can be constructed as

C(t) = expi
~
art+ Eu)

t
S'(t') dt'

- av
(2.7)

I =+—1
z 2

I
1

Z

where [ .] denotes a stochastic average. Equation (2.7)
forms the starting point of the analysis by Pire et al.

Having formulated the line shape for an isolated dou-
blewell in the absence of tunneling, we now include the
interwell interaction and the possibility of tunneling be-
tween two proton sites in the 0—H . .O bond. The
Hamiltonian in Eq. (2.1) is then to be generalized to the
form

H= ci) I;+b~) I;S;
2 1

S =-—
2

S =+-2 1

2 J;,S;S;- —0) S, —) f;S;, (2.8)

FIG. 1. Double-well potential of a proton in the
0—H. 0 bond.

where the last three terms describe the interacting pseu-
dospin system.
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Furthermore, J;& is the infinite-ranged quenched ran-
dom interaction between the pseudospins S;, 0/h is the
tunneling frequency, and f, represents the random longi-
tudinal field at site i. The random interactions J;& and
the fields f; are assumed to be independently distributed
according to their respective Gaussian probability distri-
butions:

ho(z) = QQ~+ h(z)z, (2.15)

p(z) = i (z) tanh —Phs(z) ~

2
(2.16)

(
P(J,~) = exp (2.9) and

In the static limit the mean-field equations for the local
polarization p(z) and the spin-glass order parameter q
are obtained as~~

1 f,'5 (2»)
where

(2.17)

In what follows, we shall denote by [ ]d an average
with respect to combined distributions (2.9) and (2.10).
Both J and L depend on the concentration z charac-
terizing the composition of the proton glass as in the
case Rbi (NH4) HqPO4. The simplest concentration
dependence has the form

4 = 4z(1 —z)A (2.11)

and a similar relation can be assumed for the variance
J2

Note that in spin-glass theories one usually employs
an Ising variable S' = +I rather than the pseudospin
S' = +1/2. Therefore, the parameters 0, J, and 4 of
Ref. 11 are replaced by 0/2, J/4, and 4/4, respectively,
in the present case. As mentioned earlier, we shall treat
the pseudospin system within the framework of a MFT
of quantum spin glasses. As a first step we shall replace
the Hamiltonian (2.8) by an effective Hamiltonian

HMFT ——~ ) I;+A~ ) I;S;—) h, S;—I2 ) S;,

Ho —E~ I' S' —hS' —QS . (2.13)

Here h = h(z) is an efFective field acting on the pseu-
dospin along the z axis due to a nonzero spin-glass order
parameter (q g 0),

1
h(z) = —J q+ b, z,

2
(2.14)

where z is a Gaussian noise field and b. = 4b, /J . Thus
the total field has a strength

(2.12)

where h, represents an efkctive field at site i to be spec-
ified below. Equation (2.12) can be further simplified by
noting that ~ can be absorbed in the frequency factor u
in Eq. (2.3).

A systematic MFT for the model of a quantum glass
defined by Eqs. (2.12), (2.9), and (2.10) has been carried
out in Ref. 11 using the thermofield-dynamic approach
and the instanteneous approximation for the dynamic
self-interaction. The eAective single-spin Hamiltonian
has been derived, which, together with the term repre-
senting interaction with the surrounding medium, can be
written as

h(z)
( ) (2.18)

The Hamiltonian in Eq. (2.13) still describes the static
properties of the system only. In accordance with our
stated objective we now assume that the system de-
scribed by Hp is placed in a contact with a heat bath.
The latter is characterized by "stochastic forces, " which
cause transitions between quantum states of Hp. In order
to incorporate this physics into our formalism, we first
note that the line shape can be written as [cf. Eq. (2.3)]

J(~) = —Re[C(s)]g, 8 = 'l4)) (2.19)

where C(s) is the Laplace transform of C(t) and [ .]s is

the disorder average. From Eqs. (2.4) and (2.5), C(s)
can be expressed as

C(s) = (I (0)([U(s)],I+(0))), (2.20)

where [U(s)] denotes the Laplace transform of the aver-
aged time development operator of the system. 2 The
angular brackets in Eq. (2.20) indicate the average over
the quantum states of Ho In the Clause. r-Biume models

[U(s)], = s —iHO" —A(J „—1) (2.21)

III. MODEL FOR THE
TRANSITION OPERATOR

As noted earlier, the operator J „contains all the infor-
mation concerning the dynamic eA'ects of the heat bath.
In the usual treatments of mixed crystals, in the absence
of the tunneling term, i.e. , 0 = Q, it is customary to

where Hp is the Liouville operator associated with Hp,
A is a phenomenological parameter called the relaxation
rate, and J» is an average transition operator. The idea
behind Eq. (2.21) is clear: if there is no coupling to the
heat bath, J~~ is unity and the time evolution is totally
dictated by Hp" alone. It is now left to model J» in
such a way that the heat-bath-driven transitions in the
S system do not disturb the net thermal equilibrium,
i.e. , detailed balance is preserved. We shall follow in the
sequel the notations used in Ref. '22, wherein Eq. (2.21)
has been derived under the assumption of what is called
an impulse process.
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imagine that the dynamics arise from additional coupling
terms to the heat bath, added onto Eq. (2.8), which are
oA diagonal in the representation in which S' is diago-
nal. This is then in the spirit of the kinetic Ising model
of the Glauber type. Within this model an expression
for the line shape has been recently derived by Pire et
al. , using a path-integral formulation of the spin-glass
problem. 29 The physical meaning of the Glauber terms is
evident: they cause spontaneous spin-Hips, which, in the
context of causal systems, mimick thermally activated
jumps of the proton or deuteron between the two sites in
the 0—H .0 or 0—D .0 bonds, respectively.

In the case in which 0 g 0, we could still imagine the
heat bath interactions to be of the Glauber type. But
that would be tantamount to taking into account only
the classicaly activated jurnp processes. In reality we

expect the heat bath to induce not only thermal fluctu-
ations of the above kind, but quantum fluctuations as
well, leading to "incoherence" in tunneling, which is oth-
erwise a coherent phenomenon. An extensive study of
such dissipative effects in a quantum TLS has recently
been made and comprehensively reviewed in Ref. 26. In
the latter the coupling to the heat bath is taken to be
proportional to S'. This is, again, not adequate for our
purpose as we would like to recover the Glauber mech-
anism in the limit 0 = 0. The point is, when 0 g 0,
the appropriate quantization axis is neither z nor x, but
it is somewhere inbetween. The simplest coupling to the
heat bath would then be proportional to an operator that
is strictly oA'-diagonal in the new representation of the
quantization axis, and would lead to correct limits when
either (i) 0 = 0 or (ii) 6 = 0. The required diagonaliza-
tion of Ho (actually a partial one) can be simply carried
out by performing a rot, ation in the "spin space" of the
S system by an angle 0 = arctanh(B/6) from the z to
the z' frame around the y axis. In the rotated frame the
Hamiltonian Hp reads

priate to Hp. That is,

&V I exp(-PHO) Ip &
p

Zo being the relevant partition function and P the inverse
temperature. Since, usually, 1 )& ~PA~~, we have from
Eq. (3.1),

p„= exp (Pho p) [2 cosh( 2 Pho) j

The form given in Eq. (3.4) is quite general for the spin-
half operator, and it is also consistent with detailed bal-
ance of transitions at finite temperatures. 2

IV. CORRELATION FUNCTION

&(s) = (+ -IU(s)l+ -)
where

U(s) = ):p.(vvlU(s)IVV),

(4 1)

(4 2)

and
~
+ —) denotes an "eigenvector" of (I')".

The task of computing U(s) is facilitated by the special
structure of J „given in Eq. (3.4). Employing a slight
generalization of the derivation given in Sec. X.3.2. of
Ref. 22, we can show that

The first step in evaluating the right hand side of
Eq. (2.20) is to formally carry out the trace over the
eigenstates of I' and S' . Using the fact that Ho is di-
agonal in the representation of I' and the raising and
lowering operators I do not act on the eigenstates of

IS', we can show that

Ho —I'(agS' ~ a2S ) —hpS',

where

where

Uo(s+ A)

1 —AUD(s+ A)
(4.3)

ha]:L4)—)hp'
0

a2 —A~ —;
hp' ho ——Qh2 + 02. (3.2)

- —1

Uo(s+ A) = ) p„(vvi s+ A —iH" i&ap). (4 4)

Because Hp involves only I', a diagonal operator in I
space, we have, from Eqs. (4.1) —(4.4),

Go(s+ A)

1 —AGO(s+ A)
C(s) = (4 5)

(3 3)
where

S'
ls & =s ls&,

As the correlation function is invariant under such a ro-
tation, the expressions in Eqs. (2.20) and (2.21) would

continue to be valid with Hp replaced by Hp.
VVe are now ready to write down t,he matrix elements of

the transition operator 1~v. Introducing t, he eigenstates
of S' as ~p&, ~v&, etc. , i.e. ,

and recalling that J~v is a superoperator, the required
elements are

Go('+ &) = (+ —IUo( +&)I+ —) (4 0)

(pvl J~vlp v ) = p»'~& ~4'&'& (3.4)

where p& is the Boltzmann factor in equilibrium, appro-

In order to determine Go(s+A) we need to compute the
inverse of the I iouville operator given inside the square
brackets in Eq. (4.4). This can be achieved by formally
inverting the Laplace transform and writing Go(s+ A) as
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Go(s+ A) = ) p„ Ct expl' —(s+ A)t](+ v vl exp(iHo"t)l + p p)

= ) p„ f dtexp[ —(e+ t)t]&+e[ exp(tHet)[+p&& —tt[exp( —tH t)[ —e&,
0

(4.7)

where the labels + in I+p, —p), etc. , refer to the eigenstates of I', and in the last step we have employed the properties
of Liouville operators. Note that

(+vl exp(iHpt)l + ia& = (VI exp[it(paiS' + 2a2S —hpS' )]lp&. (4 8)

The exponential operators on the right-hand side of
Eq. (4.8) can be further decomposed by using the prop-
erties of spin-& matrices. Collecting all the matrix ele-
ments, doing the integral over C and summations over v
and p, and after some algebra, we finally obtain

(s+ A)'+ h'
M(s+ A) = (4.13)

Now, from Eq. (4.5) together with Eq. (4.12) we have the
following expression for the correlation function:

1

Gp(s+ A) = (s+ A) + ho
+

where

/I
ai +ho

I +-a2,)

1
D+ = (s+A)'+ —(A+ ~A )'.

(4 9)

(4.10)

S+ A+ 21gP
C(s) =

s(s+ A) —2iApKcu + ~(A~)2M(s+ A)
1. 1 2

(4.14)

Hp —Hp —Ace I' S' —hS', (4.15)

As noted earlier, in the case of deuterated samples such
as D-RADP, the quantum tunneling is suppressed and
one essentially has a classical problem. When 0 = 0 we
have hp ——h, and the Hamiltonian (2.13) reduces to

The parameter p is the net polarization in the rotated
frame. We find and

p = p+ —p = tanh(2Php). (4.11) p = p = tanh(2ph). (4.16)

S+ A+ 2CP A~
Gp s+A

(s + A)' + 4 (Acr) 2M(s + A)

Here ~02 = h2+ 02 and

(4.12)

Using the expressions (4.10) and the fact that the polar-
ization p in the laboratory frame is given by p = (h/hp)p,
we find that the expression (4.9) can be written as

Equation (4.14) then yields

8+ A+ 2SPA~
C(s) =

s(s+ A) + 4(A~)2 —2iApE~
(4.17)

Recalling that the Laplace transform variable is 8 = i~,
we have from Eq. (2.19) the following expression for the
line shape:

J(~) =
4

1 A(A~) 2 (1 —p')
"P P

2 i . 2 i 2—4(A~)2 + A2(~ —2p&~)
(4»)

The integral over p along with the weight factor W(p),
which is defined as

w(p) = N(p- 2&s'&)1., (4.19)

in Eq. (4.18) accounts for the average over quenched
disorder. It should be noted that due to the substitu-
tional disorder and the resulting presence of random lo-
cal fields, the spin-glass-like order (q g 0) is present at
all temperatures and the local polarization distribution
W(p) is nontrivial. s2 The formula (4.18) is identical to
the one recently derived in a path-integral formulation of
the Glauber kinetics s by Pire et al. ,

i who also provide
an expression for W(p) within the same formalism. In the
present quantum model we have separated the problems
of evaluating the local polarization distribution W(p) and

I

the correlation function C(s). %e have calculated C(s)
within the stochastic model of Clauser and Blume, in
which the MFT is built in at the outset, as mentioned
before. This strategy is more convenient for attacking the
0 g 0 case, as we shall see in the next section. It should
be mentioned that for 0 = 0 the Clauser-Blume model
reduces to the so-called secular case and becomes equiv-
alent to the classical Kubo-Anderson model. Thus, the
result (4.17) could have also been derived independently
from the classical model, as can be verified by a direct
comparison with Eq. (VIII.49) of Ref. 22. Note, however,
that a systematic derivation of J(u) in Ref. 12 allows for
higher-order corrections which arise due to nonlinearity
of the spin-glass dynamics. An equivalent approach in
the quantum case is not known so far.
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V. LINE SHAPE IN PROTON CLASSES

In the general case when the tunneling term is nonzero,
the correlation function C(s) is given by the expression
(4.14). I,et us consider first a somewhat simplified case.
Observe that for 0 (( h, we have ai Au and a2 0,
whereas for 0 » h one finds ai —0 and a2 Au. Thus,
in either case both a~ and a2 are at most of order L~, and
hence are much smaller that hp itself. To lowest order a2
may be dropped out, since it appears in Eq. (4.9) only
quadratically. This is equivalent to approximating Hp in
Eq. (3.1) by

Hp ——b,~ I' S' —hpS'.
hp

(5.1)

Here h is the effective field along the z axis, which can
be determined by using the MFT appropriate for proton
glasses, and hp ——i/h2+ 02, as discussed above.

Comparing Eq. (5.1) with (4.15), it is obvious that we

may directly transcribe the expression for the correlation
function from Eq. (4.17), provided that we replace the
polarization in the laboratory frame p by the polarization
in rotated frame p, and Au by (h/hp)Au. On the other

J(~) = A (Bur )
2 (r 2 —p2)

- 2
~2 ——' (r A~) + A2(~ —-'pE~)2

2 d

(5.3)

Again, [ )g represents the disorder average.
Using the expressions (2.14) — (2.16), we see that

the remaining average over z in (5.3) has to be per-
formed. This is formally equivalent to averaging over the
local-polarization distribution W(p), defined in (4.19),
since the local polarization p is z dependent in view of
Eq. (2.16). Thus we have

hand, the polarization in the laboratory frame is given
by

p = —p = r tanh(2Php),
h

ho

where we used Eq. (4.11) and r = h/hp as in
Eq. (2.18). Thus, with the help of these remarks and
using Eqs. (2.19) and (4.17) we find the compact expres-
sion for the line shape

dp W(p)
A(d~)2 r2(zp) —p2

{cu —[~2r(zp)A~] } + A (~ —-'pA~) (5 4)

The local-polarization distribution W(p) has been recently calculated within the thermofield-dynamic approach in
Ref. 13. The result for the case S' = +I/O is

W(p) = 4e-'" r' 202
I

(")'+
&h(zp) [hp(zp)l'2I P )

J q+4
(5 5)

where zp ——zp(p) is the solution of Eq. (2.16).
Considering next the complete expression for C(s) given by Eq. (4.14), we find the line shape J(~) in units of Au/2

as follows:

R —p2+7 "I(u) + p)
(~' —&) +7'(~ —P+7 'I)2 (5 6)

where ui = Au/2 and we have introduced a dimensionless frequency ur ~ u/wi and relaxation rate 7 = A/ui, while

R and I are given by the following expressions:

y2 —~2 + X2 q + 4 Z2 + 02
R=l —X 0

+ X2 [(q + Q) z2 + Q2] }2+ 472~2
(5 7)

I=29 X2- P(d

{72 ~2 + X2[(q + Q)z2 + Q2]}2 + 472~2

(5 8)

Here we have introduced the dimensionless tunnel-
ing frequency 0 = 20/J and a parameter X, which
represents the ratio of the width of random interac-
tion distribution J and the dynamic parameter L~, i.e.,
X = J/A~.

It should be noted that the Eq. (5.3) can be obtained

as the large-X limit of the Eq. (5.6). In the limit 0 ~ 0,
Eq. (5.6) reduces to the well-known expression for the
line shape in deuteron glasses obtained earlier. Another
interesting feature is obtained for large values of y. In
the limit p ~ oo, referred to as the fast motion limit,
where the measuring frequency is much lower than the
characteristic frequency for pseudospin Hips, Eq. (5.6)
reduces to (I/~i)W(~/~i), with W(p) given in Eq. (5.5).
The results of a numerical evaluation of the line shape
given by Eq. (5.6), and using Eqs. (5.5), (5.7), and (5.8)
are presented in Figs. 2, 3, and 4 for a fixed value of X =
102 and for various values of the parameters 0, 4, p,
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and the reduced temperature T/To, where Tg = J/4. In
Fig. 5 the line shape is presented for various values of the
parameter X with the other parameters being kept fixed
at their representative values.

VI. DISCUSSION AND CONCLUSIONS

The above treatment represents an extension of the
stochast, ic Kubo-Anderson approach for the calculation
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FIG. 2. Line shape J(ur) plotted vs reduced frequency
cu/~i for fixed temperature T/To = 1.0, random-field dis-
tribution A = 4A/J = 0.35, relaxation rate y = A/uri ——2.0,
and X = J/2cui ——10, and diR'erent values of the tunneling
frequency A:—2A/J: 0.0 (a), 0.05 (b), 0.1 (c), and 0.25 (d).
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FIG. 3. Same as Fig. 1, but for fixed X = 10, T/To = 1.0,
A = 0.35, 0 = 0.25, and four diR'erent relaxation rates: p = 2

(a), 5 (b), 20 (c), and 50 (d). In the limit y ~ oo the line
shape reduces to the static distribution W(u/~i), which is
given by the Eq. (5.5), and is represented by the dashed line
in Fig. 3d.
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of magnetic resonance line shapes in proton glasses,
which allows us to incorporate the quantum efFects of co-
herent tunneling using the Clauser-Blume model. Here a
part of the system is treated quantum mechanically, while
the surrounding heat bath is characterized by stochastic
forces which cause transitions between quantum states.
The static properties of proton glasses, assumed to be
given on the level of mean-field theory within the Clauser-
Blume model, are described as the static limit of the
thermofield-dynamic approach with an instanteneous ap-
proximation for the dynamic self-interaction, as in our
previous works. An analytic expression for the line
shape has been obtained, which is illustrated in Fig. 2
for difFerent values of the tunneling frequency Q. In the
limit of small tunneling (2A/J ~ 0) the line shape re-
duces to the one obtained previously by Pire et at. i2 At
low temperatures it consists of a double-peaked distribu-
tion, which corresponds to the resonance frequencies of
the proton in the left or right equilibrium site, respec-
tively. When the tunneling frequency is difFerent from
zero, a third peak at ~ = 0 appears. In the limit of large
tunneling the intensity of the central peak at u = 0 in-
creases and the intensity of the two side peaks decreases.
The dependence of the line shape on the relaxational fre-

quency A/ui —measuring the strength of the coupling to
the surrounding heat bath —is shown in Fig. 3, whereas
the effect of the temperature T/To is illustrated in Fig. 4.
An increase of the temperature T/To generally changes
the three-peak structure into a single-peaked one. For a
very large relaxation rate A/ui ~ oo, representing the
fast motion regime, we find that the line shape is given

by the static local-polarization distribution with p re-

placed by ~/cui. The effect of the parameter X = J/2cur
on the line shape is illustrated in Fig. 5. For small values
of X the central line is smeared out, whereas for large val-

ues of X a pronounced central peak appears. A typical
value of the parameter J in proton glasses is J/4k~ 60
K, and ur 10 Hz (Ref. 32) for the Rb NMR line in
D-RADP and 1O Hz for the EPR spectrum of Tl + in

RADP. 33

The above results show that a measurement of NMR,
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~ 0.5

3

NQR, or EPR line shapes in proton glasses may offer a
possibility of discriminating between coherent tunneling
processes and incoherent thermally activated jumping of
the proton or deuteron across the potential barrier. The

2.0,

1.5—
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1.0—

0.5—

1
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FIG. 4. Same as in Figs. 2 and 3, but for variable tem-
pera. ture T/Tp = 0.85 (a), 1.0 (b), a,nd 1.5 (c), and for fixed
X = &O', A = 0.35, A = O.25, and ~ = 2.O.

FIG. 5. Same as Figs. 2, 3, and 4, but for fixed T/Ta ——

1.0, A = 0.35, p = 2.0, 0 = 0.25, and various values of the
parameter X: 1 (a), 10 (b), 20 (c), and 10 (d).
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relative strengths of the peak at u = 0 and the two side
peaks permit a quantitative determination of the tunnel-
ing frequency.

A few comments are now in order regarding the fea-
sibility of detailed comparison between the theory pre-
sented here and resonance experiments of diferent sorts.
It is clear that as the tunneling particle, i.e. , the pro-
ton or the deuteron, moves from one site to another in
an 0—H . .0 bond, it must make a discernible change
in the environment for the eff'ect to be detected. How
this change is reflected in the corresponding change in
the resonance frequency deserves separate remarks for
NMR, NQR, and EPR measurements.

Unlike the deuteron the proton has no quadrupole mo-
ment and hence, a direct way of tagging the proton spin
and performing a proton resonance experiment would be
to employ the fact that the chemical shift tensors are dif-
ferent for the two states. However, this eA'ect is expected
to be masked by a very broad homogeneous linewidth due
to interproton magnetic dipole-dipole coupling which is
not significantly altered by the proton transfer. (This
is so the interproton distances are much larger than the
separation between the two sites in an 0—H .0 bond. )
Therefore, in order to observe flucuating chemical shift
tensors concomitant with the "jump" of the proton, the
dipolar interactions must be eliminated by a line narrow-
ing technique, as one does in high-resolution solid-state
NMR. '4

Still another —though more indirect —way would be to
observe the ~ 0 quadrupole resonance line shape. The
electric field gradient (EFG) tensor at the 0 in an

0—H 0 hydrogen bond has one valuess when the

proton is "close" to the 1 0 site and another value21 when
the proton is in a "far" position. Thus the ~70 nuclear
quadrupole resonance (NQR) or ~70 nuclear quadrupole
double resonance line shapes reAect the eA'ects of the
proton motion and the theory presented in this paper
can be directly applied. One advantage of the ~ 0 ex-
periment is that A~ = u~ —uL, is expected to be of the
order of 10 —10 Hz, whereas it is of the order 1—10 Hz for
the proton chemical shift experiment in high-resolution
NMR in solids.

The above theory can be also applied to electron para-
magnetic resonance (EPR) spectra of, e.g. , an As04
center where the magnitude of the hyperfine coupling
tensor between the electron and proton spins is de'er-
ent if the proton in the 0—H .0 hydrogen bond is in
a close or far position with respect to the unpaired elec-
tron, i.e. , the As04 group. The problem with such an
experiment is the fact that the unpaired electron in the
As04 group "feels" not only the motion of one proton
but the motion of all four protons surrounding a given
As04 group. Still another problem is that the pres-
ence of the unpaired electron changes the potential of
the 0 H 0, so that the obtained results do not refiect
the situation in the unperturbed system.

Taking all the above factors into account, high-
resolution proton NMR, ' 0 NQR or double resonance
~70 NQR off'ers the best possibility of testing the present
theory and looking for coherent tunneling eA'ects in pro-
ton glasses. In spite of the fact that many resonance ex-
periments have been performed for proton and deuteron
glasses, the relevant experiments to check the above
theory have not yet been done, but are highly desirable.
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