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This paper deals with the +J Ising model in two dimensions in the general case where there is a con-
centration p of negative bonds. We are particularly interested in exploring the Pfaffian (or combinatori-

al) method for treating this problem because a Green's-function formalism can be developed in which

the frustration manifests itself in a gauge-invariant form through temperature-dependent singularities.
We describe the formalism in detail and show how the disappearance of ferromagnetic order at a critical
value of p can be related to a transition from localized to extended states analogous to the Anderson
transition. Calculations are performed for the ground-state energy and entropy, which are obtained ex-

actly for large samples. We introduce an exponent p that describes the underlying singularity structure
of the Green s-function formalism and we show how this is related to the exponent of the spin-spin
correlation function of the Ising problem. A value for this exponent of g =0.4 is obtained.

I. INTRODUCTION
P(J; ) =p5(J;.+J)+(1 p)5(JJ —J)—. (1.2)

There have been a number of attempts to develop a
theory for short-range spin glasses based on the gauge-
invariant features of the system. Toulouse' introduced
the concept of a frustrated plaquette as a gauge-invariant
description of the element of disorder in a two-
dimensional +J model. Further studies, which aimed to
exploit the gauge invariant aspects, were made by Frad-
kin, Huberman, and Shenker, Kogut, and Schuster.

The subsequent developments, however, have been
predominantly numerical, either via Monte Carlo simula-
tions or the transfer matrix method or through the
domain-wall renormalization-group approach. ' ' A
fairly clear understanding of the equilibrium and non-
equilibrium properties has emerged from this work and
the eAort now is being directed into attempts to build a
microscopic picture of the low-temperature state of a
spin glass.

The main emphasis' ' at present is in the direction
of building a scaling theory for droplet excitations. This
is a natural development from the domain-wall
renormalization-group approach. For Stein et ah'. ' the
approach allows them to incorporate a percolative aspect
into the problem though of a diferent nature to normal
percolative ideas. Reviews of various aspects of spin-
glass theory have been given by Binder and Young, ' Van
Hemmen and Morgenstern, ' and Young. '

In the present paper we wish to return to the gauge-
invariant properties of the system and develop a micro-
scopic theory based on that. We consider specifically the
+J Ising model

H= —g J;,cr;o),
(Ij)

where the bond distribution is

Our discussion will concentrate entirely on the 2D sys-
tem, although, in the conclusion, we shall point out that
there is a possible route for developments in 3D.

The formalism we use is based on the combinatorial or
PfafBan method. ' ' Preliminary results on the frustra-
tion problem have already been reported, ' and the
method has been used also in another context. To make
this paper self-contained, we give a brief review (Sec. II)
of the formalism but refer the reader to the earlier refer-
ences for full details. The method employed can take
several guises: combinatorics, ' PfafFians, Grassmann
variables. ' The essential point, however, is that the
problem can be expressed in terms of the properties of an
eigenvalue spectrum or, if we use the Grassmann algebra,
it is a noninteracting field theory in anticommuting vari-
ables (or an interacting field theory in three dimensions).

The thermodynamic properties can be written in terms
of a Green's-function formalism and, in this format, any
frustration in the system manifests itself in a characteris-
tic way through temperature-dependent singularities that
collapse to a single degenerate value at zero temperature.
This singularity structure is fully gauge invariant and
provides a key to a new understanding of the physics of
short-range frustrated systems.

As p in Eq. (1.2) is increased from zero, the ferromag-
netic critical temperature T, decreases and, at a critical
concentration p„ ferromagnetic order disappears
( T~O). p, is around 12—15%. The canonical +J spin
glass is at 50%.

We can examine the eigenstates associated with the
singularity structure. It is found that, for p &p„all of
them are localized. For p )p„extended states begin to
appear. It is shown that the size distribution of the eigen-
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states obeys a power law with an exponent p. There is a
critical value p, for this exponent which marks the tran-
sition from localized to extended states. It is argued that
p~p, as p —+p, . Thus, although as was shown a num-
ber of years ago, there is no thermodynamic fixed point at
p„ there is a quantity that goes through a critical value at
this concentration.

In this paper, we use the formalism to calculate ther-
modynamic quantities: the ground-state free energy and
entropy at p =50% and also the exponent of the correla-
tion function at this concentration. Its purpose, however,
is also to provide a language for describing the physics of
short-range frustrated systems.

The outline of this paper is as follows. After a review
of the formalism in Sec. II, we analyze in Sec. III the
singularity structure, which, it has been asserted, con-
tains the gauge-invariant characteristics of the frustrated
system. In Sec. IV an expression for the ground-state en-
tropy is developed within this formalism. Numerical cal-
culations on large samples are effected by degenerate-
state perturbation theory —typically with a degeneracy
of several thousand and a perturbation expansion to be-
tween 7th and 13th order. The perturbation theory is
developed in Sec. V. It is to be emphasized that pertur-
bation theory in this context is not to be regarded as an
approximation. Rather, it is a systematic expansion that
is exact if taken to high enough order.

In Sec. VI, the ground-state energy and entropy at
p =50% are calculated numerically with resul. ts that we
claim are the most accurate available in the literature.
We have remarked that p, is marked by a transition from
localized to extended states (a sort of Anderson transi-
tion). There is an exponent p that describes the spatial
extent of the states. This is calculated for two values of
concentration in the p &p, regime, and it is shown that
p)p„where p, is the value of the exponent at the
localized-extended transition. Finally, in Sec. VIII, we
consider the concentration p =50%. The spatial distri-
bution of the eigenstates associated with the singularity
structure is again investigated. In this case it is found
that the exponent p is smaller than the critical value p,
and the states are extended. It is shown that, for extend-
ed states, the exponent is related to that of the spin-spin
correlation function and a value for the exponent of the
correlation function is deduced.

genvalues. We can also write Eq. (2.1) in terms of an in-
tegral over 4' Grassmann variables q, because

1(detD)' = J dg exp —g rt D ttgtt2 p
(2.2)

although we shall not make use of this form in the
present paper. The Grassmann formalism is necessary
for developments in 3D.

To display the form of D it is convenient to associate
four nodes (labeled 1 —4) with each site of the lattice as in
Fig. 1 (the notation used is as in Ref. 24). D contains N
blocks 0 down the diagonal; the elements of each block
connect nodes associated with a single lattice site

0 —i i
0 —i i

0 —i
0

(2.3)

D also contains matrix elements that link nodes 1 (3) of
one site with 2 (4) of neighboring sites along the x (y)
Cartesian directions. These correspond to the bonds J;
connecting sites i and j, and the elements in D are equal
to +-it; where t, =. tanh(J, "~ lkT). The minus and plus
signs correspond, respectively, to the positive and nega-
tive Cartesian directions. Q is independent both of tem-
perature and any disorder in the system. These enter
only through t; .

For a perfect system at zero temperature, the eigenval-
ues e of D lie in a band such that 2 —&2 ~e~ ~2+&2.
The eigenvalues occur in pairs at +e. At the critical tem-
perature T, there is a pair of eigenvalues at e=O (zero
mass gap).

A single negative defect in an otherwise perfect lattice
produces a pair of frustrated plaquettes. It also produces
a pair of defect eigenvalues that approach 0 in the zero T
limit as e=+—,

' exp( 2JikT). Th—ese defect eigenstates
are localized on the frustrated plaquettes at T =0.

In the presence of an arbitrary number of negative
bonds, a band of defect eigenstates is produced. These
eigenstates are equal in number to the number of frustrat-

II. THE PFAFFIAN FORMALISM
FOR A DISORDERED SYSTEM

In the PfaFian method ' we write the partition function
for the 2D Ising model as

3
=2 1=

4

3-2
4

Z =2 +cosh(J; IkT) (detD)'
(ij)

(2.1)

where J; is the nearest-neighbor bond strength for sites
(ij ) and the product is over all bonds on the ¹itelat-
tice. The matrix D is Hermitian, pure imaginary, and of
order 4N. D is more often written ' ' in a real skew-
symmetric form, but multiplying each element of the
skew-symmetric array by i does not alter the result and
we find it convenient to work with a matrix with real ei-

=2 'I=
3

4
3

=2 1=

FIG. 1. The labeling of nodes associated with a lattice site.
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ed plaquettes and, as in the case of a single defect, are
completely localized on the frustrated plaquettes at zero
temperature. Each eigenvalue can be written

e =+—,'X exp( 2J—r /k T), (2.4)

where r is an integer and X is a real number. At T=0
there is a degeneracy at e=O equal to the number of frus-
trated plaquettes. Because of the one-to-one correspon-
dence with the frustrated plaquettes, the eigenstates
characterized by Eq. (2.4) form the basis for a gauge-
invariant development.

We stated earlier that the change in the ground-state
energy and entropy of the system that results from the in-
troduction of frustration can be written

AS = k g inXq,

(2.5)

(2.6)

FIG. 3. A more complex defect configuration with one of the
five possible minimum string-length configurations drawn.
Heavy lines denote negative bonds.

where the notation indicates a summation of positive
eigenstates of Eq. (2.4). Equations (2.5) and (2.6) are the
gauge-invariant expressions for the two fundamental
ground-state properties based as they are on quantities
firmly related to the spatial distribution of frustrated pla-
quettes. Equation (2.6) is, of course, equivalent to ex-
pressing the ground-state degeneracy M as

M =++X~ .
d

(2.7)

These key ground-state results were first quoted in Ref.
22. Although the derivation of Eq. (2.5) is almost trivial,
that of Eq. (2.6) is quite subtle. The proof comes via a
Green's-function approach, which follows in the next two
sections.

There is an apparent similarity in our formalism to
Toulouse's' string description of the ground state in
which frustrated plaquettes are connected in pairs in such
a way as to minimize the total string length. It is impor-
tant to realize, however, that our approach and the string
formalism are quite distinct. This is best illustrated by

means of an example. Two elementary defect
configurations are shown in Fig. 2. In the first (on the
left), the string connecting the pair of frustrated pla-
quettes is of unit length signifying one wrong bond. In
the second (on the right) a string of two units of length
can be drawn in two ways, indicating two wrong bonds
and a doubly degenerate ground state. In the present for-
malism the frustration would manifest itself in a pair of
defect eigenstates of the form of Eq. (2.4) with X=1,
r = 1 for the first configuration and X =2, r =2 for the
second.

In Fig. 3, a slightly more complex configuration is
shown. Strings with a total length of four units are
drawn, indicating four wrong bonds. There are five ways
of drawing this consistent with a fivefold degenerate
ground state. In our formalism, because of the presence
of four frustrated plaquettes, there are two pairs of defect
eigenstates of the form of Eq. (2.4). One has X = 1, r = 1,
while the values for the other are X =5, ~ =3, giving four
(3+ 1) wrong bonds and a degeneracy of five (5 X 1).

The string picture provides a description of the ground
state, but is not a practical method of determining the
ground-state properties because there is no methodology
(other than by inspection) for obtaining all the minimum
string-length configurations. Our formalism does not at-
tempt to determine the ground-state configurations them-
selves. Rather, by matrix diagonalization, a set of values
for X and r is obtained, from which the energy and entro-
py can be determined. The approach is completely gauge
invariant and depends solely on the number of frustrated
plaquettes and their spatial distribution.

III. SINGULARITY STRUCTURE
(3F THE ZERO-TEMPERATURE T MATRIX

FIG. 2. Two simple defect configurations. Minimum string-
length configurations are shown according to the Toulouse (Ref.
1) description. Heavy lines denote negative bonds.

As was stated in the introduction, detD in Eq. (2.1) is a
gauge-invariant quantity and, at zero temperature, the
frustration manifests itself in a gauge-invariant way
through the zeros of D. It is convenient to express the
formalism in the language of resolvent Green's functions,
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where, as we shall show, the frustration appears as separ-
able singularities. The Green's function for the problem
is defined by

6 =(eI —D) (3.1)

where e is a real dimensionless quantity whose purpose is
essentially one of accounting and I is the 4XX4% unit
matrix.

The matrix D can be expressed as

D =Do+ V (3.2)

where Do is the corresponding matrix for the perfect
crystal [i.e., J," equal to a constant value J in Eq. (1.1)],
and V is the perturbation describing the defect distribu-
tion. The associated T matrix is given by

T = V(I —gV) (3.3)

go(+, —)= —g, ( —,+ )= —
—,'i (3.5)

and within a plaquette

0
0 —i —i

i 0 —i

0

(3.6)

where g is the Green's function of the perfect lattice.
The basis of the matrix D is usually given by four

nodes at each lattice site, as shown in Fig. 1. However, in
order to facilitate the development of the formalism, it is
useful to introduce a fresh basis more obviously associat-
ed with bonds and plaquettes, as shown in Fig. 4. The
basis is given by

(3.4)

where Ia & and IP & are in the original node basis.
The perfect-crystal Green's function go [=g(e=O)]

can be calculated by transforming Do into a plane-wave
basis and inverting a 4 X 4 matrix. For zero temperature,
go is highly localized. Its only nonzero elements are
across a single bond

where the elements of go in Eq. (3.6) are with respect to
the bond basis of a plaquette (see Fig. 5).

We now consider the +J problem [Eq. (1.2)]
specifically. A defect basis can be defined in terms of all
the states I+ & associated with the negative bonds. Both
the perturbation V and the T matrix are expressed in
terms of this defect basis. In particular,

V( +, —) = —V( —,+ ) = 2i— (3.7)

across a negative bond for zero temperature. All other
elements of V are zero. From Eq. (3.7) it follows that
V '=

—,
' V, and so the inverse of the T matrix is given by

T '= —„'V —g . (3.8)

In general negative bonds may be placed at any posi-
tion at random. However, it is convenient, after position-
ing the negative bonds, to perform a series of gauge trans-
formations in order that all the defect bonds are, say,
vertical. This reduces the complexity of the problem.
After these transformations any plaquette is one of four
types, as in Fig. 6. There are two types of unfrustrated
plaquettes and two types that are frustrated. Note that
gauge transformations never change the distribution of
frustrated plaquettes or the partition function of the lat-
tice.

The defect subspace of the gauge-transformed system is
generally of a different size to that of the system prior to
the gauge transformation, but since we are interested in
gauge-invariant properties this is immaterial. We choose
a gauge that is convenient for the development of the for-
malism.

We consider first T ' of Eq. (3.8) in the e=O limit. It
is useful to regard the defect basis states as being of two
types depending on whether the plaquette they are in is
frustrated or not. If a state is within a frustrated pla-
quette it will be written

If &, and otherwise Iu &, and let
us suppose that there are a total of n and n' states, re-
spectively, of each type in the lattice. Across any defect
bond it is evident from Eqs. (3.5) and (3.7) that

FIG. 4. The transformation from a node to a bond basis.

FIG. 5. The states in a bond basis associated with a single
plaquette. Those numbered 2 and 3 are of type I+ ) and those
numbered 1 and 4 are of type I

—) .



4378 J. A. BLACKMAN AND J. POULTER

where

Q = &if &&fig'olu &&ul
fu

and

c= & If &&flgo' f'&&f'I .
ff'

(3.16)

(3.17)

I is the unit matrix with dimensions equal to the number
n of frustrated plaquettes.

To emphasize the separation of the singular behavior
associated with the frustration, let us reexpress Eq. (3.15)
as

(c) T=e 'glf &&fl+S+O(e),
f

(3.18)

FIG. 6. Possible plaquettes after gauge transformation to
vertical defect bonds (indicated by heavy lines). Plaquettes (a)
and {b) are unfrustrated while {c) and {d) are frustrated. There
are no defect states in (a); there are two of type I

u & in (b) and
one of type If ) in each of (c) and (d).

where S is the second term in Eq. (3.15). Eqs. (3.15) and
(3.18) are the key results of this section.

IV. THE GROUND-STATE ENTROPY

—„' V(+, —) —go(+, —
) =0. From this it can be seen that

any matrix elements of T ' involving an
I f & are zero

and the only nonzero elements are those between the un-
frustrated defect states Iu & within a plaquette of type (b)
in Fig. 6. Let us define the matrix U by

The ground-state energy of the system has been ex-
pressed in Eq. (2.5) in terms of the quantity rz in the ex-
ponent of the defect eigenvalues of Eq. (2.4). We will
show here how the corresponding entropy can be related
to Xd from the same expression to give Eq. (2.6). For the
+J problem, the partition function, from Eq. (2.1), can be
written

U '= y Iu & &ul( —,
' V —g )Iu'&&u'I .

u, u

Then we can write

(3.9)
Z

ZQ

' 1/2
detD

detDQ
(4.1)

0 0
4~ —gQ= 0 (3.10)

U(+, —)= —U( —,+)=2i, (3.11)

and the diagonal elements are zero.
To obtain g, we treat e as a small parameter and ex-

pand

g =go —ego+e go+0(e'), (3.12)

where the upper (lower) blocks of order n (n') are associ-
ated with frustrated (unfrustrated) states and the singu-
larities in T(@=0) are clearly seen to be associated with
the frustrated plaquettes. The matrix U has nonzero ele-
ments only within an unfrustrated plaquette with two de-
fects (second diagram of Fig. 6). Within such a plaquette,

where the subscript 0 refers to the perfect system. Let us
denote the eigenvalues of DQ by e and those of D by ed
Ithe defect eigenvalues of Eq. (2.4)] or e, (the remaining
continuum ones). Then

II~,II"
detD c d

detDo IIe~
(4.2)

It will be shown that the ratio of the products of e, and
e is a pure number independent of the disorder in the
system so that the eA'ects of frustration are entirely de-
scribed by the ed.

Consider the Green's function defined in Eq. (3.1). It
can be written, at zero temperature, in terms of the defect
and continuum eigenstates as

so that

T '=( —,
' V —go)+ego ego+0(e )

—. (3.13)
G=glc&(e —e, ) '&el+a 'gld&&dl, (4.3)

A useful simplification in the inversion of Eq. (3.13) is the
relation

so that in the limit @~0

detG =e " +e, (4 4)

&f lgo lf' &
= &flf'&, (3.14) C

e 'I 0 QUQ +C —QU
0 0 —UQt +O(e), (3.15)

which follows from Eqs. (3.5) and (3.6). This enables us
to write

detG =detg/det(I —g V) . (4.5)

where n is the total number of frustrated plaquettes. A
minus sign is unnecessary on e, in Eq. (4.4) because all
states occur in positive and negative pairs. Now from the
relation G = (I —g V) 'g, we can write
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detG/detg =detT/det V,

and, from Eq. (3.15), to leading order in e

(4.6)

But the determinant of I —g V is the same whether evalu-
ated in the defect basis only or in the full 4X X4X basis.
The T matrix in Eq. (3.3) is in the defect basis and so it
follows that

V. DEGENERATE-STATE PERTURBATION THEORY

At zero temperature, the defect eigenstates are degen-
erate with value zero. To determine rd and Xd we consid-
er small finite temperature and use perturbation theory to
lift the degeneracy. For finite temperatures the matrix D
for the frustrated system is given by

detT =e "det U . (4.7)
D =D(0)+6Di, (5.1)

Now detg is, of course, equal to Q e ' and so, from Eqs
(4.4), (4.6), and (4.7), we can write

det V

detU
(4.8)

II&p
P

For k defect bonds detV=( —4)", and for l unfrustrated
plaquettes with two defects detU=( —4)'. Therefore,
since k —1 =n/2, the ratio in Eq. (4.8) is equal to
(
—4)"~ and, from Eq. (4.2),

where D (0) is the matrix for the frustrated system at zero
temperature and 5=1—tanhJ/kT. Equation (5.1) is ex-
act, but at low temperatures it is also convenient to use 5
as a small parameter for a perturbation expansion.

We write the ground-state defect eigenstates in the
form Ir, i ), where r is an integer representing the order of
perturbation theory at which the degeneracy is lifted. It
is also the index r in Eq. (2.4). i is a secondary index
which labels the eigenstates of order r. Let X(r) be the
number of such eigenstates.

Our eigenvalue equation is

=( —4)""+(e ) .
detDQ

Dl~&=~I+&,

(4 9) where A. is, say, the jth eigenvalue of order n,

(5.2)

The eigenvalues of D have a symmetric distribution about
zero and thus, from Eqs. (2.4) and (4.1), we can write

X=S"e'„+O(n"+') .

The eigenstate
I
4 ) can be expanded in powers of 5,

(5.3)

Z/Zo =2" ++ed = Q+Xdexp( —2Jrd /kT),
d d

(4.10) Ie &
= le, &+ale, )+5'Ie, )+ (5.4)

where the notation indicates that the product is taken
over only the positive eigenvalues. Thus the free energy
in the limit T~O limit is given by

with leo) —= In, j).
Equating powers of 6 in Eqs. (5.2) to (5.4) we obtain

(for 1(m ( n)

F =F0 kTQ+lnXd—+2JQ+rq,
d d

(4.1 1)

where Fo is the free energy of the perfect system. Thus
the changes in the ground-state energy and entropy
brought about by the introduction of frustration into the
system are

D(0)le &+Dil+ i&=& .ej, ln, j& .

By definition, D (0) Ir, i ) =0, so that

(r, ilD, le, ) =S.„S„„n,,e~,

and, in particular, with r =m =n =1,

(5.5)

(5.6)

b,F =2JQ+rd,
d

b,S =kg+1nXd .
d

(4.12)

(4.13)

It is worth emphasizing that the result of Eq. (4.13) is
somewhat more subtle than that of Eq. (4.12). The con-
tributions to Eq. (4.12) come entirely from the defect
eigenstates. In Eq. (4.13) precisely half comes from the
defect eigenstates. The remaining half arises from
modifications to the continuum due to the introduction of
frustration into the system. It is for this reason that Xd
appears in Eq. (4.13) but only —,'Xd in Eq. (2.4).

Equations (4.12) and (4.13) can be expressed
equivalently in terms of the number of unsatisfied bonds

and the ground-state degeneracy M:

(4.14)

( l, iIDil1, j & =e,n,, (5.7)

which is the expression that determines the eigenstates
whose degeneracy is lifted at first order in 5 Ii.e., the r = 1

states in Eq. (2.4)].
Now, acting with a continuum state on Eq. (5.5), we

have

e, ( c
I
0 &

= —( c
I
D i I

+

Then using closure

glr, i)(r, il+ g c)(el=1,

(5.g)

(5.9)

& =G,D, le, &+ y y Z„"Ir,i &,
r=1&=1

(5.10)

and the definition of the continuum Green's function in
Eq. (Al), we obtain

"max X(r)

M=+ X„.
d

(4.15)

where r, is the highest order of perturbation theory re-
quired. Z„" is equal to (r, i IV ), but for our purposes
these are just coef5cients to be determined. Now, using
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Eqs. (A7) and (5.6), we can write, in terms of a new set of
coefficients Z,',

& =g,D, le -, &
—& „g,ej. In,j &

&r, IlD, le, )=5 „,5„„5,,e'„. (5.22)

The general rule is now apparent. The defect eigenvalues
e'„and the corresponding eigenvectors

l r, i ) are given by

"max N(r)
+ g gz„'lr, i) . (5.11)

e'„5,, =&r, i lD„lr,j ), (5.23)

5 „,5„„5,e'„= & r, i
l D2 l

qI, ) +5„,Z', eI, (5.12)

where

D2 =D1g,D1 .

With r =n =2 and m = 1, we obtain

e', 5,, = &2, ilD, g, D, l2,j &,

(5.13)

(5.14)

which yields the second-order states. For states of higher
order than 2, inserting r = 1 in Eq. (5.12), gives

and hence, from Eq. (5.11),

"max N(r)
)=(1+GIDI)g,DII+ -I&+ & g Z,'lr, i&,

r=2i =1

(5.15)

where G1 is a first-order Green's function, which is a spe-
cial case of the definition

r=l i =1

Equations (5.6) and (5.11) are the key equations for the
development to higher orders. To evaluate an eigenstate
of order n, we need to consider values of m in Eq. (5.11)
such that 1 + m + n —1. Acting on Eq. (5.11) with
& r, i lD, and using Eq. (5.6), we obtain

where, for r & 1, the hierarchy for D, is obtained from

D„=D„,(1+G„2D„2) (1+G,D, )g,D, . (5.24)

VI. GROUND-STATE PROPERTIES AT p =50%

We now use the formalism of the previous section to
calculate AF and AS numerically for large samples. A set
of eigenvectors for the degenerate @=0 state in the pres-
ence of an arbitrary amount of frustration is obtained
easily by inspection. For small finite T the degeneracy is
lifted and the Xd and rd can be determined using Eqs.
(5.7), (5.14), (5.20), and (5.23). We are using perturbation
theory with 6 as the small parameter as described in Sec.
V; rd is the order of perturbation theory at which the de-
generacy is lifted. It is possible to go to sufficient orders
that the degeneracy is lifted for all states and AF and AS
are determined exaerly. For a 128X128 sample, for ex-
ample, the degeneracy at T=0 is typically about 8000
and an expansion to between 7th and 13th order is
necessary —but sufficient.

The ground-state energy and entropy at p =50% have
been calculated by several authors. The calculations we
report here are, we believe, the most accurate so far per-
formed. The numerical work was done on square sam-
ples of size L for a range of values of L up to 256. The

N(r)
G„=—g lr, i )(1/e'„)&r, i

l
. (5.16) -1.385-

From Eq. (5.12), with r ~ 3, we obtain

&r, I lD, le. , ) =s.„,s„„s,,~i . (5.17)
—1.390-

A similar procedure is now followed for the next order.
Equation (5.15) is acted on with &r,i lDz, which, using
Eq. (5.17), gives

S.„,f„„f„ej=&r, I lD, le, )+f„,Z, ~', ,

where

D3 =Dz(1+ G, D, )g, D

With r =n =3 and m =1, we obtain

~p;, =&3,ilD313,j& .

(5.18)

(5.19)

(5.20)

—1.395-

-1.400

Then setting r =2 in Eq. (5.18) gives a value for Zz
which, inserting into Eq. (5.15), yields

) =(1+G2D2)(1+G,D, )g, D, lII'm I)
"max N(r)

—1.405-
I

32
I

64
I I I

128 256

+ y g z„'lr i),
r=3 )=1

while setting r ~ 4 in Eq. (5.18) gives

(5.21)

FIG. 7. Ground-state energy per site (in units of P for square
samples with sides of L sites for p = 50%%uo.



GAUGE-INVARIANT METHOD FOR THE +JSPIN-GLASS MODEL 4381

0.078-- S =0.0704+0.0002 . (6.2)

0.076-

0.074-

0.072-

For comparison we tabulate results quoted by other au-
thors (listed in chronological order of publication) (see
Table I). Those by Cheung and McMillan and by Wang
and Swendsen are the most accurate previous data. It
should be noted that our method gives an exact result for
a particular sample at zero temperature and does not re-
quire extrapolating from finite temperatures as Monte
Carlo data does. The only other exact ground-state cal-
culation for large samples is that of Bieche et al. who
use a graph-theoretical method.

VII. EXTENDED AND LOCALIZED STATES

0.070 -,
32

I

64
I I I

128 256

FIG. 8. Ground-state entropy per site {in units of k) of square
samples of side L for p =50%.

samples were embedded in an essentially infinite unfrus-
trated background. In practice this means an unfrustrat-
ed frame to the sample of thickness equal to the order of
perturbation theory to which it is necessary to go. Per-
forming the degenerate-state perturbation theory on a
sample with periodic boundary conditions would have
been considerably more complex. Also we wished to
avoid underestimating the effect of frustration by giving
it the possibility of dissipating itself at free boundaries.
There is a danger that our embedding method could
overestimate the effect of frustration on the ground-state
properties and so it was essential to perform calculations
with a range of L values and extrapolate to infinity.

The results for the energy are shown in Fig. 7 and for
the entropy in Fig. 8. The L =32 and 64 results have
been averaged over 200 samples. Those for L =128 and
256 have been averaged over 80 and 40 samples, respec-
tively. Error bars are sho~n in the diagrams. A linear
extrapolation to infinity gives, for the ground-state ener-
gy and entropy per spin, N&

= AL i L2exp( —I /g) (7.1)

The transition temperature for ferromagnetic ordering
decreases from its perfect lattice value at p =0 and goes
to zero for p around 12—15 %. We made the observation
in an earlier paper that all of the defect eigenstates in
our formalism are localized for p (p, and that, for
p &p„some are extended. These earlier observations
were qualitative. The purpose of this and the next sec-
tion is to put this on a more quantitative basis and to ex-
plore some of the consequences.

It is necessary first to have a definition of the spatial
extent of an eigenstate. Eigenstates, it will be remem-
bered, occur in pairs +e, and the corresponding eigenvec-
tors are complex conjugates of each other and can be
written

~ p ) +i
~ q ) . By way of example, in the simplest

singe-defect configuration in Fig. 2, ~p ) would be local-
ized on one of the frustrated plaquettes and q ) on the
other The ."centers of mass" of ~p ) and ~q )are separat-
ed by one lattice spacing, and this is a sensible definition
of the size of this pair of states. The (Manhattan) dis-
tance between the centers of mass of ~p ) and ~q ) will be
taken generally as the definition of the spatial extent of an
eigenstate.

The definition of extended or localized needs to be
made more precise. A distribution function Xl is intro-
duced such that Nl is the number of states whose size is
larger than l. For a sample of size L, XL2 we might ex-
pect, in the large-l limit, distributions of the form

F = —l.4020+0.0004 (6.1)
or

XI =BL iL2l (7.2)

28
29
5
30
6
9

'Present work.

—1.39
—1.4
—1.4+0.01
—1.4033
—1.4024+0.0012
—1.407+0.008
—1.4020+0.0004

0.099
0.07
0.075

0.0701+0.0005
0.071+0.007
0.0704+0.0002

TABLE I. Summary of previous values for the energy and
entropy.

Reference

where A and B are constants and g is a characteristic
length. A distribution contains significant extended
states if it is of the form of Eq. (7.2) with p(2; in this
case, in a square sample of side I„ the number of states
whose size is O(L) or greater will approach infinity as
L —+ ~. If the distribution has p & 2 or is of the form of
Eq. (7.1), then the number of states of size O(L) or
greater approaches zero in the limit of an infinite sample.
This will be our criterion for determining whether there
are localized or extended states present. It should be not-
ed, of course, that the two equations do not take account
of finite-size effects and we should interpret the behavior
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10'—

10'—

10'—

spectively. Nt has been normalized to the value for a
128 lattice. It is very clear that the behavior is described
well by Eq. (7.2). Using a least-squares fit to the region of
the curves in Fig. 10 that are reasonable straight lines we
obtain values of the exponent appearing in this equation.
They are, for p =5%%uo, p=4. 73+0.22 and, for p =8%%uo,

p=3. 12+0.08. In both cases p) 2, which accords with
our criterion for localized states. It will also be noticed
that p decreases with increasing p.

10 '—

10 '

10
I

20
I

30
I

40
I

50

FICx. 9. Distribution Nl (normalized to a 128 sample size) as
a function of size l for p =5%%uo (triangles) and p =8% (squares)
as a log-linear plot. X& is averaged over 40 samples sized
32 X 1024 and 64X 512 for the p =5% case and over 50 samples
sized 128 X 128 and 128 X 256 for p =8%. l is in units of lattice
spacings.

with care when I becomes of the order of L
&

or L2.
Consider first the regime in which p (p„and the

states are expected to be localized. The eigenstates were
calculated for a number of samples of width L2 and
length L, . At p =5%, no finite size effects were apparent
if L2 was larger than about 32 and, for p =8%, size
effects were similarly absent for L2 larger than about 64.
N& was calculated and averaged over 40 samples (of sizes
512X64 and 1024X32) for the S%%uo concentration of de-
fects. At p =8%%uo the average was taken over 50 samples
(of sizes 128 X 128 and 128 X 256). The results are shown
in Figs. 9 and 10 on log-linear and bilogarithmic plots, re-

VIII. CORRELATION FUNCTIONS AT p =50%

For p )p„ it is anticipated that Eq. (7.2) will still apply
but that the exponent p will be smaller and there will be a
significant number of more extended states. Finite size
effects are likely to be unavoidable. We concentrate our
attention here on the p =50% case which is a canonical
spin-glass model. We calculated the eigenstates for six
different-size lattices and, in each case, averaged N& over
80 samples. N& is plotted against l in Figs. 11—13. We
have again normalized N& to a 128 -site lattice. The plots
indicate that, for l above about 30, Eq. (7.2) represents NI
fairly well. There are two finite size effects. Referring to
Fig. 11, which displays the data for square lattices, a drop
in NI is apparent when l becomes comparable to the
linear dimension L of the lattice. Since we measure size
as a Manhattan distance, clearly N& must be zero for I
larger than 2L anyway.

There is a straight-line fit to data points in Fig. 11 over
a somewhat limited range of l; a larger sample length
than was possible for a square lattice was obviously need-
ed and so calculations were performed on strips. In Fig.
12 the results for strips of length L, =256 and two widths
L2 are plotted. The straight line now extends to larger
values of I close to 200 lattice spacings.

Finally, we show in Fig. 13 the results for strips of
length Li =512. For the wider strip with Lz =32, there

10'—

10'—
10'—

10'—

10'—

10'—

10'— 10 '—

10 '—
10 '

I

10
I

20
I

40
I I

70 100
I

200

10 '
I I I

6 8 10
I

20

FIG. 10. As Fig. 9 on a bilogarithmic plot.

I

40 FICx. 11. Distribution Xl (normalized to a 128 sample size)
as a function of size l for a 64X64 (triangles) and a 128X128
(squares) lattice. p =50% and N& is averaged over 80 samples. l
is in units of lattice spacings.
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100.0—

50.0—

best estimate for p, providing as it does a compromise be-
tween the small overall size of the Fig. 11 samples and
the narrow width of those of Fig. 13. Thus

p=1.60+0.08 . (8.1)
10.0—

5.0—

1.0—

0.5—

0.1
10 20

I

40
I I

70 100 200

FIG. 12. As Fig. 11 for 256X32 (triangles) and 256X64
(squares) lattices.

is a good agreement with Eq. (7.2) out to l =350 and with
the data in the previous figure. More serious finite size
effects occur for the narrower strip with L2=16. The
narrow width is the cause of an overestimate in the value
of NI for intermediate I in contrast to the reduction in Xi
at high I that arises from the finite overall size.

The straight lines in the diagrams were obtained by
least-squares fits to data points between I =30 and the
maximum for which finite size effects are negligible. We
obtain a value for the exponent in Eq. (7.2) of
p=1.65+0.05 from Fig. 11,p=1.60+0.08 from Fig. 12,
and, from Fig. 13, p=1.57+0. 11,which are consistent
with the criterion p&2 for the presence of extended
states. In each case the wider sample was the one on
which the fit was made. We take Fig. 12 as giving the

[(S0S~ ) ]„=CR (8.2)

where C is a constant and the average is taken over
configurations of the system. The spin-glass susceptibili-
ty is defined as

av

(8.3)

To aid our thoughts in assessing the consequences of
the presence of these extended states, let us consider the
simple defect configuration in a perfect lattice shown in
Fig. 14. The presence of a row of bonds —J' of length l
will produce a defect eigenstate e=+—,

' exp( —2lJ'/kT) of
spatial extent I. The extended states we are considering
have eigenvalues given by e=+(X/2)exp( —2rJ/kT),
with r of a fairly modest size; it is seldom more than
about 10. These eigenstates, therefore, are in some sense
analogous to the chain of defects in Fig. 14 with
J'=rJ/l Sin. ce r is relatively small and l~oo, this is
equivalent to an infinite chain of infinitesimally weak
bonds across which, or course, all correlations will van-
ish.

Now, it must be emphasized that we are not saying
that, in this highly disordered regime at p =50%, any as-
pect of the frustrated system is equivalent to the
configuration in Fig. 14. We are merely using the obser-
vation from Fig. 14 to draw the inference that states of
size l ~ ~ with r finite can reasonably be expected to
lead to a loss in correlations between spins.

Let us now consider the spin-spin correlation function
in more detail. For the +J model in two dimensions, in
the regime p )p, where T, =O, one assumes that the
correlation function at zero temperature takes the form

10'-
which, from (8.2), leads to the finite size scaling form, for
a system of linear dimension L,

iso(L) -L (8.4)

10'— We can deduce a value for q from the scaling behavior of
the extended states of our formalism. Consider a sample
of linear dimension L. The number of states whose size is

10'—

10 '—

10 '
I

10
I

20
I

40
I I

70 100
I I

200 400

FIG. 13. As Fig. 11 for 512X16 (triangles) and 512X32
(squares) lattices.

FIG. 14. A defect configuration in an otherwise perfect lat-
tice: a row of I bonds of strength —J' (denoted by heavy lines).
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of the order of L scales, from (7.2), as Nz -L ~. Now,
as stated earlier, the extended states destroy the correla-
tions, and so spins will be correlated within an area
whose size scales as L /X~; that is, as L~.

Now consider the double summation over sites in (8.3).
For an arbitrary site i, there are, on average -L~ sites j
within the region of correlation. Thus iso(L)-L~,
which, by comparison with (8.4), leads to the following
relation between exponents:

As far as we are aware, the p dependence of q has not
been investigated by other authors. A related issue is the
"random antiphase state" described by Barahona et al.
This may be a real phase of the system or simply an ar-
tifact of a numerical calculation in the hard-to-access re-
gime where p is near p, , here, the extended states we have
been discussing are incipient or sparse and a controlled
analysis of correlations is likely to be a difficult task. We
will explore these issues elsewhere.

xf 2 p (8.5)
IX. CQNCLUSION

From the p of Eq. (8. I ), we obtain the value

g =0.40+0.08. Interestingly, this agrees with Morgen-
stern and co-workers ' ' who get g=0.4+0. 1, and is in
disagreement with the more recent calculations of Bray
and Moore who obtain g =0.20+0.02, Wang and
Swendsen with g=0.2 and Bhatt and Young with

g =0.20+0.05. McMillan obtained g =0.28+0.04.
It is useful to examine (8.5) for some limiting cases. If

g=O, ps' scales with the size L of the sample [see Eq.
(8.4)]. The corresponding value of p, namely 2, implies
that spins are correlated over an area -L also, and the
summation over j in (8.3) is over essentially all sites in the
system. If q=2, then ysG -constant. A corresponding
value for p of zero means that the size of the correlated
regions are independent of L and so the number of sites
involved in the j summation does not depend on the sam-
ple size. Thus Eq. (8.5) expresses consistency in both lim-
its.

A comment is needed about the disagreement between
our value of g, namely 0.4, and the value 0.2 that appears
in most of the recent very careful calculations. ' ' No
firm conclusions about the value of g can be drawn from
experimental observations. Measurements on a two-
dimensional +J system yield values for the exponents:
y =4.S+0.2, v= 2.4+0.3; using the scaling relation
y =(2—g)v and assuming g is nonnegative, gives a value
g=0.2+0.2, and all calculations are within that experi-
mental error.

The relation (8.5) is, of course, obtained by inference
rather than by direct proof, but it appears to be con-
sistent in the two limits (p=O, q=2) and (p=2, r)=O).
The feature that is unique about the present method is
that it is actually a zero-temperature calculation rather
than an extrapolation from finite temperatures. Also,
there are no problems of the sort that occur in Monte
Carlo calculations with long relaxation times. A possible
source of discrepancy could arise in calculations that use
small samples. From Figs. 11—13 it can be seen that X&
falls faster with l for values of l less than about 40 lattice
spacings. For calculations on such samples, we might ex-
pect values of p larger than we obtain here with corre-
sponding smaller estimates of g.

We have indicated that there is a critical value for p,
namely, p, =2. For the concentrations considered, we
have seen that p(p, if p )p, and p) p, if p &p, . It is
reasonable to infer that p=p, at p =p„and that p, is
determined by a transition from localized to extended
states. It also leads us to deduce that the exponent g
reduces from the value 0.4 at p =50% to zero at p =p, .

The development of a mean-field description of spin
glasses was clearly established a number of years
ago. ' ' For short-range systems, the essence of a for-
malism did appear' at around the same time, but it did
not develop into a useful language. Rather, the advances
from short-range systems have been through numerical
calculations and, more recently, by means of scaling ar-
guments applied to domain interface energies. The
present approach relates in spirit more closely to the
work of the late 1970's' that attempted to exploit the
gauge-invariant features of the frustrated system but, in
terms of detailed formalism, it is, of course, based on the
early reformulations' ' of the Qnsager theory of the
pure Ising model. In modern terms one would use the
language of a fermionic field theory expressed in La-
grangian form through an integral over Grassmann vari-
ables. ' The availability of a fermion theory in which
to reexpress the present work is important because it pro-
vides the potential to go beyond two dimensions.

One of the intriguing features of the present formalism
is the way in which it emphasizes the fact that frustration
really is a special type of disorder. It is so special, in fact,
that distinct fermion fields —we now use the modern
language —are needed to describe it and, in the zero-
temperature ground state, the frustrated and nonfrustrat-
ed fermions are completely separable. At finite tempera-
tures there is mixing of the two types of fermions al-
though it is still a free-fermion system.

An important aspect of the theory is the retention of
only its gauge-invariant features. Neither the actual posi-
tion of negative bonds nor a catalogue of ground-state
spin configurations is relevant to the thermodynamics of
the model and these are absent from the treatment. The
gauge-invariant properties stem from the distribution of
frustrated plaquettes in the lattice. The number of fer-
mions associated with the frustration is exactly equal to
the number of frustrated plaquettes; this is a property
which we wish to highlight because it gives the current
method a claim to be one based on the minimum infor-
mation necessary to treat a frustrated system. As far as
we are aware, the special features of the frustrated fer-
mions have not been explored by previous authors, al-
though there are echoes of these ideas in the work of Ka-
danoff' and Ceva, ' which predates the interest in spin
glasses.

Extensive numerical calculations, based on the formal-
ism, have been reported in the paper. It is perhaps true
to say that, for some of the results, their significance is
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more a demonstration of the use of the formalism than
something inherently new in itself. This is certainly
correct as far as the ground-state energy and entropy cal-
culations are concerned although claims for the precision
of the values obtained are made. The inference of a sort
of Anderson transition at the critical concentration p, to-
gether with the introduction of a new exponent p does
provide, however, a quite new insight into the underlying
physics that occurs as the frustration in the system is in-
creased. This new development is given precision by re-
lating p to the exponent g in the Ising model and identi-
fying the physical significance of a critical p, .

The question arises as to the possibility of developing
this work to provide a more general account of frustrated
systems —or at least of the static properties of frustrated
Ising systems. We have chosen to examine the two-
dimensional Jmodel here. Certainly there is nothing in
principle to prevent us examining alternatives to the +J
model in two dimensions such as that with a Gaussian
distribution of bonds. The problem is basically just one
of matrix diagonalization even at finite temperatures.
The use of perturbation theory to give exact numerical
results on large samples is special to this case, however,
and would not be easy to adapt for the Gaussian model.

Of more interest is the possibility of extending the
ideas to three dimensions. Again, in principle, there are
possibilities for doing this, but it is necessary to use a fer-
mion formalism and, rather than free fermions, we have
an interacting field theory. Still, there is an interesting
prospect. In the ground state, at zero temperature, the
interaction term vanishes, and we can obtain the frustrat-
ed fermion basis by inspection just as we could in two di-
mensions; we have merely to identify the frustrated (two-
dimensional) plaquettes. To determine the underlying
physics at T =0, we need to examine the effect of the in-
teraction term at small finite temperatures when it occurs
as a small perturbation. The fact that it is a small pertur-
bation provides the intriguing possibility that the low-
temperature physics of the 3D Ising spin glass may be
more amenable to theory than the pure 3D Ising system
at its critical temperature; in the latter case the interac-
tion term is certainly not a small perturbation. Work is
in progress on this and developments will be reported in
due course.
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APPENDIX: THE CONTINUUM GREEN'S FUNCTION

so that the full Green's function [see Eq. (4.3)j is

G =G, +e +id &&dl+0(e) (A2)

From the T-matrix expansion, 6 =g +gTg, we can use
Eqs. (3.12) and (3.1S) to write

G =gp+ & & gp lf & &f Igp+gp~gp g gp lf & &f Igp
f f

—&golf &&fig'o+0( ) .
f

(A3)

Since it can be shown that

&gplf &&flgp= g ld &&dl,
f d

(A4)

we can obtain fr'om Eqs. (A2) and (A3) the following ex-
pression for G, :

6 =go+go~go goP —Pgo (A5)

P = + Id &&d~ . (A6)

Now, using Eqs. (3.16), (3.17), and (A4), we obtain finally
for the continuum Green's function

G, =(1 P)g, (1 P),— —

where

(A7)

g~ =go+go Ugo . (AS)

The Green's function for the continuum states (at
T =0 and a=0) is defined by

G, = —g~c&e, '&c~,
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